Pen and Paper Exercises - linear combinations and linear independence

1. Show that $\mathbb{R}^{2}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$
2. Show that $\mathbb{R}^{3}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$
3. Describe the span of the vectors both geometrically and algebraically.
(a) $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}-2 \\ -4\end{array}\right]\right\}$
(b) $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]\right\}$
4. The subspace $H=\operatorname{Span}\{\mathbf{u}, \mathbf{u}+2 \mathbf{v}, \mathbf{u}-\mathbf{v}+3 \mathbf{w}\}$ is given, where $\mathbf{u}, \mathbf{v}, \mathbf{w} \in$ \mathbb{R}^{n}.
(a) Show that $\mathbf{u} \in H$.
(b) Show that $\mathbf{v} \in H$.
(c) Show that $\mathbf{w} \in H$.
(d) Show that $\mathbf{u}+\mathbf{v}+\mathbf{w} \in H$.
5. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
(a) If $S=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then $T=\{\mathbf{u}+\mathbf{v}, \mathbf{v}+\mathbf{w}, \mathbf{u}+\mathbf{w}\}$ is linearly independent.
(b) If $S=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then $T=\{\mathbf{u}-\mathbf{v}, \mathbf{v}-\mathbf{w}, \mathbf{u}-\mathbf{w}\}$ is linearly independent.
(c) Every subset of a linearly independent set is linearly independent.
(d) Every subset of a linearly dependent set is linearly dependent.
(e) A set of two vectors is linearly independent if and only if one of the vectors is a multiple of the other vector.
