Pen and Paper Exercises - matrix operations

1. The following linear system is given:

$$
\left\{\begin{array}{c}
x_{1}+2 x_{2}+3 x_{3}=4 \tag{1}\\
5 x_{1}+6 x_{2}+7 x_{3}=8
\end{array}\right.
$$

(a) Rewrite system (1) as a vector equation and explain why your vector equation is equivalent to the system.
(b) Use the definiton of the matrixvector product to rewrite your vector equation as a matrix equation $A \mathbf{x}=\mathbf{b}$.
2. The matrix A and the vector \mathbf{b} are given. Write $A \mathbf{b}$ as a linear combination of the columns of A.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \tag{2}\\
3 & 4 & 5 \\
5 & 6 & 7
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right] .
$$

3. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
(a) If the columns of a matrix B are independent, then the columns of $A B$ are independent.
(b) If the columns of a matrix B are dependent, then the columns of $A B$ are dependent.
(c) If A and B are square matrices and if $A B$ is invertible, then A is invertible.
4. Does the equation $(A+B)(A-B)=A^{2}-B^{2}$ hold for all square matrices A and B ?
5. The matrix $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is given. Find conditions on a, b, c and d such that $A B=B A$, where
(a) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
6. Solve the given matrix equation for X and simplify as much as possible (there should be no brackets in your final answer); A, B and C are $n \times n$ matrices.
(a) $A B X A^{-1} B^{-1}=I_{n}+A$
(b) $A X B-B C A=C B$
(c) $A X B=(B A)^{2}$
