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Abstract— Agent-based modeling is one of the popular tools
for analyzing complex socio-technical systems. Because of the
complex nature of such systems a systematic methodology is
required to guide the modeling process. By studying the existing
methodologies in MAS we distinguished four major differences
between MAS and ABM regarding goals, system scale and
diversity, level of system understanding and verification and
validation concerns. In this paper we take these differences
into account and based on more than 25 case studies, we
present a methodological framework for developing agent-based
models that consists of five general iterative phases. These
phases namely: system analysis, model design, detailed design,
implementation and evaluation further consists of smaller step
that are also addressed in this paper. This methodology pro-
vides a tool independent template while respecting the specific
requirements for ABM.

I. INTRODUCTION

A. Large Scale Socio-Technical systems as Complex Adap-
tive Systems

Large Scale Socio-Technical Systems [1] (LSSTS) are
class of systems that span technical artifacts embedded in a
social network. LSSTS include social elements such as oper-
ating companies, investors, local and national governments,
regional development agencies, non-governmental organi-
zations, customers and institutions. These develop around,
sustain and depend on particular technical systems, be it
a single plant, industrial complex or set of interconnected
supply-chains. Examples of LSSTS are regional industrial
clusters, power grids, multimodal transport networks and
telecommunication networks [2].
LSTSS can be considered as Complex Adaptive Sys-

tems (CAS) [3]. In complex system theory [4], the central
principle is that all phenomena can be described by inter-
connected networks of simple units. This approach, also
called Generative Science [5], is an agent-based approach,
that describes complex behaviors as a generative process
from the bottom-up. In this approach, deterministic, finite
rules and parameters interact to generate indeterministic and
infinite system behavior. In generative science, the agent or
individual component, is the theory, as it is often said. By
having an explicit behavioral model of an individual, or the
smallest level component, we can build/generate explanations
of the observed phenomena. If there is to be any coherent
behavior in the system, it has to arise from competition and
cooperation among the agents. The overall behavior of the
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system is the result of a huge number of decisions made
every moment by many individual agents [6].
Agent-Based Models (ABM) are constructed to discover

possible emergent properties from a bottom-up perspective.
ABM acknowledges that reality consists of many compo-
nents acting in parallel. ABM describes these entities and lets
them interact in parallel, observing all possible interaction
modes. There is no desired state or task that needs to
be achieved, only an exploration of the system’s possible
states. Some typical examples of ABMs are: a model of
farmers’ adaptations to climate change by [7], a model of
the co-evolution of auto-catalytic economic production and
economic firms by [8], a model of an abstract economy by
[9] and a model of investments in power generation under
different CO2 policies [10].

B. Modeling LSSTS with ABM
Creating models of CAS such as LSSTS is not trivial.

Developing ABM is not just writing computer code, but a
complex, evolving socio-technical process which needs to be
systematically approached. Most previous works on agent-
based methodologies mainly focus on the evolving nature of
the modeling process [3] or the social process of knowledge
acquisition [11], [12]. Such methods usually give general
instructions and do not explicitly define the steps that need
to be taken throughout the modeling process [13]. On the
other hand, some of the more formal approaches include
methods for social simulation which do not give guidelines
for agent development [14].
All the approaches mentioned above can be sufficient

as long as the complexity of the agent-based models and
associated computer code generated are relatively low. With
increasing complexity of the models however, comes a rapid
increase in the complexity of the software which requires
systematic software methodologies. A survey on agent-based
modeling practices also shows the lack of an agent-based
methodological framework that can be used as a tool in-
dependent of software to guide social scientists in their
modeling practices [15].
In order to find suitable methodologies for developing

agent-based models, the multi-agent systems(MAS) and soft-
ware engineering literature are the most relevant fields to
explore. MAS is a field that acknowledges a given control
problem (e.g. traffic control, agenda synchronization, etc.)
which must be solved using discrete, parallel, autonomous
components, namely agents. This is in contrast to agent-
based modeling whose goal is to explore the emergent
property of systems. Typical examples of MAS in the litera-



ture are: e-commerce agents [16], predictive control system
for transportation networks [17] and cooperative agents in
medical systems [18].
While MAS methodologies [19], [20], [21] are highly

developed they are not always suitable for ABM purposes.
Four main reasons are identified for this inadequacy namely:
difference in goal, system scale and diversity, level of system
understanding, and verification and validation issues.

