Loads, dynamics and structural design

Offshore Wind Farm Design

Michiel Zaaijer

2007-2008

Delft University of Technology

DUWIND

Overview

- Introduction
- Modelling offshore wind turbines
- Types of analysis and tools
- Loads and dynamics in design

Introduction

Loads, dynamics and structural design

2007-2008

Delft University of Technology

Harmonic loading

- Gravity loads on blades
- Mass imbalance rotor (1P)
- Aerodynamic imbalance (1P)
- Small regular waves

 $F(t) = \hat{F} \cdot \sin(\omega \cdot t + \varphi)$

Non-harmonic periodic loading

F(t) = $a_0 + \sum_{k=1}^{\infty} a_k \hat{F} \sin(k\omega t + \varphi_k)$

- Wind-shear
- Yaw misalignment
- Tower shadow
- Rotational sampling

of turbulence (all 2P or 3P and multiples)^{$10^{4}L$}

Non-periodic random loading

Turbulence (small scale)Random waves

2007-2008

7

Other (non-periodic) loading

Transients

- Start/stop
- Turbine failures
- Storm front

Short events

- Extreme gust
- Extreme waves

8

2007-2008

Introduction

Loads, dynamics and structural design

2007-2008

Delft University of Technology

The effect of dynamics

The effect of dynamics

TUDelft

The effect of dynamics

Dynamic amplification factor

Note: the DAF is defined for harmonic excitation

TUDelft

13

2007-2008

Character of resonance

- Excitation frequency ≈ natural frequency
- Large oscillations
- Fatigue damage (due to severe cyclic loading)
- Generally not destructive (anticipated in design)

Natural frequencies of wind turbine (-components) are close to several excitation frequencies

Classification for wind turbines

Soft-stiff example

2007-2008

Reduced response to loading

Increased response to loading

2007-2008

Single degree of freedom system

$$F = m \cdot \ddot{x} + k \cdot x + c \cdot \dot{x}$$

2007-2008

19

Wind turbine characteristics

- Stiffness
 - Material properties / soil properties
 - Buoyancy of a floating structure
- Damping
 - Material properties / soil properties
 - Aerodynamic loading
 - Control
 - (Viscosity of water / radiation in soil)
- Inertia
 - Material properties
 - Hydrodynamic loading (water added mass)
 - Entrained water mass

Linear / non-linear systems

Linear system:

$$\begin{array}{c} x(t) & y(t) \\ \hline \\ a \cdot x_1(t) + b \cdot x_2(t) & a \cdot y_1(t) + b \cdot y_2(t) \\ \hline \\ Initial \ condition \ x_0: \ x(t) + x_0 & y(t) + y_0 \end{array}$$

Non-linear system:

- No superposition possible
- Possible dependency on initial conditions
- Possible variation in output statistics for the same input (statistics)

2007-2008

21

Non-linearities for wind turbines

- Aerodynamic loading
- Hydrodynamic loading
 - extreme waves
 - waves and currents
- Speed and pitch control
 - some algorithms
 - settings for various wind speeds
- Extreme deformations (2nd order effects)

Introduction

Loads, dynamics and structural design

2007-2008

Delft University of Technology

Lifelong response signal

Effects of loads and dynamics

- Ultimate limit state (ULS) (maximum load carrying resistance)
 - Yield and buckling
 - Loss of bearing / overturning
 - Failure of critical components
- Fatigue limit state (FLS) (effect of cyclic loading)
 - Repeated wind and wave loading
 - Repeated gravity loading on blade

Effects of loads and dynamics

- Accidental limit state (ALS) (accidental event or operational failure, local damage or large displacements allowed)
 - Ship impact
- Serviceability limit state (SLS) (deformations/motion, tolerance for normal use)
 - Blade tip tower clearance
 - Vibrations that may damage equipment
 - Tilt of turbine due to differential settlement

Design drivers of wind turbines

Importance of dynamics in design

- Increase or decrease of maximum load
 - Affects Ultimate Limit State conditions
- Increase or decrease of number of load cycles and their amplitudes
 - Affects Fatigue Limit State / Lifetime

Effect on structural design

Support structure cost Soft-stiff monopile $\approx 100 \%$ Soft-soft monopile $\approx 80 \%$

Energy cost Soft-stiff monopile $\approx 100 \%$ Soft-soft monopile $\approx 95 \%$

2007-2008

29

Use of dynamic models

1. 2. 3.

