Pen and Paper Exercises - vectors, lines and planes

1. For each of the following pair of points A and B, draw the vector \mathbf{v} from A to B. Then compute \mathbf{v} and redraw it as a vector in standard position.
(a) $\mathrm{A}:(2,3) \mathrm{B}:(4,5)$
(b) $\mathrm{A}:(-1,3) \mathrm{B}:(-3,-1)$
2. (a) Find the components of the vectors \mathbf{u}, \mathbf{v}, which are shown in the figure below.
(b) Draw vectors $\mathbf{u}-\mathbf{v}$ and $\mathbf{u}+\mathbf{v}$ and find their components.

3. In the figure below, A, B, C, D, E and F are the vertices of a regular hexagon entered at the origin. Express each of the following vectors in terms of $\mathbf{a}=\overrightarrow{O A}$ and $\mathbf{b}=\overrightarrow{O B}$.
(a) $\overrightarrow{A B}$
(b) $\overrightarrow{A D}$
(c) $\overrightarrow{B C}$
(d) $\overrightarrow{C F}$
(e) $\overrightarrow{A C}$
(f) $\overrightarrow{B C}+\overrightarrow{D E}+\overrightarrow{F A}$

4. \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in \mathbf{R}^{n} and c is a scalar. Are the following expressions well defined or not? Explain your reasoning.
(a) $\|\mathbf{u} \cdot \mathbf{v}\|$
(b) $|\mathbf{u} \cdot \mathbf{v}|$
(c) $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
(d) $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$
(e) $(\mathbf{u} \cdot \mathbf{v})+\mathbf{w}$
(f) $c \cdot(\mathbf{u}+\mathbf{w})$
(g) $c(\mathbf{u}+\mathbf{w})$
(h) $c(\mathbf{u} \cdot \mathbf{w})$
5. Describe the set of all vectors $\mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ that are orthogonal to the vector \mathbf{u}, where
(a) $\mathbf{u}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$
(b) $\mathbf{u}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$
6. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
(a) $d(\mathbf{u}, \mathbf{v})=0$ if and only if $\mathbf{u}=\mathbf{v}$.
(b) $\|\mathbf{u}-\mathbf{v}\| \geq\|| | \mathbf{u}\|-\|\mathbf{v}\| \|$ (the reverse triangle inequality).
(c) If $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$ then $\mathbf{v}=\mathbf{w}$.
(d) If \mathbf{u} is orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}, then \mathbf{u} is orthogonal to all vector $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}$, where c_{1}, c_{2} are arbitrary scalars.
(e) If \mathbf{u} is orthogonal to all vector $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}$, where c_{1}, c_{2} are arbitrary scalars, then \mathbf{u} is orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.
7. Prove the following properties of the cross product $\left(\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}\right)$.
(a) $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}
(b) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(c) $\mathbf{u} \times \mathbf{u}=\mathbf{0}$
(d) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$
(e) $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}.
