
1

Proof of Competence
UTQ Module 21

Alberto Bacchelli

I. Course description and context

I base this proof of competence on the course Software
EngineeringMethods (SEM), which I taught as main instructor
in the first quarter of 2013 (under the code TI2205). In the
next editions, I will continue to be in charge for this course,
and I am using this proof of competence as a starting point to
improve how I will deliver and assess it.

SEM is a mandatory course of the second year bachelor of
Technische Informatica (TI), it accounts for 5 ECTS, and lasts
one quarter. In 2013 it involved more than 120 students. The
normal scheduling comprises two lectures (two hours each)
and one laboratory session (four hours), each week. It belongs
to the learning line of “Software Development Fundamentals,”
together with Objectgeoriënteerd Programmeren (OP) (first year,
first quarter), Algoritmen en Datastructuren (first year, third
quarter), Softwarekwaliteit en Testen (ST) (first year, fourth
quarter) and Concepten van Programmeertalen (second year,
third quarter). The only formal prerequisite to SEM is OP and
its project (first year, second quarter). To be sure that students
see the connection between OP and SEM, I continuously
show them, with tangible examples, how programming is
only a part of the story when it comes to real-world software
development. Software organizations (both industrial and open-
source) develop software with sound “software engineering
methods.” These are the methods that students will learn to
recognize, judge, and apply during this course.

SEM is the basis for the Context project (second year,
fourth quarter, 10 ECTS), in which students are required
to form 5-person groups and implement software solutions
for real-world stakeholders, by following appropriate software
engineering practices. I am also main co-teacher (together
with Prof. Alan Hanjalic) of the Context project, I particularly
supervise software engineering related aspects. During SEM
lectures I often anticipate how the topics I present to students
will be useful in the course of the Context project.

I am the only responsible for the SEM course: I deliver
lectures, prepare and grade (with the help of teaching assistants)
assignments, and conduct exams. I collaborate with external ex-
perts who deliver guest lectures on their topics of expertise. For
the edition of 2013, SEM included the following guest lectures:
Software Visualization (Prof. Dr. Michele Lanza, University
of Lugano, Switzerland), The Power of Scrum (Prof. Dr. Rini
van Solingen, TU Delft), Human Computer Interaction (Dr.
Willem-Paul Brinkman, TU Delft), and Measuring Software
Product Quality (Dr. Eric Bouwers, Software Improvement
Group, Amsterdam). These lectures help students connecting
to real-world usage of the topics they learn, and give them the
occasion to interact with world-experts on the topics.

II. Students’ entry levels

Software EngineeringMethods is a mandatory course and
it requires knowledge about the basics of programming and
the object-oriented paradigm. Such a knowledge is assured by
the prerequisite course Objectgeoriënteerd Programmeren (OP),
taught in the first year, first semester, by Dr. Andy Zaidman.
To ensure that (1) all the topics required for SEM are presented
in OP and (2) there is minimal overlap with SEM topics, I
have several meetings with Dr. Zaidman.

Some students attending SEM might not come from the
normal TI curriculum (e.g., they come from different bachelor
courses and have to do SEM as a bridge to access a specific
master) and thus might lack the programming and object-
oriented background necessary for this course. This happened
in 2013. The solution I adopted to raise all the students to the
same level was to deliver two additional elective lectures on
such topics. Only students with lacking background came (less
than 25) and we had fruitful interactive lectures, with hands-on
sessions, in which students managed to drive the speed of the
explanations according to their needs. In the next editions, I
plan to still raise all the students on the same level by using
special lectures; however, I plan adopt the flipped classroom
approach, because the topics they have to learn are popular,
simple to grasp (at least in the basics), and there is a good
deal of superb videos and tutorials covering them. Most of the
learning will be done outside class, and the class time will
be spent to answer clarification questions. This approach is
likely to also interest students with a normal TI background
who want to understand these topics better.

III. Learning objectives

A. Before

The learning objectives I set for the “Software Engineering
Methods” course in 2013 are the following:

1) The main goal is to give the students the instruments to
become Software Professionals.

2) Participants understand the most important software engi-
neering practices needed to build high quality software
systems.

3) Participants can apply modern software engineering tech-
niques to create high quality maintainable and evolvable
software projects.

4) Participants can reflect about limitations of current soft-
ware engineering practices, know when and when not
to apply them, and are aware of the latest research
developments aimed at addressing these limitations.

http://sback.it/teaching/TI2205.php
http://msp.ewi.tudelft.nl/users/alan-hanjalic
http://www.inf.usi.ch/faculty/lanza/
http://www.rinivansolingen.com
http://www.rinivansolingen.com
http://mmi.tudelft.nl/willem-paul/index.php/Main_Page
http://mmi.tudelft.nl/willem-paul/index.php/Main_Page
http://ericbouwers.blogspot.nl/p/blog-page.html
http://www.st.ewi.tudelft.nl/~zaidman/


2

B. Problems

Thanks the knowledge acquired in the Module 21, I could see
several problems with the aforementioned learning objectives.
• “The goal is to give the students the instruments to become

Software Professionals.” This goal is not quantifiable. How
can I measure whether they become something? Moreover,
what is really a “Software Professional”?