Analyse system properties Avoid resonance and instabilities Reduce internal loads and match resistance Make lightest and cheapest structural design Assess lifelong loading Validate reliability and technical lifetime

30

Modelling of offshore wind turbines

Structural models of rotor, nacelle and support structure

2007-2008

Delft University of Technology

Integrated dynamic model

2007-2008

33

Rotor model

Distributed mass-stiffness

2007-2008

Drive train model

Stiffness torsion in transmission and main shaft; main shaft bending **Damping** transmission suspension and generator torque control

¹hub+low speed shaft

Transmission ratio

2007-2008

35

generator

Generator model

synchronous generator:

induction generator:

2007-2008

″∕UDelft

Tower model

Distributed mass-stiffness

Beam theory +**FEM** μ , $EI_{x,y,p}$ **Deflection** Deflection "Total" 1st mode 2nd mode deformation

Modal representation

Effective reduction of DOFs

37

Modelling of offshore wind turbines

Deriving parameters for foundation models

2007-2008

Delft University of Technology

Importance of foundation model

First natural frequency (Hz)without foundation0.34627with foundation0.29055with scour0.28219

Second natural frequency (Hz)without foundation2.2006with foundation1.3328with scour1.2508

2007-2008

Enhanced foundation model

2007-2008

Scour

2007-2008

Effective fixity length

Uncoupled springs

Stiffness matrix

Run two load cases with FEM model with py-curves (See next slide)

45

TUDelft

FEM-based pile-head stiffness

- 1. Solve FEM for F_1, M_1 $F_1 = k_{xx} \cdot u_1 + k_{x\theta} \cdot \theta_1$ $(F_1, M_1 \text{ near loading situation of interest})$ $M_1 = k_{\theta x} \cdot u_1 + k_{\theta \theta} \cdot \theta_1$ 2. Solve FEM for F_2, M_2 $F_2 = k_{xx} \cdot u_2 + k_{x\theta} \cdot \theta_2$ $(F_2, M_2 \text{ near loading situation of interest})$ $M_2 = k_{\theta x} \cdot u_2 + k_{\theta \theta} \cdot \theta_2$
- 3. Scratch one equation and solve k_{xx} , $k_{x\theta}$, $k_{\theta\theta}$ ($k_{\theta x} = k_{x\theta}$, assume matrix equal for both loads)
- 4. Check assumption with another FEM solution

2007-2008

Selection of pile foundation models

- Foundation flexibility significant enough to require close consideration of modelling
- Effective fixity length model dissuaded
- Stiffness matrix much more favourable than uncoupled springs
 For exercise: Monopile in Bladed modeled with uncoupled springs (unfortunately)

Documented GBS model parameters

GBS	Spring stiffness	Viscous damping	Inertia	Lumped springs and dashpots for: - Horizontal
Rocking	$\frac{G \cdot D^3}{3 \cdot (1 - \nu)}$	$0.65 \frac{D^4 \cdot \sqrt{\rho \cdot G}}{32 \cdot (1 - \nu)}$	$0.64 \frac{\rho \cdot D^5}{32 \cdot (1 - \nu)}$	- Vertical - Rocking
Horizontal	$\frac{16G \cdot D \cdot (1-\nu)}{7-8\nu}$	$4.6\frac{D^2\cdot\sqrt{\rho\cdot G}}{4\cdot(2-\nu)}$	$0.76 \frac{\rho \cdot D^3}{8 \cdot (2 - \nu)}$	
Vertical	$\frac{2G \cdot D}{1 - \nu}$	$3.4 \frac{D^2 \cdot \sqrt{\rho \cdot G}}{4 \cdot (1 - \nu)}$	$1.08 \frac{\rho \cdot D^3}{8 \cdot (1 - \nu)}$	

Types of analysis and tools

Natural frequency and mode analysis

2007-2008

Delft University of Technology

FEM modal analysis

FEM analysis provides:

- Natural frequencies
- Mode shapes
- (Pre-processed) matrices of structural properties:
 - Mass
 - Stiffness
 - Damping

2007-2008

Modes of the support structure

Rayleigh's method

Rayleigh's method

- To estimate first natural frequency (lowest)
- Based on energy conservation in undamped, free vibration: Exchange of energy between motion and strain
- Mode shape must fit boundary conditions
- Best estimate of mode shape results in lowest estimate of natural frequency
- (Deflection under static top-load gives educated guess of mode shape)

