VLSI Test Technology and Reliability (ET4076)

Lecture 6

Sequential Circuit Test Generation

(Chapter 8)

Said Hamdioui

Computer Engineering Lab Delft University of Technology 2009-2010

Learning aims of today's lecture

Be able to:

- Describe the seq circuit testing problem
- Describe the different methods used for seq ATPG
- Apply TFEM to generate test vectors for seq circuits

Contents

- Problem of sequential circuit ATPG
- Methods for sequential circuit ATPG
- Time-frame expansion
 - Concept
 - Use of nine-valued logic
 - Drivability
 - ATPG implementation
 - ATPG Complexity
 - Cycle-free and cyclic circuits
 - Asynchronous circuits
 - Summary

Simulation-based sequential circuit ATPG*

Problem of sequential circuit testing (1)

- Test for a fault in a sequential circuit is a sequence of vectors, which
 - Initializes the circuit to a known state
 - Activates the fault, and
 - Propagates the fault effect to a primary output
- Testing sequential circuits is more complex than combinational testing
 - Unknown internal states
 - Long test sequences
- **Two basic differences between Comb. and Seq testing**
 - A test for a fault in seq circuit may consist of several vectors
 - The five-value (1,0,D,D*,X) is insufficient for seq circuits

Methods for sequential circuit ATPG

Time-frame expansion methods (TFEM)

- The circuit is modeled in such a way that combinational ATPG can be used
- Very efficient for circuits described at logic-level
- Not efficient for asynchronous circuits, multiple clocks, cyclic structures

Simulation-based methods*

- Fault simulator and vector generator used to derive tests
- Test can be generated for any circuit that can be simulated
- Memory and time consuming
- Lower FC unless extra observation points added

Time-frame expansion (TFE) method....Example(1)

- Example: Serial Adder, s-a-0
 - Use D Algorithm: $A_n = B_n = 1$
 - Fault cannot be propagated (C_n=X)
 - To propagate the fault, C_n has to be 1
 - Hence, precede the test vector 11 with an <u>initialization vector</u>

TFE method..... Example(2)

Use the expended circuit model

- Combinational circuit is repeated twice
- Generate a combinational test that detect multiple faults
- Example:
 - Generate vector $A_n B_n = 11$ for Time-frame 0
 - Generate vector $A_{n-1}B_{n-1}=11$ for time-frame 1

TFE method Concept of Time-Frames

- If the test sequence for a single stuck-at fault contains n vectors,
 - Replicate combinational logic block *n* times
 - Place fault in each block
 - Generate a test for the multiple stuck-at fault using combinational ATPG with **9-valued logic**

TFE method..... Use of nine-valued logic(1)

□ If A is s-a-1, B always 1: Fault will be detected

- Test generation with 5 logic values (1,0,D,D*,X)
 - Fault does not allow initialization of FF1
 - 0/X is regarded as X in 5 logic values

TFE method.....Use of nine-valued logic(2)

Roth's 5-Valued and Muth's 9-Valued

Symbol	Meaning	Good machine	Failing machine			
D	1/0	1	0			
D*	0/1	0	1			
0	0/0	0	0	Roth's Algebra		
1	1/1	1	1			
Х	X/X	Х	Х			
G0	0/X	0	Х			
G1	1/X	1	Х	Muth's additions		
F0	X/0	Х	0	[Extended unknowns		
F1	X/1	Х	1			

TFE method.....Use of nine-valued logic(2)

□ If A is s-a-1, B always 1: Fault will be detected

- Test generation with 9 logic values (Muth)
 - 0, 1, 0/1, 1/0, 1/X, X/1, 0/X, X/0, X
 - Fault detected with A=0 and after one clock

TFE method..... Drivability

- Drivability: Testability measure of the effort of driving the fault effect from the fault site to PO (use SCOAP measures)
- Example: CC0 and CC1 are SCOAP combinational controllabilities
 - Depth of the circuit is assumed to be 100 (100 times frames)

d(0/1) and d(1/0) are the drivability measures
 Output of D is the best choice for detecting the fault: d(1/0)=27

TFE method......ATPG Implementation

- Select a PO for fault detection based on drivability analysis.
- Place a logic value, 1/0 or 0/1, depending on fault type and number of inversions.
- Justify the output value from PIs, considering all necessary paths and adding backward time-frames.
- If justification is impossible, then use drivability to select another PO and repeat justification.
- If the procedure fails for all reachable POs, then the fault is untestable.
- If 1/0 or 0/1 cannot be justified at any PO, but 1/X or 0/X can be justified, then the fault is <u>potentially</u> <u>detectable.</u>

VLSI Test Technology and Reliability, 2009-2010

TFE method ATPG Complexity

- Synchronous circuit: (All flip-flops controlled by clocks; PI and PO synchronized with clock):
 - Cycle-free circuit (No feedback among flip-flops)
 - Test generation for a fault needs no more than *dseq* + 1 time-frames, where *dseq* is the sequential depth.
 - Cyclic circuit (Contains feedback among flip-flops)
 - May need 9^{Nff} time-frames, where Nff is the number of flip-flops.
- Asynchronous circuit Higher complexity!

max = Number of distinct vectors with 9-valued elements = 9^{Nff}

TFE methodCycle-Free Circuits(1)

Cycle-Free Circuits

Characterized by absence of cycles among flip-flops and a sequential depth, *dseq*.

dseq is the maximum number of flip-flops on any path between PI and PO.

