Pen and Paper Exercises - subspaces, basis and dimension

- 1. Definition: a subset H of \mathbb{R}^n is a subspace of \mathbb{R}^n if it satisfies the following three properties:
 - **A** $\mathbf{0} \in H$ (*H* contains the zero vector)
 - **B** For all $\mathbf{u}, \mathbf{v} \in H, \mathbf{u} + \mathbf{v} \in H$ (closed under addition)
 - **C** For all $\mathbf{u} \in H$ and for all scalars $c \in \mathbb{R}, c\mathbf{u} \in H$ (closed under scalar multiplication)
 - (a) The subset $H_1 = \text{Span}\left\{ \begin{pmatrix} 2\\ 3 \end{pmatrix} \right\} \subset \mathbb{R}^2$ is given. Show that H_1 satisfies all three properties of a subspace (i.e. H_1 is a subspace of \mathbb{R}^2).
 - (b) The subset $H_2 = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\} \subset \mathbb{R}^2$ is given.
 - i. Show that properties A and B are satisfied.
 - ii. Try to show that property C is satisfied. Why isn't this property satisfied?
 - iii. Give an explicit counterexample of property C (this means that H_2 is not a subspace of \mathbb{R}^2).
 - (c) The subset $H_3 = \{(x, y) \in \mathbb{R}^2 | xy \ge 0\} \subset \mathbb{R}^2$ is given.
 - i. Show that properties A and C are satisfied.
 - ii. Try to show that property B is satisfied. Why isn't this property satisfied?
 - iii. Give an explicit counterexample of property B (this means that H_3 is not a subspace of \mathbb{R}^2).
- 2. It is given that A is a 2×4 matrix.
 - (a) True or false (motivate your answer): the columns of A dependent.
 - (b) Give all possible values of the dimension of Nul A. Motivate your answer.

3. Determine dim Col A for all values of h, where $A = \begin{bmatrix} h & 1 & 2 \\ 0 & h-1 & 0 \\ 0 & 0 & h^2-1 \end{bmatrix}$.