• “Participants understand the most important software
engineering practices . . . ”. This is the classical understand
problem: I cannot directly measure whether students
understand. I have to assign them activities whose outcome
I can measure and that practically demonstrate their
understanding level.

• “Participants can apply modern software engineering
techniques” This goal is more appropriate than the
previous ones, but it is not clear the context in which the
students are expected to apply the techniques. Although
it is good to use generic terms that go beyond the scope
of the course, this is too generic.

• “Participants can reflect about limitations”. This goal
would be better expressed with a more action-oriented
verb: If I want them to say the same things I explain in
class I should use something along the lines of ?describe,
list, recall?; if I want them to think and use the content
explained in class to derive their own knowledge, I should
use: ?evaluate, argue, criticize?.

• The third goal packs too many goals together: It would
be probably better to split them, so that each of them can
be clearly assessed and addressed in class/tests/laboratory.

C. After

In the following, I detail the learning objectives set for the
next edition of this course (2014, Q1). The learning objectives
roughly follow the Bloom’s taxonomy. The higher the goal in
the taxonomy, the more weight it will have toward the final
grade of each student.

LO1: Students are able to recall and list the most important
software engineering practices designed and used to
build maintainable and evolvable software systems.

LO2: Students can describe the most common applications
of the presented software engineering practices.

LO3: Students can apply the presented software engineer-
ing practices to a new software project.

LO4: Students can analyze the usage of the presented
software engineering practices in existing software
projects.

LO5: Students can judge the real benefits/drawbacks of
using each software engineering practice in a given
software project.

IV. Constructive alignment

Table I shows the alignment among learning objectives,
activities, and assessments. Concepts of constructive alignment
influenced my course design in several ways. Starting by clearer
learning objectives (instead of mere topics I had to transmit
to students) helped me to filter and focus on the parts of the

course that are the most important for the students to achieve the
objectives. Then, forcing myself to reflect and map objectives
to teaching activities helped me in shaping differently the way
in which I present the topics, by using techniques that are more
engaging to the students. The assessment was the part that
received less benefits from this table, because it was natural
to me to align teaching and assessment, since I also design
laboratory work and weekly assignments. Nevertheless, the
table helped me to reflect at a higher perspective on the more
effective types of assessments I should use for my objectives.

V. Active teaching and learning

Although I had already included some active teaching
and learning elements in my course in 2013, I was only
unconsciously aware of their importance and role for the
students. Module 21 gave me the right framework and mindset
to reflect and develop better and more consistent active
teaching/learning moments. Also the feedback from the students
helped me realizing the importance of this topic in fostering
their interest in the subjects of the course.

The third learning objective is the central point connected
to active teaching/learning: “Students can apply the presented
software engineering practices to a new software project.” This
is a very important skill to be achieved by the students, because
they will use it to develop software in real-world scenarios,
both during the context project and the Bachelor project, and
after they will finish their studies. I see active teaching/learning
as a great opportunity to achieve this objective (although it is
not limited to this).

In the first lecture of SEM, I will ask students to form teams
of five people (the same size of teams for the context project)
with the colleagues they collaborate better with (groups will
be generated by students themselves; I will only help creating
groups for students who are “left alone”). Subsequently, at
the end of the first weekly assignment, I will present them
with the specifications of a famous game/application (e.g.,) and
ask them, in the first week to develop a working prototype of
it with their current programming and software engineering
knowledge. This prototype will be the basis of an important
exercise of each weekly assignment. The idea is that students
will gradually rework their prototype week by week, lecture
by lecture, by applying the techniques they learn in class. This
will have two main benefits: (1) They will always relate what
I am teaching to their actual product, and (2) they will see the
tangible differences in the quality of their product, between
the first version (created only with the knowledge from OP)
and the last (after applying the knowledge they acquired in the
course).

This group project will be an active learning activity, because
students themselves will have to realize how the knowledge
they acquire in class can be applied to their case, what the
benefits and drawbacks are, and how to take decisions and
justify them within their group of teammates. I will be available
to discuss students’ decisions within the lab hours, together
with the teaching assistants, and we will evaluate their choices
weekly by analyzing their source code and practical outcome.



3

TABLE I
Constructive alignment, by learning objective

LO Teaching/Learning Activities Assessment Explanation of the alignment
1 Present in class the software engi-

neering practices, using a problem-
based learning: Ask how some
problems can be solved according
to their experience, and show that
these problems are elegantly solved
using certain well established prac-
tices.

Individual active writing exercises
in the weekly assignments in which
the reiterate what said in class.
Graded. Final exam will contain
related recalling questions.

