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Overview

• Introduction

• Modelling offshore wind turbines

• Types of analysis and tools

• Loads and dynamics in design
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Introduction
Loads, dynamics and structural design
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Harmonic loading
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- Gravity loads on blades
- Mass imbalance rotor (1P)
- Aerodynamic imbalance (1P)
- Small regular waves

27 RPM = 0.45 Hz
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Non-harmonic periodic loading
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- Wind-shear
- Yaw misalignment
- Tower shadow
- Rotational sampling 
of turbulence
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Non-periodic random loading
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- Turbulence (small scale)
- Random waves
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Other (non-periodic) loading

Transients
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- Start/stop
- Turbine failures
- Storm front

- Extreme gust
- Extreme waves
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Introduction
Loads, dynamics and structural design
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The effect of dynamics
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The effect of dynamics
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The effect of dynamics
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Response [m]
Internal forces ≠ external forces
due to dynamics

Internal forces drive the design,
not external forces!
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Dynamic amplification factor
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Note: the DAF is defined for harmonic excitation

DAF = Dynamic amplitude
Static deformation
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Character of resonance

• Excitation frequency ≈ natural frequency

• Large oscillations

• Fatigue damage (due to severe cyclic loading)

• Generally not destructive (anticipated in design)

Natural frequencies of wind turbine (-components) 
are close to several excitation frequencies 
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Classification for wind turbines

1P 3P

soft-soft soft-stiff stiff-stiff

1

DAF

f0

Excitation

Response
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Soft-stiff example

1P = 0.45 Hz

fnatural= 0.55 Hz

3P = 1.35 Hz
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Reduced response to loading

DAF

1

f0

Alleviation of (wind) loading by 
shedding loads through motion

soft-soft
structure

Typical rotor loading
frequencies

1P 3P
Typical wave loading

frequencies
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Increased response to loading

1-P   *-P

Quasi-static or amplified 
response to wave loading
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Single degree of freedom system
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Wind turbine characteristics

• Stiffness
• Material properties / soil properties
• Buoyancy of a floating structure

• Damping
• Material properties / soil properties
• Aerodynamic loading
• Control
• (Viscosity of water / radiation in soil)

• Inertia
• Material properties
• Hydrodynamic loading (water added mass)
• Entrained water mass
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Linear / non-linear systems

x(t) y(t)

a·x1(t) + b·x2(t) a·y1(t) + b·y2(t)

Linear system:

Non-linear system:

x(t) + x0 y(t) + y0Initial condition x0:

• No superposition possible
• Possible dependency on initial conditions
• Possible variation in output statistics for the same 
input (statistics)
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Non-linearities for wind turbines

• Aerodynamic loading

• Hydrodynamic loading 

• extreme waves

• waves and currents

• Speed and pitch control

• some algorithms

• settings for various wind speeds

• Extreme deformations (2nd order effects)
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Introduction
Loads, dynamics and structural design
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Lifelong response signal

Response
(loading + dynamics)

Time �

Extreme events

Lifelong variations
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Effects of loads and dynamics

• Ultimate limit state (ULS)
(maximum load carrying resistance)

• Yield and buckling

• Loss of bearing / overturning

• Failure of critical components

• Fatigue limit state (FLS)
(effect of cyclic loading)

• Repeated wind and wave loading

• Repeated gravity loading on blade
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Effects of loads and dynamics

• Accidental limit state (ALS)
(accidental event or operational failure, local damage 
or large displacements allowed)

• Ship impact

• Serviceability limit state (SLS)
(deformations/motion, tolerance for normal use)

• Blade tip tower clearance

• Vibrations that may damage equipment

• Tilt of turbine due to differential settlement
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Design drivers of wind turbines
Component Design drivers

Ultimate Fatigue

Tower top top mass -

Tower - wind/wave

Submerged wind/wave/current wind/wave
tower

Foundation wind/wave/current -
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Importance of dynamics in design

• Increase or decrease of maximum load

• Affects Ultimate Limit State conditions

• Increase or decrease of number of load cycles and 
their amplitudes

• Affects Fatigue Limit State / Lifetime
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Effect on structural design

Monopile
soft-soft

Monopile
soft-stiff

Support structure cost
Soft-stiff monopile≈ 100 % 
Soft-soft monopile≈ 80 %

Energy cost
Soft-stiff monopile≈ 100 % 
Soft-soft monopile≈ 95 %
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Use of dynamic models

Analyse system 
properties

Avoid resonance 
and instabilities

Assess lifelong 
loading

Reduce internal 
loads and match 
resistance

Make lightest 
and cheapest 
structural design

1. 2. 3.

