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Answer sheet

 1 Hydrostatics

 1.1 Rectangular floating beam

 a Determine for which (range(s) of) values of ρb the beam will be floating in a stable upright condition. 
Beam will float upright when:

1. Condition 1: t0 and th
2. Condition 2: GM0

Condition 1:

t0 and th => t0.5

Condition 2:
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Meaning than GM is positive when: t0.2 ∨ t0.3
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Both conditions combined:

Beam is floating stable and upright when: 0t0.2m ∨ 0.3 mt0.5m .

The weight of the beam should equal the weight of the displaced water:

F z beam=F z displacement => b g l bh= g l b t => b h= t => t=
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Thus, in terms of the density of the beam the condition becomes:
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0b400 kg /m3
∨ 600 kg /m3

b1000 kg /m3

 b Explain under which conditions the formula of Scribanti for the righting arm is exact.
This is true under 2 conditions:

1. Wall sided structures (vertical sides).
2. Corner  of  side and  deck  is  not  immersed  into  the  water,  corner  of  side  and  bottom (bilge)  remains  

immersed in the water (i.e. the water surface cuts through the sides).

 c Is the beam floating upright in a stable condition (for the rotation about the longitudinal axis) when the 
density of the material of the beam is ρb = 550 kg/m3? If not, what at heeling angle will the beam float?

From question a) can be concluded that GM is negative. In any case lets first compute GM:
GM=KBBM−KG

with:
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thus:
GM=0.13750.1091−0.25=−0.003m

Thus: for this beam material density the beam will not float upright! It will start to turn until the stability moment 
becomes zero again.

Now the Scribanti equations gives the arm of the stability moment for slightly larger angles. It  contains with  
respect to the inital stability using just GM an additional term that improves the stability.

Stability moment according to the initial stability:
M st= g ∇GM sin

Stability moment using Scribanti:

M st= g ∇ GM
1
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Using Scribanti we may find the new heeling angle:

M st= g∇ GM
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The second result yields the obvious: =0,90,180,... . We know already that at 0 degrees the beam is not 
stable (GM < 0), and at 90 degrees and higher probably the same will happen, so lets try the other solution:

GM
1
2

tan 2
 BM =0 => =arctan −BM

2GM =14deg

This is less than 90 degrees, so we do not even need to check what happens there, as the beam will stop turning 
already at 14 degrees.

A rough indication of the resulting GZ  curve (arm of stability moment) is depicted below. We know that at 0  
degrees heeling angle GZ becomes smaller than 0 (GM < 0)  so automatically at the next intersection (at 14  
degrees) GZ should become again positive; the beam floats with positive stability at 14 degrees.

 1.2 A rectangular barge loaded with blocks of concrete in a dock
This you may try to solve yourself.

14 deg

GZ



 2 Potential Flow (10 points)

 2.1 The velocity components of a steady three-dimensional flow are given as: 

                                 
u=A x ; v=−2 A y; w=A z

where A > 0 is a constant. The flow is assumed to be incompressible and inviscid. 

 a Show whether the flow field satisfies the conditions necessary for potential flow.
Check two things:
1. Whether the flow field satisfies conservation of mass.
2. Whether the flow field is irrotational.

Condition 1 Continuity of mass:
For potential flow conservation of mass is enforced by the Laplace equation:
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Substitution in the Laplace equation indeed yields zero:
A−2AA=0

Condition 2 irrotationality:
Irrotationality is given by:
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In fact all cross derivatives of u, v and w are 0, so all three conditions are satisfied.

Conclusion:
The flow field describes a potential flow field.

 b Determine the streamline pattern in the xy-plane (also indicate the flow direction).
A sketch:
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 2.2 Consider a given by the velocity potential and the stream function given below:
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 a The flow is build up by two components, which are these and what are their flow directions?
(Positive) source flow (outward) plus uniform flow in positive x-direction.

 b Derive the location of the stagnation point.
Conditions for finding location stagnation point:

u xstag , y stag=0

v  xstag , ystag =0

This question may be solved in two different ways, either using the stream function to obtain expressions for u and 
v, or using the velocity potential to obtain expressions for u and v. Both lead to the same result.

Using the velocity potential:
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This is only true when either:
y=0

or:
x=±∞

The first option seems to be the most obvious one, the second refers to the situation where far from the source the 
influence of the source diminishes and only the uniform flow in x-direction remains.

So:
y=0

Substitution in u and equaling to zero yields:
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 3 Real Flows (8 points)

 3.1 In order to calculate the resistance of a ship advancing with forward speed through calm water a method 
based on potential flow is used. 

 a Name the three main resistance components this ship is experiencing. 
Wave making resistance         } -> residual resistance (Froude) 
Form resistance          \           /
Frictional resistance   } -> viscous resistance (Hughes)

 b Explain which of these components can be calculated by applying the potential flow method.
Both frictional resistance and form resistance are related to viscosity of the water. Frictional resistance is related to 
tangential stresses between water particles and the ship's surface and the formation of the boundary layer. Form 
resistance is related to the flow separation region behind the ship. Due to viscosity the water particles are slowed 
down along the hull and are not anymore able to 'climb' towards the high pressure region at the stern of the ship 
(the stagnation point). Due to this the particles start to separated and form a separation region around the stern; this 
causes the stagnation pressure to lower at the stern as the pressure is not anymore reacing the stagnation pressure, 
leading to an increase in resistance: the form resistance.

