VLSI Test Technology and Reliability (ET4076)

Lecture 6

Sequential Circuit Test Generation (Chapter 8)

Said Hamdioui

Computer Engineering Lab
Delft University of Technology
2009-2010
Learning aims of today’s lecture

Be able to:
- Describe the seq circuit testing problem
- Describe the different methods used for seq ATPG
- Apply TFEM to generate test vectors for seq circuits
Contents

- Problem of sequential circuit ATPG
- Methods for sequential circuit ATPG
- Time-frame expansion
 - Concept
 - Use of nine-valued logic
 - Drivability
 - ATPG implementation
 - ATPG Complexity
 - Cycle-free and cyclic circuits
 - Asynchronous circuits
 - Summary
- Simulation-based sequential circuit ATPG*
Problem of sequential circuit testing (1)

- Test for a fault in a sequential circuit is a sequence of vectors, which
 - Initializes the circuit to a known state
 - Activates the fault, and
 - Propagates the fault effect to a primary output

- Testing sequential circuits is more complex than combinational testing
 - Unknown internal states
 - Long test sequences

- Two basic differences between Comb. and Seq testing
 - A test for a fault in seq circuit may consist of several vectors
 - The five-value \((1,0,D,D^*,X)\) is insufficient for seq circuits
Problem of sequential circuit testing (2)

- **Sequential circuit**
 - Comb. logic + Flip Flops

- **Simplified problem**
 - SAF model for logic circuit
 - FFs are treated as ideal memory elements
 - No fault in the clock is modeled
 - Internal faults of FF as not modeled
 - SAF at inputs and outputs
Methods for sequential circuit ATPG

- **Time-frame expansion methods (TFEM)**
 - The circuit is modeled in such a way that combinational ATPG can be used
 - Very efficient for circuits described at logic-level
 - Not efficient for asynchronous circuits, multiple clocks, cyclic structures

- **Simulation-based methods**
 - Fault simulator and vector generator used to derive tests
 - Test can be generated for any circuit that can be simulated
 - Memory and time consuming
 - Lower FC unless extra observation points added
Example: **Serial Adder, s-a-0**

- Use D Algorithm: \(A_n = B_n = 1 \)
- Fault cannot be propagated (\(C_n = X \))
- To propagate the fault, \(C_n \) has to be 1
- Hence, precede the test vector 11 with an initialization vector
TFE method............ Example(2)

- Use the **expanded circuit model**
 - Combinational circuit is repeated twice
 - Generate a combinational test that detect *multiple faults*
 - Example:
 - Generate vector $A_n B_n = 11$ for Time-frame 0
 - Generate vector $A_{n-1} B_{n-1} = 11$ for time-frame 1

```
Combinational logic
```

```
Time-frame -1
```

```
Time-frame 0
```

```
FF
```

VLSI Test Technology and Reliability, 2009-2010

CE Lab, TUDelft
If the test sequence for a single stuck-at fault contains n vectors,

- Replicate combinational logic block n times
- Place fault in each block
- Generate a test for the multiple stuck-at fault using combinational ATPG with **9-valued logic**
TFE method...... Use of nine-valued logic(1)

- If A is s-a-1, B always 1: Fault will be detected
- Test generation with 5 logic values (1,0,D,D*,X)
 - Fault does not allow initialization of FF1
 - 0/X is regarded as X in 5 logic values

![Diagram of circuit with FF1 and FF2](image)

Fault NOT detected
TFE method......Use of nine-valued logic(2)

- Roth’s 5-Valued and Muth’s 9-Valued

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Good machine</th>
<th>Failing machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1/0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D*</td>
<td>0/1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0/0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1/1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>X/X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>G0</td>
<td>0/X</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>G1</td>
<td>1/X</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>F0</td>
<td>X/0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>F1</td>
<td>X/1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

Roth’s Algebra [5 values]

Muth’s additions [Extended unknowns]
TFE method......Use of nine-valued logic (2)