Validate reliability 
and technical 
lifetime
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Modelling of offshore wind turbines

Structural models of rotor, nacelle and support structure
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Flexibility of wind turbines

Drive train - Torsion

Blades - Flapwise bending
- Edgewise bending
- Torsion

Tower - Bending
- Torsion

Rotor - Rotation

Foundation- Rotation
- Horizontal
- Vertical
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Integrated dynamic model

Wind

Wave

Grid

Controllers

Rotor Drive train Generator

Offshore wind turbine

Support structure
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Rotor model

Aerodynamic properties

Distributed mass-stiffness

Beam theory
FEM

µ, EIx,y,p
Tables
Cl – α
Cd – α
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Drive train model

Ihub+low speed shaft

Igenerator

Stiffness torsion in 
transmission and main shaft; 
main shaft bending

Damping transmission 
suspension and generator 
torque control

Transmission ratio
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Generator model

n0

generator

motor

0
0

Tk,g

n

synchronous generator:
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induction generator:
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0

generator

motor

n

Slip
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Tower model

Distributed mass-stiffness

Beam theory
FEM

µ, EIx,y,p

Modal representation

Deflection 
1st mode

+

Deflection 
2nd mode

=

“Total”
deformation

Effective reduction of DOFs
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Foundation model
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Modelling of offshore wind turbines
Deriving parameters for foundation models
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Importance of foundation model
40
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Rotor/nacelle mass 130,000 kg

First natural frequency (Hz)
without foundation 0.34627
with foundation 0.29055
with scour 0.28219

Second natural frequency (Hz)
without foundation 2.2006
with foundation 1.3328
with scour 1.2508
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Enhanced foundation model

External shaft friction
(t-z curves)

Internal shaft friction
(t-z curves)

Pile plug resistence
(Q-z curves)

Pile point resistance
(Q-z curves)

Lateral resistance
(p-y curves)

Use:
Standards (API/DNV)
Existing software
(In exercise: ANSYS Macro’s)
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Scour

General scour depth

Local scour depth

Overburden reduction depth

No scour condition

General scour only

Local scour condition

Vertical effective soil pressure0

Pile

Seabed

Typically 6 times pile 
diameter

Typically 1-1.5 times 
pile diameter
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Effective fixity length

Seabed

Effective 
fixity 

length

3.3 D – 3.7 DExperience with 
offshore turbines

6 DGeneral calculations

7 D – 8 DVery soft silt

3.5 D – 4.5 DStiff clay

Effective fixity 
length

Configuration
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Uncoupled springs

Tower

Seabed

Rotation

Translations

Forced displacement/rotation

Ignore M Ignore F

Method A

θ
F M

u

Ignore θ

Applied force/moment

Ignore u
Method B

θ
F M

u

In exercise: Use 
ANSYS Macro’s 
and method B for 
a monopile
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Stiffness matrix

Stiffness matrix

Seabed

Tower

Run two load cases with FEM 
model with py-curves
(See next slide)
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FEM-based pile-head stiffness

4. Check assumption with another FEM solution 

111 θθ ⋅+⋅= xxx kukF

111 θθθθ ⋅+⋅= kukM x

1. Solve FEM for F1, M1

(F1, M1 near loading situation of interest)

222 θθ ⋅+⋅= xxx kukF

222 θθθθ ⋅+⋅= kukM x

2. Solve FEM for F2, M2

(F2, M2 near loading situation of interest)

3. Scratch one equation and solve kxx, kxθ, kθθ
(kθx = kxθ, assume matrix equal for both loads)
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Selection of pile foundation models

