Petroleum Geology

Introduction

Prof. Dr. Stefan M. Luthi
Course Data

Course Code: AES3820
Target Group:
1st Year MSc students Petroleum Engineering and Geosciences and Applied Geophysics, also Minor Geosciences

Course Credits: 3 ECTS

Course Material: PPT Presentation on Blackboard; books on reference list
Content

• Why it matters: Some basics
• History of petroleum
• The carbon cycle, organic matter and maturation
• Composition of oil and gas
• Migration from source to reservoir
• Reservoir rock properties
• Trapping
• Basin types and their exploration and development
• Reserves and resources
Course Description

This course aims at introducing the students to the basics of petroleum geology, a vast field that includes geochemistry, structural geology, sedimentology, mineralogy, fluid mechanics, mapping, volumetric calculations, risk and uncertainty analysis, and a vast array of industrial technologies.
Course Description

The course goal is to obtain a basic knowledge of the origins of petroleum and gas, of the accumulation conditions, and of the techniques to find and exploit hydrocarbons.

This should give the students a sufficient basis for further M.Sc. courses in the field, either here at the TU Delft or elsewhere, or to join a company where in-house training is provided.
It is your course

Make the best of it!
Reference Textbooks

Furthermore:

Why it matters
Available online via books.google.com
Quantities of oil are expressed in barrels:

1 barrel = 159 liters
1 cubic meter = 6.37 barrels

1 metric ton = 6.8 to 7.6 barrels (dep. on gravity)

Gas is expressed in millions of cubic feet:

1 MMcf $\approx 3 \cdot 10^4$ m3

Energy-wise, gas can be expressed in oil equivalents:

1 boe \approx 6000 to 6500 cf
Some Numbers

Number of oil and gas wells drilled to date: ~ 7 million
Percentage of wells in the USA: ~50%
Producing wells worldwide: ~ 1 million
Average production of oil wells in USA: 20 bbls/day
Average production of oil wells in Middle East: 7,000 bbls/day

Total number of producing fields: ~40,000

Total number of petroleum geologists: ~ 100,000 (exc. China)
Total number of drill rigs worldwide: ~ 5,000
More Large Numbers

- **32.4 Gbo**: Annual World Oil Consumption 2012 (proj)
- **4-8 Gbo**: Annual Oil Discovery Rates in 1990s-2000s
- **1175 Gbo**: Total World Oil Consumption 1860-2012
- **850 Gbo**: Conventional World Oil Reserves (P50)¹
- **1372 Gbo**: Conventional World Oil Reserves (P50)²
- **2311 Gbo**: Conventional World Oil Reserves (P50)³
- **1900 Gbo**: World Reserves (OIP) of Heavy Oil, Tar Sands, and Oil Shales

2. BP Statistical Review 2007, includes 164 Gbo of oil sands in Canada
3. USGS, 2000, includes 688 Gbo reserve growth and 732 Gbo undiscovered reserves

1 Gbo = 1 billion barrels of oil
Oil Companies (International) 2011

<table>
<thead>
<tr>
<th>Company</th>
<th>Prod</th>
<th>Res*</th>
<th>R/P</th>
<th>Revenues</th>
<th>Net</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exxon/Mobil</td>
<td>3.9 Mboe/d</td>
<td>24.9 Gboe</td>
<td>17.5 y</td>
<td>$486 b</td>
<td>$41.1 b</td>
<td>83,600</td>
</tr>
<tr>
<td>BP</td>
<td>3.4 Mboe/d</td>
<td>17.8 Gboe</td>
<td>14.3 y</td>
<td>$386 b</td>
<td>$25.7 b</td>
<td>79,700</td>
</tr>
<tr>
<td>RD/Shell</td>
<td>3.1 Mboe/d</td>
<td>11.9 Gboe</td>
<td>10.5 y</td>
<td>$470 b</td>
<td>$31.2 b</td>
<td>90,000</td>
</tr>
<tr>
<td>Chevron</td>
<td>2.8 Mboe/d</td>
<td>10.5 Gboe</td>
<td>10.3 y</td>
<td>$254 b</td>
<td>$26.9 b</td>
<td>62,000</td>
</tr>
<tr>
<td>Total</td>
<td>2.4 Mboe/d</td>
<td>10.4 Gboe</td>
<td>11.9 y</td>
<td>$217 b</td>
<td>$12.3 b</td>
<td>96,100</td>
</tr>
</tbody>
</table>