- If A is s-a-1, B always 1: Fault will be detected
- Test generation with **9 logic values** *(Muth)*
 - 0, 1, 0/1, 1/0, 1/X, X/1, 0/X, X/0, X
 - Fault detected with A=0 and after one clock

![Diagram showing test generation with 9 logic values](image)
Drivability: Testability measure of the effort of driving the fault effect from the fault site to PO (use SCOAP measures)

- Depth of the circuit is assumed to be 100 (100 times frames)

- Example: CC0 and CC1 are SCOAP combinational controllabilities

- Output of D is the best choice for detecting the fault: \(d(1/0) = 27 \)

- \(d(0/1) \) and \(d(1/0) \) are the drivability measures
TFE method……..ATPG Implementation

- Select a PO for fault detection based on drivability analysis.

- Place a logic value, 1/0 or 0/1, depending on fault type and number of inversions.

- Justify the output value from PIs, considering all necessary paths and adding backward time-frames.

- If justification is impossible, then use drivability to select another PO and repeat justification.

- If the procedure fails for all reachable POs, then the fault is **untestable**.

- If 1/0 or 0/1 cannot be justified at any PO, but 1/X or 0/X can be justified, then the fault is **potentially detectable**.
TFE method ATPG Complexity

- Synchronous circuit: (All flip-flops controlled by clocks; PI and PO synchronized with clock):
 - **Cycle-free circuit** (No feedback among flip-flops)
 - Test generation for a fault needs no more than \(dseq + 1 \) time-frames, where \(dseq \) is the sequential depth.
 - **Cyclic circuit** (Contains feedback among flip-flops)
 - May need \(9^{Nff} \) time-frames, where \(Nff \) is the number of flip-flops.

- Asynchronous circuit – Higher complexity!

\[
\begin{align*}
\text{Smax} & \quad \text{Time-Frame max-1} \quad \text{Time-Frame max-2} \quad \ldots \quad \text{Time-Frame -2} \quad \text{Time-Frame -1} \quad \text{Time-Frame 0} \\
\text{S3} & \quad \text{S2} \quad \text{S1} \quad \text{S0}
\end{align*}
\]

\(max = \) Number of distinct vectors with 9-valued elements = \(9^{Nff} \)
Cycle-Free Circuits

- Characterized by absence of cycles among flip-flops and a sequential depth, d_{seq}.

- d_{seq} is the maximum number of flip-flops on any path between PI and PO.

- Both good and faulty circuits are initializable.

- Test sequence length for a fault is bounded by $d_{seq} + 1$.
Cycle-Free Circuits Example

dseq = 3

Directed graph: s - graph

Theorem: A test for non-FF fault in a cycle free circuit can always be found with at most \(dseq + 1\) time-frames unless the fault is untestable.

All faults are testable. See Example 8.6.
TFE method Cycle-Free Circuits(3)

- Example
 - We can generate a test for any fault (all are testable) in the circuit *using at most four time-frames*
Cycle Circuits

- Cyclic structure
 - Sequential depth is undefined.

- Circuit is not always initializable.
 - No tests can be generated for any stuck-at fault.

- After expanding the circuit to 9^{Nff}, or fewer, time-frames ATPG program calls any given target fault untestable.

- Usually low fault coverage reported by the test generator is related to initialization problems
TFE method ……… Cycle Circuits(2)

Cycle Circuit Example: Modulo-3 counter

![Modulo-3 counter diagram](image)

- Directed graph: s - graph
- When $\text{CNT}=1$, counter increments its state each time FF clocked 00, 01, 10, 00,..
- When $\text{CNT}=0$, states are hold
- ATPG: faults are untestable
 - State of the fault free circuit cannot be determined

Remedy: Provide an *initialization input*
TFE method Cycle Circuits(3)

- **Adding Initializing Hardware: CLR**
 - Synchronous initialization

![Circuit Diagram]

- **ATPG:**
 - Detects all faults with 9 vectors except 4 shown in the figure
 - Three s-a-1 in CLR* are potentially detectable
 - s-a-0 is partially detectable
 - When circuit powered on: if FF1=FF2=1 (not valid state), then detected
TFE method ……… Benchmark Circuits