This is the most basic require-
ment for the course. The problem-
based learning is used to show
them the relevance of the prob-
lem. Their knowledge is assessed
through graded exercises in the
weekly assignments.

2 Frontal lectures explaining the ap-
plications, interleaved with in-class
active learning (e.g., brain dump in
the break), collaborative learning,
etc. The idea is to have many differ-
ent active learning activities to keep
students engaged lecture by lecture.

“How to” exercises in the weekly
assignments, in which students de-
scribe the steps in which how
software engineering methods pre-
sented can be used to solve a prob-
lem. Final exam will contain related
theoretical questions.

The “how to” exercises ensure that
the students are able to understand
all the steps of the presented prac-
tices. To write an appropriate “how
to” they are forced to describe it
in the scenario of an application of
the practice. The teaching activity is
aligned, because at the understand-
ing level of the Bloom’s taxonomy.

3 Team-based learning: Students will
form teams to implement a software
project by applying the practices
they learn in class. This is done
out of class, the group work will
foster critical thinking and guide
application of the concepts.

Team project exercises in the
weekly assignments, which will
guide students to iteratively con-
struct their software project in team.
Each week the exercises are evalu-
ated and the decision of the students
discussed with them. Final product
will have a very important weight
in the final grade.

Having students implement a fully
working software system ensures
that they are able to apply the pre-
sented topics. The frequent (weekly)
feedback will both assess the qual-
ity of their work and keep them on
the right track.

4 Case Studies presented in class
of how the software engineering
practices are used in real world
scenarios.

Include exercises in the weekly
assignments that will ask students
to find real world applications of
the presented software engineering
practices, and ask to analyze how
the practices are used.

Both teaching and assessing involve
the analysis of real world examples.

5 Class discussions about concrete
examples of correct/faulty usage of
software engineering methods in
real world software, which lead to
failure/success. Using brainstorm-
ing to activate students before the
class discussion.

Include exercises in the weekly
assignments that will ask students
to find real world applications of
the presented software engineer-
ing practices, and ask for their
judgment on their implementation.
Graded. This is the highest learning
objective, an exercise will be in
the final exam asking to judge an
example.

Brainstorming followed by class
discussion will help critical thinking
about the usage of the practices,
and the assessments will verify the
reasoning of the students.

This will help creating a quick feedback cycle to help both me
(by assessing the understanding level of the students) and the
students (by verifying the validity of their choices) to improve.

VI. Connection with real-world

The subjects taught in Software EngineeringMethods are
deeply rooted in the current practice of real-world software
development. Although not all the companies might follow
all the presented methods equally, there is a high chance that
students will have to make use of most of these methods once

they will work for IT or software companies. Even if students
will occupy managerial roles, many of the presented methods
(e.g., project management and planning) will be relevant to
their practice. Although the presented methods are in current
wide-spread use, it is very likely that they will change in the
future. For this reason, students not only have to recall, list,
and apply the taught topics, but they have also to learn how
to criticize them and see their benefits and drawbacks.

To demonstrate the actual connection of the presented topics
with real-world development, I will rely on three main sources.



4

First, they will experiment the benefits of the presented methods
while developing their our group project: They will be able to
see that following sound techniques, they can program better
and more maintainable code; moreover they will collaborate and
coordinate with more success. Second, I will present in class
real-world open-source systems that make use of the subjects
taught and discuss in class with the students the consequent
advantages and drawbacks; in this vein, weekly assignments
will also require students to personally find real-world examples
in which software engineering methods are applied and criticize
them. Third, I will share in class my own personal industrial
experience at CINECA1 and Microsoft, and I will back it
up by referring to software engineering research I conduct;
I already employed this in 2013, and I noticed that students
are interested and easily engaged when sharing this type of
real-life experiences.

VII. Conclusion

To conclude, the main benefit of module 21 is that it gave
me the right framework to design an engaging and clear course.
I already used a number of techniques to engage students and
help their learning, and I also already developed a carefully
designed SEM course before starting this module; in terms
of the final outcome on students’ acquired knowledge I was
already on the positive side. Nevertheless, after following
module 21, I realized that it was naive to design a course and its
content, without taking into account years of valuable research
on the teaching topic. It opened my eyes on the importance of
clear learning objectives (not only for the students but also for
me to design the course) and the practical difficulty of making
a correct constructive alignment. Active teaching/learning was
already part of my course, but module 21 showed me a huge
number of additional ways to activate students and improve
their learning: This is a great resource that I will use day-to-day
in class to engage students in discussions and critical thinking.

Overall, module 21 gave me the necessary basis to develop
better courses in the next years and to even more appreciate
the efforts I am putting in teaching my courses, because they
are backed up by years of research in this sense.

1http://www.cineca.it/en

http://www.cineca.it/en

	Course description and context
	Students' entry levels
	Learning objectives
	Before
	Problems
	After

	Constructive alignment
	Active teaching and learning
	Connection with real-world
	Conclusion