Rayleigh's method for stepped tower

2007-2008

Free vibration of cylinder in water

- Still water \rightarrow remaining inertia term is called 'water added mass'
- With $C_M \approx 2 \rightarrow$ water added mass \approx mass of replaced water But related to water <u>surrounding</u> the cylinder!
- Use water added mass in analysis of natural frequency and modes

2007-2008

Types of analysis and tools

Response analysis

2007-2008

Delft University of Technology

Types of response analysis

- Static analysis with dynamic response factors
- Time domain simulation
- Frequency domain analysis
- Mixtures

All approaches can also be divided in:

- Integrated combined loading
- Superposition of effect of load components (wind, wave, current, gravity)

2007-2008

Static + dynamic response factors

- Calculate static response for several loading conditions (separate wind, wave, g)
- Estimate a dynamic response factor per condition (comparison of characteristic frequencies) Typical 1.2-1.5
- Superimpose results (including partial safety factors per loading type)

Superposition of forces

Time domain simulation

- Generate realisations of external conditions
- Integrate equations of motion numerically
- Analyse response (extremes, probability distribution, fatigue, ...)
- Repeat until statistically sound information is obtained

The tool used in the exercise to do this is 'Bladed'. See Blackboard item 'Assignments' for a tutorial and manuals.

Frequency domain analysis

Fourier transforms and linear systems

Frequency domain Time domain x(t), y(t), h(t) $y(t) = \int x(\tau) \cdot h(t-\tau) d\tau = x(t) * h(t)$ $a \cdot x_1(t) + b \cdot x_2(t) \rightarrow$ $a \cdot y_1(t) + b \cdot y_2(t)$

 $X(\omega), Y(\omega), H(\omega)$ $Y(\omega) = X(\omega) \cdot H(\omega)$ $a \cdot X_1(\omega) + b \cdot X_2(\omega) \rightarrow a \cdot Y_1(\omega) + b \cdot Y_2(\omega)$

2007-2008

Frequency domain analysis

- Determine transfer function per load source Linearise system or use small harmonic loads
- Multiply spectrum of load source with transfer function
- Superimpose response spectra of different sources

Due to non-linearity in the system, this procedure must be repeated for different average wind speeds

Time domain - frequency domain

- Comprehensive non-linear structural model
- •Very time consuming
- Careful choice of time signal
- Able to model control system dynamics
- Established fatigue prediction tools

• Simplified linear structural model

- Very rapid calculation
- Well documented wind turbulence spectra
- Able only to model linear control system
- Fatigue prediction tools relatively new

64

TD simulation:

- Transfer function tower top loading (linearisation)
- Aerodynamic damping

FD analysis:

- Transfer function for wind loading
- Aerodynamic damping as extra structural damping
- Linear wave loading

Aerodynamic damping

Some relevant analysis tools

	FEM	Time	Freq	Rotor	Offshore
ANSYS	Χ				
Sesam	X	X	Χ		X
Adams WT	X	Χ	Χ	Χ	
Phatas	X	X		X	X
Bladed	X	Χ		Χ	Χ
Flex	X	X		X	X
Turbu	X		Χ	X	X

2007-2008

Loads and dynamics in design

Overview of the process

2007-2008

Delft University of Technology

Suggested steps

- Choose a limited set of load cases
- Make preliminary design based on static loads
- Check for resonance*
- Check extreme loads with time domain simulations*
- Check fatigue damage*

* Adjust design when necessary

Partial safety factor method

- Apply load and resistance factors to:
 - loads on the structure or load effects in the structure
 - resistance of the structure or strength of materials
- Fulfill design criterion: $\gamma_s \cdot S \leq \frac{R}{\gamma_s}$
- Combined loading with non-linear effects:
 - Apply one safety factor to combined load effect, determined from structural analysis of simultaneous loading

Values for safety factors

- Importance of structural component w.r.t. consequence of failure considered
- Typically between 0.7 and 1.35
- \leq 1.0 for favourable loads!
- Load factor 1.0 for fatigue (safety in resistance)
- See e.g. Offshore standard DNV-OS-J101 Design of offshore wind turbine structures

Loads and dynamics in design

Choose load cases

2007-2008

Delft University of Technology

Fundamental problems in evaluation

Load cases: Combine conditions

external conditions

The number of combinations that is required in the standards is enormous!