• Foundation flexibility significant enough to require 
close consideration of modelling

• Effective fixity length model dissuaded

• Stiffness matrix much more favourable than uncoupled 
springs
For exercise: Monopile in Bladed modeled with uncoupled springs 
(unfortunately)
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Vertical

Horizontal

Rocking

InertiaViscous 
damping

Spring 
stiffness
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GBS
Lumped springs 
and dashpots for:
- Horizontal
- Vertical
- Rocking

Documented GBS model parameters
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Types of analysis and tools
Natural frequency and mode analysis
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FEM modal analysis

FEM analysis provides:

• Natural frequencies

• Mode shapes

• (Pre-processed) 
matrices of structural 
properties:

• Mass

• Stiffness

• Damping

1

XY
Z

Parametric support structure model generation                                   
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Natural frequencies
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Modes of the support structure

Monopile 1st mode 2nd mode
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Rayleigh's method
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Rayleigh's method

• To estimate first natural frequency (lowest)

• Based on energy conservation in undamped, free 
vibration: Exchange of energy between motion and 
strain

• Mode shape must fit boundary conditions

• Best estimate of mode shape results in lowest estimate 
of natural frequency

• (Deflection under static top-load gives educated guess 
of mode shape)
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Rayleigh’s method for stepped tower
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See document on Blackboard for:
• Derivation of this equation
• Explanation of EIeq, meq, Cfound
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Free vibration of cylinder in water

( ) ( )cwcwDcMwM xvxvDCxDCaDCf &&&& −−⋅⋅+⋅⋅−−⋅⋅= ⊥⊥⊥ ,,
2

,
2

2

1

4
1

4
ρπρπρ

Inertia force Drag force

Inertia force due to moving cylinder

• Still water � remaining inertia term is called ‘water added mass’

• With CM ≈ 2 � water added mass ≈mass of replaced water
But related to water surroundingthe cylinder!

• Use water added mass in analysis of natural frequency and modes
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Types of analysis and tools
Response analysis
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Types of response analysis

• Static analysis with dynamic response factors

• Time domain simulation

• Frequency domain analysis

• Mixtures

All approaches can also be divided in:

• Integrated combined loading

• Superposition of effect of load components (wind, wave, 
current, gravity)
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Static + dynamic response factors

• Calculate static response for several loading conditions 
(separate wind, wave, g)

• Estimate a dynamic response factor per condition 
(comparison of characteristic frequencies) Typical 1.2-1.5

• Superimpose results (including partial safety factors 
per loading type)
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Superposition of forces

SuperpositionWaves +
current

Wind
on tower

ThrustGravity
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Time domain simulation

• Generate realisations of external conditions

• Integrate equations of motion numerically

• Analyse response (extremes, probability distribution, 
fatigue, …)

• Repeat until statistically sound information is obtained

The tool used in the exercise to do this is ‘Bladed’.
See Blackboard item ‘Assignments’ for a tutorial and manuals.
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Frequency domain analysis

Fourier transforms and linear systems

Time domain Frequency domain

( ) ( ) ( )thtytx ,, ( ) ( ) ( )ωωω HYX ,,

( ) ( ) ( ) ( ) ( )*y t x h t d x t h tτ τ τ= ⋅ − =∫ ( ) ( ) ( )ωωω HXY ⋅=
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YbYa
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⋅+⋅
→⋅+⋅



2007-2008 63

Frequency domain analysis

• Determine transfer function per load source
Linearise system or use small harmonic loads

• Multiply spectrum of load source with transfer function

• Superimpose response spectra of different sources

Due to non-linearity in the system, this procedure must be 

repeated for different average wind speeds
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Time domain - frequency domain

Time domain             Frequency domain

• Comprehensive non-linear 
structural model

• Simplified linear structural 
model

•Very time consuming • Very rapid calculation
• Careful choice of time 
signal

• Well documented wind 
turbulence spectra

• Able to model control 
system dynamics

• Able only to model linear 
control system

• Established fatigue 
prediction tools

• Fatigue prediction tools 
relatively new
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TD simulation:
- Transfer function tower top 

loading (linearisation)
- Aerodynamic damping

FD analysis:
- Transfer function for wind loading
- Aerodynamic damping as extra 

structural damping
- Linear wave loading

+ ≈

Mixing time- and frequency domain
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U(1-a)