Potential flow does not include viscosity and both resistance components cannot be calculated using potential flow. 
The wave making resistance on the other hand can be computed using potential flow, as potential flow thoery can 
dequately describe waves and their associated velocities and pressures.

 3.2 Explain why an increase in blade area ratio of a ship propeller reduces the occurrence of cavitation. Why 
does one still try to keep the blade area ratio as low as possible? 
Increase in blade area ratio means that the same amount of force that needs to be generated by the propellor to 
overcome the ship's resistance is spread over an larger propeller area. This means that the pressure difference per  
unit area over the propeller may be lower for the same thrust force. So also the low pressure regions will contain 
less lower pressures and the change that the pressure dips below the vapour pressure becomes smaller: the risk on 
cavitation becomes smaller.

On the other hand may the increase in blade area lead to larger skin friction force on the propeller area and thus to 
larger viscous losses and thus a less efficient propulsion system.

 3.3 We are performing a extrapolation of the resistance of a model towed in waves.  The dimensions of the  
experiment are chosen such that the Froude number during the experiments equals the full scale Froude  
number. Given that the scaling factor for length is αL and the scaling factor for density is αρ, derive scaling 
factors for the following quantities:

▪ velocity (m/s)
▪ acceleration (m/s2)
▪ time (s)
▪ displacement (m3)
▪ force (N)
▪ wave frequency (rad/s)

expressing these only in  αL and αρ. 

Velocity
The Froude numbers of model and full scale ship are equal, thus:
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Time
The length traveled equals the velocity times the time traveled:

x=Vt => L=V⋅t => t=
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Acceleration
Velocity equals time times acceleration:
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Of course this is 1: also the acceleration of gravity g is kept constant for model and full scale!

Displacement
Displacement has the unit of length to the 3rd power:

∇=L
3

Force
Second law of Newton:

F=ma => F ∝∇ a => F=⋅∇⋅a=⋅L
3
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Wave frequency
Unit is rad/s, and angles on model scale and full scale are identical, thus:
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 4 Waves (8 points)

 4.1 We consider an irregular sea state in a storm with a mean wave period of T1 = 6.3 s and a significant wave 
height of H1/3 = 3.4 m. You may assume that the wave amplitudes are Rayleigh distributed.

 a In order to assume Rayleigh distributed wave amplitudes, what two conditions must the wave elevation 
spectrum fulfill?

Wave elevations are Gaussian and narrow banded distributed.

 b Calculate the maximum expected wave height when the duration of the storm is 6 hours.
The probabilty that the maximum wave height is exceeded equals 1 in the number of waves that pass during the 6 
hours.

The mean wave period is 6.3 seconds so during 6⋅3600=21600 s 21600 /6.3=3429 waves will pass.

The probability of the highest wave is then:
P HH max=1/3429=0.00029

The probability of exceedance for a Rayleigh distributed signal is given by:

P HH max=exp −2Hmax
2

H 1 /3
2 

Thus:

exp −2Hmax
2

H 1 /3
2 =0.00029 => H max=2.02H1 /3=2.02⋅3.4=6.86 m

 4.2 A fully developed sea and swell are defined by:

H 1/3 sea=3 m
T 1 sea=6 s

and H 1/3 swell=4 m
T 1 swell=12 s

 a Give a realistic sketch (including dimensions) of the energy spectra of this sea and swell and of the  
combined sea and swell.

Sketch:

seaswell
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Important points:

• Location mean wave frequency sea and swell =2/T
• Make sure area under combined curve equals the sum of the areas under the sea and swell curves (energy 

needs to be conserved at each frequency)
• Swell spectrum is narrow banded, sea spectrum is wider banded (energy is spread over more frequencies).
• Maximum energy spectrum swell higher than for sea (narrow banded plus higher significant wave height).

 b Calculate the characteristics H1/3 and T1 of the combined sea and swell.
This can be computed using the spectral moments:

H 1/3=4m0 => m0= H 1/3

4 
2

T 1=2
m0

m1

=> m1=2
m0
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Using this:

m0 sea=0.56 m2 m0 swell=1.00 m2

m1 sea=0.59 m2
/ s m1 swell=0.52 m2

/s

Combined:

m0=0.561.00=1.56 m2

m1=0.590.52=1.11m2
/ s

This results in:

H 1/3=41.56=5.00m

T 1=2
1.56
1.11

=8.82 s