Reducing number of load cases (extremes)

Select a few independent extreme conditions that might be design driving, e.g.:

- Extreme loading during normal operation
- Extreme loading during failure
- Extreme wind loading above cut-out
- Extreme wave loading

And combine these with reduced conditions for the other aspects (wind, wave, current)

Reducing number of load cases (fatigue)

Hs \ \ Tz	0 - 1	1 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	total
5.5 <u>-6</u>										0.0
5 - <u>5.5</u>	Idlin	g: V _w	> V _{cut}	out				0.08	8	0.1
4.5 <u>-5</u>							0.04	0.3		0.3
4 - <u>4.5</u>							0.3	30.0	8	0.4
3.5 <u>-4</u>	lumped sea stat				te		0.7			0.7
3 - <u>3.5</u>	Norn	nal op	peratio	on:			0.7			0.7
2.5 <u>- 3</u>		$n < V_w$				0.6	0.04	-		0.7
2 - <u>2.5</u>	cut_i			oui		0.2				0.2
1.5 <u>- 2</u>										0.0
1 - <u>1.5</u>	Idling: V _w < V _{cut_in}				3.4	0.4				3.8
0.5 <u>-1</u>				19	58	0.7				77.7
0 - <u>0.5</u>	0.68	}	1.0	65	12	0.1	0.11			79.0
total	0.7	0.0	1.0	84.2	73.4	2.0	1.9	0.5	0.0	164

Lump states in 3D scatter diagram

Use normal operation and idling

2007-2008

Knowledge about load case selection: Thrust curves

Extreme and reduced conditions

- $H_{max} \approx 1.86 \cdot H_{s}$
- $H_{reduced} \approx 1.32 \cdot H_{s}$
- $V_{gust,max} \approx 1.2 \cdot V_{10 min}$
- $V_{gust,reduced} \approx (1.2 / 1.1) \cdot V_{10 min}$

Loads and dynamics in design

Make preliminary design

2007-2008

Delft University of Technology

Preliminary support structure design

- Determine largest loads at several heights
 - Estimate wind, wave, current and gravity loads e.g. $C_{D,AX} = 8/9$ (Betz) at V_{rated} & linear wave & DAF & safety
 - Superimpose and determine largest at each height
- Dimension tower (moments / section modulus)
- Rule of thump D/t
 - 200 tower section
 - ~60 driven foundation pile (see e.g. API on BB)
- Estimate pile size with Blum's method (See document on Blackboard!)

Loads and dynamics in design

Check for resonance

2007-2008

Delft University of Technology

Campbell diagram

2007-2008

Design adaptations

- Change diameters and/or wall thicknesses
- Shift masses e.g. move transformer from nacelle to platform
- Adjust rotor speed control e.g. skip resonance in partial load region
- Change concept

 e.g. to braced tower / tripod

Loads and dynamics in design

Check lifetime fatigue

2007-2008

Delft University of Technology

Fatigue

Fatigue: after a number of cycles of a varying load below static strength failure occurs.

Variable amplitude loading

Miner's Damage Rule: $\sum \frac{n_i}{N_i} = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \frac{n_4}{N_4} + \frac{n_5}{N_5}$

2007-2008

Stochastic loading

Stress history can be converted to blocks of constant amplitude loadings (using counting method)

Stress history

Rainflow counting

- Two parametric method: Range and mean
- Display series of extremes with vertical time axis
- Drip 'rain' from each extreme, stop at a larger extreme
- Start and stop combine to one stress cycle

Rainflow counting

- Established method
- Several equivalent algorithms exist
 - Reservoir method
 - Intermediate extremes in groups of 4
- Principle based on stress-strain hysteresis loops:

Frequency domain approach

Rayleigh: Theoretical, narrow band signals:

Dirlik: Empirical, wide band signals:

Used for spectra of random, Gaussian, stationary processes

2007-2008

Lifetime fatigue analysis

Do the following for all load cases (scatter diagram, operational and idle)

Determine stress time series or PSD (PSD = Power Spectral Density)

Determine stress histogram (Rainflow counting – Dirlik)

2007-2008

Lifetime fatigue analysis

Apply Miner's rule to histogram (damage per load case)

Apply Miner's to all load cases:

Damage of each load case (normalised to 1 unit of time) * Probability of load case * Total lifetime

high 3

dle.

2007-2008

Integrated system dynamics