Aerodynamic damping

Tower for-aft motion

Blade motion

Vblade

Angle of attack
decreases/increases

-Vblade

α
Lift/thrust force

diminishes/increases

δL

δL opposite Vblade
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Aerodynamic damping
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Function of wind speed, turbine design 
(aerodynamic and control) and support structure!
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Some relevant analysis tools

ANSYS
Sesam
Adams WT
Phatas
Bladed
Flex
Turbu

FEM   Time   Freq   Rotor   Offshore
X
X         X        X                      X
X         X        X        X
X         X                   X           X
X         X                   X           X
X         X                   X           X
X                    X        X           X
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Loads and dynamics in design
Overview of the process
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Suggested steps

• Choose a limited set of load cases

• Make preliminary design based on static loads

• Check for resonance*

• Check extreme loads with time domain simulations*

• Check fatigue damage*

* Adjust design when necessary
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Partial safety factor method

• Apply load and resistance factors to:

• loads on the structure or load effects in the structure

• resistance of the structure or strength of materials

• Fulfill design criterion: 

• Combined loading with non-linear effects:

• Apply one safety factor to combined load effect, determined 
from structural analysis of simultaneous loading

R
S

R
S

γ
γ ≤⋅
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Values for safety factors

• Importance of structural component w.r.t. 
consequence of failure considered

• Typically between 0.7 and 1.35

• ≤ 1.0 for favourable loads!

• Load factor 1.0 for fatigue (safety in resistance)

• See e.g. Offshore standard DNV-OS-J101
Design of offshore wind turbine structures
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Loads and dynamics in design
Choose load cases
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Fundamental problems in evaluation

Response
(loading + dynamics)

Time �

More realisations
at the same site

What is the true extreme?

Long time span (20 year)
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Load cases: Combine conditions

 
extreme 

normal 

 external conditions 

 

stand-by 

 operational conditions 

normal conditions 

start-up 

power production 

normal shut-down 

fault conditions 

condition after occurrence of a fault 

erection 

The number of 
combinations that 
is required in the 
standards is 
enormous!
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Reducing number of load cases 
(extremes)

Select a few independent extreme conditions that might 
be design driving, e.g.:

• Extreme loading during normal operation

• Extreme loading during failure

• Extreme wind loading above cut-out

• Extreme wave loading

And combine these with reduced conditions for the other 
aspects (wind, wave, current)
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Reducing number of load cases 
(fatigue)

Hs \ \ Tz 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 total
5.5 - 6 0.0
5 - 5.5 0.08 0.1
4.5 - 5 0.04 0.3 0.3
4 - 4.5 0.3 0.08 0.4
3.5 - 4 lumped sea state 0.7 0.7
3 - 3.5 0.7 0.7
2.5 - 3 0.6 0.04 0.7
2 - 2.5 0.2 0.2
1.5 - 2 0.0
1 - 1.5 3.4 0.4 3.8
0.5 - 1 19 58 0.7 77.7
0 - 0.5 0.68 1.0 65 12 0.1 0.11 79.0

total 0.7 0.0 1.0 84.2 73.4 2.0 1.9 0.5 0.0 164

Idling: Vw > Vcut_out

Idling: Vw < Vcut_in

Normal operation:
Vcut_in < Vw < Vcut_out

Lump states 
in 3D scatter 
diagram

Use normal 
operation and 
idling
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T

VVrated Vcut-out

‘Ideal’ pitch

Stall

Response
to gust/failure

Vextreme

~V2

~V-1

~V2

Knowledge about load case selection:
Thrust curves
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Extreme and reduced conditions

• Hmax ≈ 1.86 · Hs

• Hreduced ≈ 1.32 · Hs

• Vgust,max ≈ 1.2 · V10 min

• Vgust,reduced ≈ (1.2 / 1.1) · V10 min
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Loads and dynamics in design
Make preliminary design
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Preliminary support structure design

