Pen and Paper Exercises - linear combinations and linear independence

1. Show that
$$\mathbb{R}^2 = \operatorname{Span}\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$$

2. Show that $\mathbb{R}^3 = \operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$

3. Describe the span of the vectors both geometrically and algebraically.

(a) Span
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -2\\-4 \end{bmatrix} \right\}$$

(b) Span $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix} \right\}$

- 4. The subspace $H = \text{Span} \{ \mathbf{u}, \ \mathbf{u} + 2\mathbf{v}, \ \mathbf{u} \mathbf{v} + 3\mathbf{w} \}$ is given, where $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.
 - (a) Show that $\mathbf{u} \in H$.
 - (b) Show that $\mathbf{v} \in H$.
 - (c) Show that $\mathbf{w} \in H$.
 - (d) Show that $\mathbf{u} + \mathbf{v} + \mathbf{w} \in H$.
- 5. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
 - (a) If $S = {\mathbf{u}, \mathbf{v}, \mathbf{w}}$ is linearly independent, then $T = {\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{u} + \mathbf{w}}$ is linearly independent.
 - (b) If $S = {\mathbf{u}, \mathbf{v}, \mathbf{w}}$ is linearly independent, then $T = {\mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}, \mathbf{u} \mathbf{w}}$ is linearly independent.
 - (c) Every subset of a linearly independent set is linearly independent.
 - (d) Every subset of a linearly dependent set is linearly dependent.
 - (e) A set of two vectors is linearly independent if and only if one of the vectors is a multiple of the other vector.