- Obtained at Bell Labs using GENTEST
 - Abandoned fault: if CPU time limit per fault is reached (e.g. 100s, 81s)
 - Fault efficiency = detected faults / (Total faults – Untestable faults)
 - Max. sequence length= longest test sequence for any fault

<table>
<thead>
<tr>
<th>Circuit</th>
<th>s1196</th>
<th>s1238</th>
<th>s1488</th>
<th>s1494</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>PO</td>
<td>14</td>
<td>14</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>FF</td>
<td>18</td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gates</td>
<td>529</td>
<td>508</td>
<td>653</td>
<td>647</td>
</tr>
<tr>
<td>Structure</td>
<td>Cycle-free</td>
<td>Cycle-free</td>
<td>Cyclic</td>
<td>Cyclic</td>
</tr>
<tr>
<td>Seq. depth</td>
<td>4</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total faults</td>
<td>1242</td>
<td>1355</td>
<td>1486</td>
<td>1506</td>
</tr>
<tr>
<td>Detected faults</td>
<td>1239</td>
<td>1283</td>
<td>1384</td>
<td>1379</td>
</tr>
<tr>
<td>Potentially detected faults</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Untestable faults</td>
<td>3</td>
<td>72</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>Abandoned faults</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>97</td>
</tr>
<tr>
<td>Fault coverage (%)</td>
<td>99.8</td>
<td>94.7</td>
<td>93.1</td>
<td>91.6</td>
</tr>
<tr>
<td>Fault efficiency (%)</td>
<td>100.0</td>
<td>100.0</td>
<td>94.8</td>
<td>93.4</td>
</tr>
<tr>
<td>Max. sequence length</td>
<td>3</td>
<td>3</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Total test vectors</td>
<td>313</td>
<td>308</td>
<td>525</td>
<td>559</td>
</tr>
<tr>
<td>GENTEST CPU s (Sparc 2)</td>
<td>10</td>
<td>15</td>
<td>19941</td>
<td>19183</td>
</tr>
</tbody>
</table>
TFE method Asynchronous Circuit

- An asynchronous circuit contains unclocked memory often realized by combinational feedback.
 - Some signals can change at any time
 - Some signals may depend on the past inputs
 - Steady state signal values may depend on the circuit delays

- Clock generators, signal synchronizers, flip-flops are typical asynchronous circuits.

- Almost impossible to build, let alone test, a large asynchronous circuit.

- Many large synchronous systems contain small portions of localized asynchronous circuitry.

- Sequential circuit ATPG should be able to generate tests for circuits with limited asynchronous parts, even if it does not detect faults in those parts.
TFE method .. Asynchronous Model

Asynchronous logic is split:
- Feedback **free combinational logic** and
- **Feedback delays** synchronized with **Fast Model Clock FMCK**

FMCK runs much faster than CK
- Repeatedly evaluate the comb. logic and stabilize asynchronous signals before CK clocks FFs, applies PI or observes PO
TFE method Time-Frame Expansion

- TME deals with the circuits in two phases:
 - System clock
 - Input vector generated for each period of CK
 - PO are observed once each CK period
 - FMCL
 - Fast time-frames exercise logic signals till they become stable
 - PIs, clocked FFs are held without change; no POs examined
TFE method ….. Asynchronous Example*

- Gentest results:
 - Faults: total 23, detected 15, **untestable 8** (shown in red), Potentially detectable none
 - Vectors: 4
 - Sparc 2 CPU time: test generation 33ms, fault simulation 16ms
Summary

- Combinational ATPG algorithms are extended:
 - Time-frame expansion unrolls time as combinational array
 - Nine-valued logic system
 - Justification via backward time

- Cycle-free circuits:
 - Require at most d_{seq} time-frames
 - Always initializable

- Cyclic circuits:
 - May need $9^{N_{ff}}$ time-frames
 - Circuit must be initializable
 - Partial scan can make circuit cycle-free (Chapter 14)

- Asynchronous circuits:
 - High complexity
 - Low coverage and unreliable tests
 - Simulation-based methods are more useful (Section 8.3)