Pen and Paper Exercises - vectors, lines and planes

- 1. For each of the following pair of points A and B, draw the vector \mathbf{v} from A to B. Then compute \mathbf{v} and redraw it as a vector in standard position.
 - (a) A: (2,3) B: (4,5)
 - (b) A: (-1,3) B: (-3, -1)
- 2. (a) Find the components of the vectors ${\bf u},\,{\bf v},$ which are shown in the figure below.
 - (b) Draw vectors $\mathbf{u} \mathbf{v}$ and $\mathbf{u} + \mathbf{v}$ and find their components.

3. In the figure below, A, B, C, D, E and F are the vertices of a regular hexagon entered at the origin. Express each of the following vectors in terms of $\mathbf{a} = \overrightarrow{OA}$ and $\mathbf{b} = \overrightarrow{OB}$.

- 4. **u**, **v** and **w** are vectors in \mathbb{R}^n and *c* is a scalar. Are the following expressions well defined or not? Explain your reasoning.
 - (a) $||\mathbf{u} \cdot \mathbf{v}||$
 - (b) $|\mathbf{u} \cdot \mathbf{v}|$
 - (c) $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
 - (d) $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$
 - (e) $(\mathbf{u} \cdot \mathbf{v}) + \mathbf{w}$
 - (f) $c \cdot (\mathbf{u} + \mathbf{w})$
 - (g) $c(\mathbf{u} + \mathbf{w})$
 - (h) $c(\mathbf{u} \cdot \mathbf{w})$
- 5. Describe the set of all vectors $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ that are orthogonal to the vector \mathbf{u} , where
 - (a) $\mathbf{u} = \begin{bmatrix} -2\\ 4 \end{bmatrix}$ (b) $\mathbf{u} = \begin{bmatrix} c_1\\ c_2 \end{bmatrix}$
- 6. Prove the following statements using the the relevant definitions, or disprove the statement using an appropriate counterexample.
 - (a) $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$.
 - (b) $||\mathbf{u} \mathbf{v}|| \ge |||\mathbf{u}|| ||\mathbf{v}|||$ (the reverse triangle inequality).
 - (c) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ then $\mathbf{v} = \mathbf{w}$.
 - (d) If **u** is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 , then **u** is orthogonal to all vector $\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}$, where c_1 , c_2 are arbitrary scalars.
 - (e) If **u** is orthogonal to all vector $\mathbf{w} = c_1\mathbf{v}_1 + c_2\mathbf{v}$, where c_1 , c_2 are arbitrary scalars, then **u** is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 .
- 7. Prove the following properties of the cross product $(\mathbf{u}, \mathbf{v} \in \mathbb{R}^3)$.
 - (a) $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}
 - (b) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
 - (c) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$
 - (d) $||\mathbf{u} \times \mathbf{v}||^2 = ||\mathbf{u}||^2 ||\mathbf{v}||^2 (\mathbf{u} \cdot \mathbf{v})^2$
 - (e) $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta$, where θ is the angle between \mathbf{u} and \mathbf{v} .