• Determine largest loads at several heights
• Estimate wind, wave, current and gravity loads

e.g. CD,AX = 8/9 (Betz) at Vrated & linear wave & DAF & safety

• Superimpose and determine largest at each height

• Dimension tower (moments / section modulus)

• Rule of thump D/t
• 200 tower section

• ~60 driven foundation pile (see e.g. API on BB)

• Estimate pile size with Blum’s method
(See document on Blackboard!)
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Loads and dynamics in design
Check for resonance
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Campbell diagram
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Design adaptations

• Change diameters and/or wall thicknesses

• Shift masses
e.g. move transformer from nacelle to platform

• Adjust rotor speed control
e.g. skip resonance in partial load region

• Change concept
e.g. to braced tower / tripod
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Loads and dynamics in design
Check lifetime fatigue
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Fatigue

Fstatic

F

time

failure

σ

number of cycles

fatigue test

Fatigue: after a number of cycles of a varying load below static 
strengthfailure occurs.
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S-N curves

log N

log σamp

UTS

1:20? 
Carbon-Epoxy

1:10

Glass-Polyester

Steel (Welded)

1:3
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Variable amplitude loading

σamp

log N

n1

n2

n3

n4
n5

N1

N2

N3
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Stochastic loading
Stress history can be converted to blocks of constant 
amplitude loadings (using counting method)

σamp

log N

stress histogramσ

Time

Stress history

Information about sequence lost
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Rainflow counting

• Two parametric method: Range and mean

• Display series of extremes with vertical time axis

• Drip ‘rain’ from each extreme, stop at a larger extreme

• Start and stop combine to one stress cycle
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Rainflow counting

• Established method

• Several equivalent algorithms exist

• Reservoir method

• Intermediate extremes in groups of 4

• Principle based on stress-strain hysteresis loops:
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Frequency domain approach

Rayleigh:Theoretical, narrow band signals:

Dirlik: Empirical, wide band signals:

Used for spectra of random, Gaussian, stationary processes
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Lifetime fatigue analysis
Hs \ \ Tz  0 - 1 s  1 - 2 s 2 - 3 s 3 - 4 s 4 - 5 s 5 - 6 s 6 - 7 s 7 - 8 s 8 - 9 s total
5.5 - 6 m 0.0
5 - 5.5 m 0.08 0.1
4.5 - 5 m Idling, high: Vw >= Vcut_out 0.04 0.3 0.3
4 - 4.5 m 0.3 0.08 0.4
3.5 - 4 m lumped sea state 0.7 0.7
3 - 3.5 m 0.7 0.7
2.5 - 3 m 0.6 0.04 0.7
2 - 2.5 m 0.2 0.2
1.5 - 2 m idling, low: Vw < Vcut_in 0.0
1 - 1.5 m 3.4 0.4 3.8
0.5 - 1 m 19 58 0.7 77.7
0 - 0.5 m 0.68 1.0 65 12 0.1 0.11 79.0
total 0.7 0.0 1.0 84.2 73.4 2.0 1.9 0.5 0.0 164

Do the following for all load cases
(scatter diagram, operational and idle)

σ

Time

Determine stress time series or PSD
(PSD = Power Spectral Density)

Determine stress histogram
(Rainflow counting – Dirlik)

σamp

log N
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Lifetime fatigue analysis
n1 N1Apply Miner’s rule to histogram

(damage per load case) σamp

log N

∑=
i

i

N

n
D

Apply Miner’s to all load cases:
Damage of each load case (normalised to 1 unit of time) *

Probability of load case * Total lifetime
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No.1: wind & waves (full avail.)

No. 2: waves & no aerodyn. damping

No. 4: pure wind

No. 5: waves & aerodyn. damping

Fatigue analysis typePile 
5.5 m below mudline
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Integrated system dynamics

0

10

20

30

40

50

E
qu

iv
al

en
t b

en
di

ng
 m

om
en

t

wind

wave

wind
loading

wave
loading

super-
position

separate analyse

combined
loading

integrated
analysis

combined