* Proved

Sources: Annual Reports, Press Releases, Newspaper Reports
Oil Companies (National + Seminational)

<table>
<thead>
<tr>
<th>Company</th>
<th>Production</th>
<th>Reserves</th>
<th>R/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Arabian Oil Co.</td>
<td>11.0 Mboe/d</td>
<td>303.0 Gboe</td>
<td>75.5 y</td>
</tr>
<tr>
<td>China Nat. Petrol. Co.</td>
<td>4.1 Mbo/d</td>
<td>14.7 Gbo</td>
<td>9.8 y</td>
</tr>
<tr>
<td>Petroleos Mexicanos</td>
<td>2.5 Mboe/d</td>
<td>12.9 Gbo**</td>
<td>14.1 y</td>
</tr>
<tr>
<td>National Iranian Oil Co.</td>
<td>4.0 Mboe/d</td>
<td>300.0 Gboe</td>
<td>205.5 y</td>
</tr>
<tr>
<td>Iraq National Oil Co.</td>
<td>2.7 Mboe/d</td>
<td>134.0 Gbo</td>
<td>136.0 y</td>
</tr>
<tr>
<td>Petroleos de Venezuela</td>
<td>2.6 Mboe/d</td>
<td>129.0 Gbo*</td>
<td>135.9 y</td>
</tr>
<tr>
<td>Kuwait Petroleum Co.</td>
<td>3.7 Mboe/d</td>
<td>111.0 Gboe</td>
<td>82.2 y</td>
</tr>
<tr>
<td>Libya National Oil Co.</td>
<td>2.1 Mboe/d</td>
<td>50.0 Gboe</td>
<td>65.2 y</td>
</tr>
<tr>
<td>Abu Dhabi Nat. Oil Co.</td>
<td>2.6 Mboe/d</td>
<td>126.0 Gboe</td>
<td>132.8 y</td>
</tr>
<tr>
<td>Nigerian Nat. Petrol. Co.</td>
<td>2.3 Mboe/d</td>
<td>68.0 Gboe</td>
<td>81.0 y</td>
</tr>
<tr>
<td>Sonatrach</td>
<td>1.3 Mboe/d</td>
<td>39.0 Gboe</td>
<td>82.2 y</td>
</tr>
<tr>
<td>Petrobras</td>
<td>2.2 Mboe/d</td>
<td>15.1 Gbo</td>
<td>18.8 y</td>
</tr>
<tr>
<td>6 largest Russian Oil Co.</td>
<td>9.8 Mboe/d</td>
<td>79.5 Gboe</td>
<td>22.3 y</td>
</tr>
</tbody>
</table>

* Plus 267 Gbo of heavy oil reserves
** Other sources cite >100 Gbo

Claimed reserves based on BP Statistical Review 2011 and other sources.
Oil Production by Region 2011

Source: BP Statistical Review 2007
Oil Consumption per Capita

Source: BP Statistical Review 2012
The world's oil R/P ratio edged lower in 2006, reaching 40.5 years, compared with 41 years in 1996 and 39.8 years in 1986. The level of reserves fell by 1 billion barrels, or 0.1%. Declines in Norway and Mexico were partially offset by increases in Russia and Brazil.
Total World Energy Consumption

In Mtoe = Million tons of oil equivalent.