- Both good and faulty circuits are initializable.
- Test sequence length for a fault is bounded by dseq + 1.

TFE methodCycle-Free Circuits(2)

Cycle-Free Circuit Example

dseq = 3

Directed graph: s - graph

Theorem: A test for non-FF fault in a cycle free circuit can always be found with at most **dseq+1 timeframes** unless the fault in untestable

```
All faults are testable.
See Example 8.6.
```

VLSI Test Technology and Reliability, 2009-2010

TFE methodCycle-Free Circuits(3)

Example

We can generate a test for any fault (all are testable) in the circuit using at most four time-frames

TFE method Cycle Circuits(1)

Cycle Circuits

- Cyclic structure
 - Sequential depth is undefined.
- Circuit is not always initializable.
 - No tests can be generated for any stuck-at fault.
- After expanding the circuit to 9^{Nff}, or fewer, time-frames ATPG program calls any given target fault untestable.
- Usually low fault coverage reported by the test generator is related to initialization problems

TFE method Cycle Circuits(2)

Cycle Circuit Example: Modulo-3 counter

Directed graph: s - graph

many cycle in graph

- When CNT=1, counter increments its state each time FF clocked 00, 01, 10, 00,...
- When CNT=0, states are hold
- ATPG: faults are untestable
 - State of the fault free circuit cannot be determined

• Remedy: Provide an initialization input

TFE method Cycle Circuits(3)

Adding Initializing Hardware: CLR

Synchronous initialization

□ ATPG:

- Detects all faults with 9 vectors except 4 shown in the figure
 - Three s-a-1 in CLR* are potentially detectable
 - s-a-0 is partially detectable
 - When circuit powered on: if FF1=FF2=1 (not valid state), then detected

TFE method Benchmark Circuits

- Obtained at Bell Labs using GENTEST
 - Abandoned fault: if CPU time limit per fault is reached (e.g. 100s, 81s)
 - Fault efficiency = detected faults / (Total faults Untestable faults)
 - Max. sequence length = longest test sequence for any fault

Circuit	s1196	s1238	s1488	s1494
PI	14	14	8	8
PO	14	14	19	19
FF	18	18	6	6
Gates	529	508	653	647
Structure	Cycle-free	Cycle-free	Cyclic	Cyclic
Seq. depth	4	4		
Total faults	1242	1355	1486	1506
Detected faults	1239	1283	1384	1379
Potentially detected faults	0	0	2	2
Untestable faults	3	72	26	30
Abandoned faults	0	0	76	97
Fault coverage (%)	99.8	94.7	93.1	91.6
Fault efficiency (%)	100.0	100.0	94.8	93.4
Max. sequence length	3	3	24	28
Total test vectors	313	308	525	559
GENTEST CPU s (Sparc 2)	10	15	19941	19183

TFE method Asynchronous Circuit

- An asynchronous circuit contains unclocked memory often realized by combinational feedback.
 - Some signals can change at any time
 - Some signals may depend on the past inputs
 - Steady state signal values may depends on the circuit delays
- Clock generators, signal synchronizers, flip-flops are typical asynchronous circuits.
- Almost impossible to build, let alone test, a large asynchronous circuit.
- Many large synchronous systems contain small portions of localized asynchronous circuitry.
- Sequential circuit ATPG should be able to generate tests for circuits with limited asynchronous parts, even if it does not detect faults in those parts.

TFE method Time-Frame Expansion

- TME deals with the circuits in two phases:
 - System clock
 - Input vector generated for each period of CK
 - PO are observed once each CK period
 - FMCL
 - Fast time-frames exercise logic signals till they become stable
 - PIs, clocked FFs are held without change; no POs examined

TFE method Asynchronous Example*

Gentest results:

- Faults: total 23, detected 15, untestable 8 (shown in red), Potentially detectable none
- Vectors: 4
- Sparc 2 CPU time: test generation 33ms, fault simulation 16ms

Summary

- Combinational ATPG algorithms are extended:
 - Time-frame expansion unrolls time as combinational array
 - Nine-valued logic system
 - Justification via backward time
- Cycle-free circuits:
 - Require at most *dseq* time-frames
 - Always initializable
- Cyclic circuits:
 - May need 9^{Nff} time-frames
 - Circuit must be initializable
 - Partial scan can make circuit cycle-free (Chapter 14)
- Asynchronous circuits:
 - High complexity
 - Low coverage and unreliable tests
 - Simulation-based methods are more useful (Section 8.3)