Pen and Paper Exercises - determinants

Theorem 1

- a) If A and B are $n \times n$ matrices, then $\det(AB) = (\det A)(\det B)$ b) If A is an $n \times n$ matrix, then $\det A = \det A^T$
- c) An $n \times n$ matrix A is invertible if and only if det $A \neq 0$
 - 1. Use the relevant definitions and/or Theorem 1 to prove the following statements:
 - (a) If A is an invertible matrix, then det $A^{-1} = \frac{1}{\det A}$
 - (b) If A and B are $n \times n$ matrices, then $\det(AB) = \det(BA)$
 - 2. Use properties of determinants to evaluate the given determinant by inspection. Explain your reasoning.

(a) det	$\begin{bmatrix} 1\\ 2\\ 5 \end{bmatrix}$	0 0 0	$\begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$
(b) det	$\left[\begin{array}{c}1\\2\\5\end{array}\right]$	$\begin{array}{c} 2 \\ 4 \\ 0 \end{array}$	$\begin{bmatrix} 3 \\ 6 \\ 6 \end{bmatrix}$
(c) det	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$2 \\ 2 \\ 0$	$\begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$
(d) det	$\left[\begin{array}{c} 0\\ 0\\ 1\end{array}\right]$	$0 \\ 2 \\ -2$	3 4 6