Pen and Paper Exercises - subspaces, basis and dimension

1. Definition: a subset H of \mathbb{R}^{n} is a subspace of \mathbb{R}^{n} if it satisfies the following three properties:

A $\mathbf{0} \in H$ (H contains the zero vector)
B For all $\mathbf{u}, \mathbf{v} \in H, \mathbf{u}+\mathbf{v} \in H$ (closed under addition)
\mathbf{C} For all $\mathbf{u} \in H$ and for all scalars $c \in \mathbb{R}, c \mathbf{u} \in H$ (closed under scalar multiplication)
(a) The subset $H_{1}=\operatorname{Span}\left\{\binom{2}{3}\right\} \subset \mathbb{R}^{2}$ is given. Show that H_{1} satisfies all three properties of a subspace (i.e. H_{1} is a subspace of \mathbb{R}^{2}).
(b) The subset $H_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0\right\} \subset \mathbb{R}^{2}$ is given.
i. Show that properties A and B are satisfied.
ii. Try to show that property C is satisfied. Why isn't this property satisfied?
iii. Give an explicit counterexample of property C (this means that H_{2} is not a subspace of \mathbb{R}^{2}).
(c) The subset $H_{3}=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geq 0\right\} \subset \mathbb{R}^{2}$ is given.
i. Show that properties A and C are satisfied.
ii. Try to show that property B is satisfied. Why isn't this property satisfied?
iii. Give an explicit counterexample of property B (this means that H_{3} is not a subspace of \mathbb{R}^{2}).
2. It is given that A is a 2×4 matrix.
(a) True or false (motivate your answer): the columns of A dependent.
(b) Give all possible values of the dimension of $\operatorname{Nul} A$. Motivate your answer.
3. Determine $\operatorname{dim} \operatorname{Col} A$ for all values of h, where $A=\left[\begin{array}{ccc}h & 1 & 2 \\ 0 & h-1 & 0 \\ 0 & 0 & h^{2}-1\end{array}\right]$.