a) difference in goal: The goal of ABM is to ex-
plore the emergent behavior arising from agent interactions,
whereas the goal of MAS is to create an agent-based software
system that would be used in different domains from the
daily life of people to particular control problems. This
has several important consequences. Because of its goals,
MAS is concerned about the efficiency of the software
and therefore about the efficiency of the agents and their
intelligence. ABM on the other hand, is aimed at representing
real world entities with all of their potential faults and
irrational reasoning.

b) system scale and agent diversity: The scale and
diversity of a MAS is defined through its distributed nature
of elements. The definition of the system in MAS is more
limited given its purposes. For example, even though there
might be millions of agents interacting in an on-line market,
the MAS system definition is only a market. While in the
case of ABM, markets, factories and government may all be
part of the system and need to be represented, giving a more
complex and diverse system definition.

c) level of system understanding: The exploratory na-
ture of ABM and the scale and diversity of the system
under study necessarily means that we do not understand
the system well. This lack of understanding requires a
formal and structured approach to knowledge extraction from
stakeholders. This process is crucial for the model creation.
However for a MAS, given the goals and system scales it
usually deals with, this process is not as difficult.

d) verification and validation issues: Both ABM and
MAS approaches require thorough verification and valida-
tion. However given the difference in goals and scale of
systems studied, the method of validation and verification
are largely different. In MAS, aspects such as robustness
and time efficiency may be crucial while in ABM closeness
to reality whether quantitative and qualitative are essential.
In conclusion, having identified the differences above,

even though MAS and software methodologies answer many
of the issues for developing ABM they are not sufficient. In
this paper, we present an ABM development methodology
that builds upon the existing MAS and software engineering
methodologies and extends them for ABM purposes. This
extension is based on developing more than 25 different
models of LSSTS ranging from a model of a multi-modal
freight transport system [22], to a bio-electricity investment
model [23] to a model of transitions in global LNG markets
[24] 1.

1For more information about the 25 agent-based models please contact
the authors.

II. AGENT-BASED MODELING METHODOLOGY

The methodological framework presented in this paper
consists of five iterative steps namely: system analysis, model
design, detailed model design, software implementation and
model evaluation. These steps are common to many software
engineering methodologies. Nonetheless, each of these steps
have several iterative sub-steps that are specific to ABM.
Figure 1 schematically presents the overall framework.

A. System analysis
Before starting to build a model, it should be stressed that

modeling is a means to an end and not a goal in itself.
In the system analysis phase of ABM, the system being
addressed in studied independent of software modeling and
agent thinking.
1) Problem and Problem Owner Identification: The

model is expected to increase the understanding of how the
system functions, and give insight into how certain actions
will influence the systems behavior.
To address this issue, the problem has to be well-

formulated and the right questions have to be asked, in close
contact with the problem owner(s)2. The problem formula-
tion step should therefore address the following questions:

• What is the problem being addressed? What is the
emergent pattern that is of interest to us?

• Why is this a problem? Is this pattern an existing or a
desired one?

• Whose problem are we addressing?
• What is the intended model use? Before a working
model is ready, it should be decided how the model
will be used. Are the stakeholders interpreting the model
outcomes themselves or are the modelers involved in the
usage? To what end are the model outcomes going to
be used (e.g. are we making policy, are we analyzing
existing policy or are we forming hypothesis about the
functioning of the system?)

2) System Identification: The next step towards build-
ing the model of a system, after the problem has been
formulated, is deciding what the system entails, what its
boundaries are and what it is composed of. This is inherently
a social process as these systems are usually very large
consisting of many social and technological components. The
involved stakeholders have biased and partial perspective of
the system and none of them have the complete image of
the system. The challenge posed to the social process is
to combine this partial and inherently biased stakeholder
knowledge into one coherent system definition.
The goal of this step is to identify the internal structure

of the system under analysis in such a manner that complex
analysis of the system becomes possible. This means that the
system is not only considered as a collection of actors and
interactions that exist in the current situation of the system,

2Problem owner is the actor (i.e. a person or an organization) who is
interested and has means and power to solve a specific problem. The
problem owner can be considered as the party giving the assignment to
a team of modelers.
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Fig. 1: A methodological framework for agent-based modeling

but that we take into account which elements might change
over time and at what speed.
The output of this approach will be as follows:
1) List of actors and their behavior.
2) List of relationship between the actors.
3) A specification of the actions performed by the actors.
4) A description of the environment in which the actors
are performing in.