Source: International Energy Agency (IEA)
Total Energy Consumption per Capita

Consumption per capita 2011
Tonnes oil equivalent

Source: BP Statistical Review 2012
Reserves/Production

<table>
<thead>
<tr>
<th></th>
<th>Oil</th>
<th></th>
<th>Gas</th>
<th></th>
<th>Coal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>262.3 Gbo</td>
<td>Saudi Arabia</td>
<td>1680 Tcf</td>
<td>Russia</td>
<td>270.7 billion tons</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>179.2 Gbo</td>
<td>Canada</td>
<td>974 Tcf</td>
<td>Russia</td>
<td>173.1 billion tons</td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>136.3 Gbo</td>
<td>Iran</td>
<td>911 Tcf</td>
<td>China</td>
<td>126.2 billion tons</td>
<td></td>
</tr>
<tr>
<td>Iraq</td>
<td>115.0 Gbo</td>
<td>Iraq</td>
<td>240 Tcf</td>
<td>India</td>
<td>101.9 billion tons</td>
<td></td>
</tr>
<tr>
<td>Kuwait</td>
<td>101.5 Gbo</td>
<td>Kuwait</td>
<td>214 Tcf</td>
<td>Australia</td>
<td>87.2 billion tons</td>
<td></td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>97.8 Gbo</td>
<td>United Arab Emirates</td>
<td>USA</td>
<td>All others</td>
<td><40.0 billion tons</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>80.0 Gbo</td>
<td>Venezuela</td>
<td>204 Tcf</td>
<td>USA</td>
<td>270.7 billion tons</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>60.0 Gbo</td>
<td>Russia</td>
<td>152 Tcf</td>
<td>China</td>
<td>173.1 billion tons</td>
<td></td>
</tr>
<tr>
<td>All others</td>
<td>< 42 Gbo</td>
<td>All others</td>
<td><100 Tcf</td>
<td>India</td>
<td>126.2 billion tons</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1317.4 Gbo</td>
<td></td>
<td>Total</td>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

R/P = 45.4 y
R/P = 74.5 y
R/P = 185.4 y

R/P is a static measure with little predictive value, but it is a simple metric with a message
Historical Development

Prior to 1900

No “petroleum geology”; all oil discovered through seepages (Appalachian, California, Baku, Ploesti, Peru, Egypt, Borneo...)

“Anticlinal theory” known but not used in practice

Many fields located in so-called “geomorphic traps” (where the reservoir rock is truncated by a recent erosion surface)

Drake well in 1859 first to discover oil (Pennsylvania)
Historical Development ctd.

1901-1924

“Anticlinal theory” put in practice with Spindeltop well in Texas

Important discoveries in Lake Maracaibo (Venezuela), Masjid-y-Suleiman (Iran), Trinidad, Borneo, Mexico, Oklahoma, San Joaquin Valley, California (all USA)

Petroleum geology is “American”; foundation of AAPG

Bolivar Coastal field: First in homoclinal trap, first offshore, first large field with heavy oil, launches

SOC becomes first major oil company

Automobiles! Gas stoves!
Historical Development ctd.

1925 - 1945

Important discoveries in La Paz (Venezuela), Kirkuk (Iraq; carbonate reservoir!), numerous fields in Middle East (most also carbonates)

Oil is organic, not inorganic; micropaleontology and organic geochemistry developed as important tools

Technological breakthroughs: Rotary drilling, torsion balance, gravimeter, reflection seismology, electrical well logs, perforations; wells to 3000 meters depth (before: to 1000 m)

World Petroleum Congress founded
Historical Developments ctd.

1945 - 1960

Drilling boom, discovery of major oil fields in Middle East, USA, Western Canada, Russian platform

Drilling depths reach 6000 meters; gas became important

Important insights into hydrocarbon migration and accumulation (e.g. by King Hubbert; Levorsen)

Sedimentology becomes important to understand reservoirs

“Log-normal distribution” of oil fields
Historical Developments ctd.

1960 - 1980

Offshore drilling technology developed

Discovery of North Sea, Libya, Nigeria, Siberia, eastern Mexico oil provinces

“Subtle traps” (e.g. North Dome in Qatar)

Vast improvement of seismic acquisition and processing; becomes vital exploration tool. Further technological improvements in drilling, construction, and logging
Historical Developments ctd.

Since 1980

Passive margins plays discovered (Gulf of Mexico, West Africa, Brazil). Deep to ultra-deep drilling technology developed

Huge carbonate fields in intra-cratonic setting discovered (Peri-Caspian oil province)

3-D and 4-D seismics provide volumetric and dynamic picture of reservoirs; leads to seismic stratigraphy

Integration of petroleum disciplines; computerized workflows

Half of the “easy oil” is produced
Summary: Why it matters

- We depend on energy: In the industrial world every person uses the energy corresponding to about 200 human powers 24 hours per day
- Fossil energy constitutes ±85% of our energy consumption
- Fossil fuels have a high caloric value per volume
- Fossil fuels are finite
- The burning of fossil fuels has undesirable climatic consequences
- But: Energy companies are important for the economy