The system identification phase is an inventory of system
components. The following recursive steps are taken to
obtain the information:
1) Choose a time frame that is important.
2) Interview and brainstorm with domain experts and
stakeholders. Let the experts talk about the system in
relation with the problem and make an inventory of all
relevant, such as concepts, actors, objects, interactions,
states, properties, flows, etc.

3) Perform a literature study on the system under study
to spot any omissions.

Another important decision that needs to be taken now
is what are meaningful metrics that help answer the prob-
lem owners questions. In general there are three types of
metrics that need to be considered namely: individual agent
properties over time, agent interaction data (over time) and
emergent property metrics. These metrics are fully dependent
on the intended model use and problem definition.
3) System Conceptualization: As the components of the

system are identified, they also need to be decomposed into a
structure that is manageable and understandable. In [25], the
IAD framework and Williamson’s four layer model which
are both frameworks for institutional analysis are used to
decompose the system into components for modeling agent-
based social systems. One may also use UML analysis
diagrams such as use case diagrams and interaction diagrams
for similar purposes. Currently, we are also developing
an agent-based methodology, namely MAIA [26] which is
especially designed for the conceptualization phase of agent-
based model development.
Ontology Formalization. After system identification and

conceptualization have been completed, concepts are in
natural language. There may be different terms used by
different domain experts for the same concept which causes
confusion about the logic of the system. Also, these terms
are not suitable for interpretation by a computer. A domain

ontology would also give an explicit, formal, and computer
understandable definition of terms that can later be used in
the detailed design phase. This also makes it possible for
the system description to be generalized beyond one specific
domain.

B. Model Design

Up to now, the focus of the modeling process was on the
understanding of the system to be modeled. In the design
phase however, it is now time to think in terms of a software
model and identify the artificial agents and their interactions.
This step is very similar to system identification in the
analysis phase as it gives us the blue print of ‘what’ we
will be modeling but not ‘how’ to implement the model.
1) Structuring: Entities including the actors identified in

the system identification phase are classified as different
types of agents. Agents are the basic units of the model.
They are recognized by their boundaries, behavior (active,
proactive, reactive) and ability to interact. The previously
identified interactions are used to link different agents.
Note which agents and interactions are dynamic, and

which are static. Add hierarchy to the agent components by
ordering them in a hierarchical, nested way, as a box within
a box. Also, add hierarchy to the interaction components by
classifying them from abstract to concrete.
In this step the world outside the agents is determined

by grouping all the system components that cannot be
influenced by the other subcomponents. This might result
in a different environment than the one that was observed
in system analysis. This is because we are implementing the
model based on a certain problem which results in more
focus on one entity (and/or timing frame) and less on the
other. They form the external world or the environment. The
following rules of thumb can be used to determine what
system elements are to be considered as the environment:
1) Things that are not influenced by components within
the system are part of the environment.

2) Extremely slow processes (relative to the chosen time
frame) should be considered to be a part of the
environment.

2) Behavior Identification: Once the structure of the sys-
tem is available, the behavior of the artificial entities as well
as the environment need to be documented. This behavior
identification is partly from the conceptualization phase and



partly the result of the artificial skeleton we have designed
in the structuring phase.

C. Detailed Model Design
On the analysis phase of the framework, the problem and

the system that the problem holds in, are conceptualized
independent of agent-based modeling. In the model design
phase, our knowledge of the real world system is mapped into
artificial agent-based model with an abstract representation.
In the detailed design phase, the details required to program
an actual model are specified.
1) Logical model formalization: The main questions here

is, how do we make sure that the identified concepts can be
understood by a computer, while retaining their originally
intended meaning. Most computer languages can deal with
a fairly limited set of basic concepts, from which all others
are derived from (e.g. objects, classes, string, boolean, lists
etc.). Essentially, any concept that must be formalized, as
a (nested) combination of these basic elements. This is
especially challenging with relatively ill-defined concepts
such as trust or risk. Is trust a number from 0 to 100, or is
it an elaborate hierarchically structured construct consisting
of many other objects and their relationships? These design
choices will be based on the detailed understanding we have
gained up to now in our modeling process.
Most of this programming details can be added to the for-

mal ontology developed in the analysis phase, the following
two steps have to be taken as part of the formalization to
use and refine the ontology:
1) Refine the ontology (which could also be an existing
generic ontology) by creating new abstract classes
applicable for this case and by adding properties to
already existing classes.

2) Make the model specification by creating concrete
instances of the abstract classes from the ontology.

2) Experimental design: The main question we need to
answer is What is it that we want to measure? Following the
problem definition, we define the desired outcomes of the
model. Based on this question, we can form our hypothesis
as : Does (and under which conditions) the designed ABM
emerge the macroscopic regularity that is of interest ? We
can also ask the questions Given the ABM, what is the range
of behaviors that it is capable of?
Some of the most used experimental options available are:
a) Runs over time.: In some cases, we have exact

parameter values, observed in reality. We may wish to
explore the models behavior at that point, and watch what
happens over time. Two main questions need to be answered
in this case.
1) How long to run. The length of the run is in some cases
dictated by the model. However, in models where the
state does not clearly converge to a stable attractor, we
need to experiment with long runs to get a sense of
what is going on.

2) How many times is a single run repeated? And how
representative is a single mode run? Given the ran-
domized order of agents actions, a single run should

never be considered as a result, other than serving as
a illustrative example and many repetitions should be
performed at every parameter point examined. Using
the standard statistical methods, we can estimate the
necessary number of repetitions.
b) Scenario design: Scenario is in essence nothing

more than a single or a group of time runs under certain
parameter values. It is a narrative of what can/should happen
in the system that is being modeled. Scenarios may also con-
tain dynamic profiles for some parameter values over time.
They should be used to identify the scope of the possible
parameter space, and aid the creation of a parameter sweep
experiment, rather than the sole experiments to perform with
the model.

c) Parameter Sweeps: Experiments are points in the
parameter space. We have to decide how big the space is
and how granular the analysis needs to be ? Approaches for
defining parameter sweeps include: full factorial experiments
where all dimensions and all values are considered, thus
making it only applicable to small models; Latin hypercube
sampling, which is a way to deal with very large parameter
spaces and still have a good granularity and Monte Carlo
analysis.

D. Software Implementation
Once the details of the model are designed, the program

code needs to be implemented. Because of the iterative
process of building a model just like any other software
system, concepts and design may change according to the
outcomes of the implementation or the issues that rise in
this phase.

E. Model Evaluation
Evaluation is not a process that starts after the model is

implemented but is a continuous process throughout model-
ing. Different types of evaluation are briefly introduced in
this section.
1) Verification: Verification is about answering the ques-

tion “ Does the model do what I wanted it to do?” During
the verification the model is checked against its conceptual
design to see if all relevant entities and relationships from
the conceptual model were correctly translated into the
computational model. Verification in software development is
always a difficult task, but particularly so when dealing with
the complex software developed for agent-based modeling
because of the high number of elements, interactions, and
possibly surprising behavior.
There are four classes of inputs to the modeling process

that need to be verified. These are presented in Table I.

TABLE I: Types of inputs and ease of verification

Physical Social
Facts Easy. Objective,

Measurable
Medium. Subjective,
Measurable

Knowledge Medium. Objective,
Formalized

Hard. Subjective,
Unformalized



We can make a distinction between facts and knowledge
and between physical and social domains. Knowledge is
defined in this case as the codified experience of its users
[27]. Physical facts are easy to verify. One can objectively
measure them. Physical knowledge is more difficult, since
it represents an encoding of physical laws of nature into a
knowledge structure of the domain experts. Knowledge needs
to be formalized in order to be used in the modeling method.
However, since it is based on physical reality, it is relatively
easy to verify the encoding. Social facts are difficult to verify,
as they are not objectively defined; they are dependent on
the social context from which they are taken. Since they are
measurable, their verifiability is medium. The most difficult
aspect to verify is social knowledge. Not only does this
knowledge represent a codification inside the domain expert’s
mind, but it is also dependent on a subjective experience of
social reality.
Verification needs to be performed at two levels. At the

multi formal knowledge level, it is important to verify that
the knowledge encoded is what the domain experts have
contributed. At the simulation level, it needs to be verified
that the simulation code corresponds with the knowledge
collected.For surprising behavior one always has to wonder if
this is really something new they are learning from the model
about the system, or the result caused by an error in the code
they wrote for the model. Three phases are considered for
verification of agents:

• Single-agent testing in which the behavior of one agent
is verified includes: theoretical prediction or sanity
checks, extreme value testing and dynamic signal test-
ing. The first test is examining a single agents outputs to
normal operating inputs. In the second test, parameters
are given extreme values (i.e. very large ( +infinity),
very small (-infinity), 0, and on the edges of the pa-
rameter space the agent will experience). If the agents
respond with a logical response to these extremes, we
have further verified the agents. In the final set of tests,
in cases where agents act on time series or have a
notion of memory, the agent should be tested with dif-
ferent(extreme) time signals. Examples include random
signals, signals with continuous in/decreasing values,
signals with step functions and power law distribution
of values.

• Interaction testing, limited to minimal model. In this
phase, the interactions between agents are tested. The
model is set up with the minimal number of agents
necessary for the model to run, and we examine whether
the basic agent interactions happens correctly.

• Multi-agent testing. In which the emergent behavior
of multiple agents is studied. This includes variability
testing and time-line sanity checks. Variability testing
is exploring the variability of the outcomes at a certain
point in the parameter space which may uncover rare
interaction order artifacts. This is done by performing
many (100-1000) repetitions of the model and examin-
ing the statistics of the outcomes, across a number of

output variables. In the cases where outcomes display
severe skewness and high positive kurtosis may suggest
rare but large outliers. The time-line of the model
run should also be examined at several representative
parameter settings.

2) Validation: Traditionally, the validation of models is
done by performing experiments. If the modeled outcomes
correspond with observed reality, the model is validated.
In the case of making some prediction about the future
state of the world after some change has been implemented,
the validating experiment would consist of making such
change in the real world, and observing the effects. However,
running such an experiment at the scale of LSSTS is clearly
impossible. That means that validation is impossible in the
traditional sense.
However, there are three main paths for validation of ABM

outcomes: historic replays of system development, scenario
testing through expert consultations and modeling method
validation. In the first path, we attempt to recreate a current
observed pattern by taking a (somewhat) known starting
point in the past, together with the change of environmental
conditions over time, in order to come to a state of a LSSTS
observed today. In the second path we explore interesting
development scenarios for the LSSTS evolution and discuss
these with experts/stakeholders.
Finally, the method of creating models of LSSTS can be

validated. It can be repeated with different stakeholders and
domain experts, and the resulting models can be compared.
Since the goal of social validation is to provide insight
and increased knowledge, the approach is validated by the
stakeholders themselves. The approach is therefore validated
at the moment that stakeholders believe that they have
increased their knowledge about the evolutionary processes
and the possible states of the system. Traditional social
science tools, such as expert consultations and interviews,
can be used to judge this validity. It is also worth pointing
out that more and more statistical methods are being used
to validate ABM which cannot be discussed due to space
limitations.
3) Experimentation and data analysis: Given the ex-

ploratory nature of ABM and complexity of LSSTS the
parameter space is normally extremely large. As discussed
in the experimental design section some of this space can be
reduced but there is still need for potentially large number
of experiments (i.e. model runs) that need to be executed.
This can pause a potentially big computational challenge
with experimental runs taking days to weeks to complete.
One should then explore options for distributed model runs
which brings with itself an entirely new set of challenges.
The consequence of having large number of experiments

results in extremely large datasets. This presents both a
practical problem of handling this amount of data and also
a fundamental problem of how to find relevant outcomes. It
is worth mentioning that even if we have all the available
metrics, because of the high dimensionality of the parameter
space it can be very challenging to represent outcomes in an
insightful way.



III. CONCLUSIONS AND DISCUSSION

We started the discussion in this work by stating that
LSSTS are complex adaptive system, whose emergent prop-
erties need to be studied using agent-based modeling. We
identified a need for a systematic methodology for model
development. By studying the literature we concluded that
existing ABM methodologies are inadequate, and subse-
quently turned to agent-based software development method-
ologies. While closely related, MAS approaches differ in
four significant ways from ABM, namely they differ in
goals, system scale and agent diversity, the level of system
understanding and in verification & validation requirements.
Using our extensive empirical experience with developing

ABM, we extended software methodologies to suit ABMs
particular requirements. We presented a 5 phase modeling
method, consisting of system analysis, model design, detailed
model design, software implementation and model evalua-
tion. These phases individually cover recursive steps that are
specific to agent-based modeling.
This modeling methodology is a blue print which is

sufficiently generic to allow any type of agent-based social
simulation. It is also independent of tool which was also
pointed out by [15] as a gap for agent-based methods. The
methodology is the result of our extensive empirical use
which shows that the method is highly applicable to many
different cases.
Due to space limitations, we were not able to discuss the

practical details of the steps. As with any other methodology,
the presented work cannot guarantee high quality model
since the outcome depends on the initial process of collective
knowledge.
This work is a part of the ongoing process of standardizing

our modeling practices. We are further elaborating the con-
ceptualization and design phase by explicitly incorporating
the institutional aspects which are inherently present in all
LSSTS.
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