
Chapter 6

RIGID BODY DYNAMICS

6.1 Introduction

The dynamics of rigid bodies and ‡uid motions are governed by the combined actions of
di¤erent external forces and moments as well as by the inertia of the bodies themselves. In
‡uid dynamics these forces and moments can no longer be considered as acting at a single
point or at discrete points of the system. Instead, they must be regarded as distributed
in a relatively smooth or a continuous manner throughout the mass of the ‡uid particles.
The force and moment distributions and the kinematic description of the ‡uid motions are
in fact continuous, assuming that the collection of discrete ‡uid molecules can be analyzed
as a continuum.
Typically, one can anticipate force mechanisms associated with the ‡uid inertia, its weight,
viscous stresses and secondary e¤ects such as surface tension. In general three principal
force mechanisms (inertia, gravity and viscous) exist, which can be of comparable impor-
tance. With very few exceptions, it is not possible to analyze such complicated situations
exactly - either theoretically or experimentally. It is often impossible to include all force
mechanisms simultaneously in a (mathematical) model. They can be treated in pairs as
has been done when de…ning dimensionless numbers - see chapter 4 and appendix B. In
order to determine which pair of forces dominate, it is useful …rst to estimate the orders
of magnitude of the inertia, the gravity and the viscous forces and moments, separately.
Depending on the problem, viscous e¤ects can often be ignored; this simpli…es the problem
considerably.
This chapter discusses the hydromechanics of a simple rigid body; mainly the attention
focuses on the motions of a simple ‡oating vertical cylinder. The purpose of this chap-
ter is to present much of the theory of ship motions while avoiding many of the purely
hydrodynamic complications; these are left for later chapters.

6.2 Ship De…nitions

When on board a ship looking toward the bow (front end) one is looking forward. The
stern is aft at the other end of the ship. As one looks forward, the starboard side is
one’s right and the port side is to one’s left.

0J.M.J. Journée and W.W. Massie, ”OFFSHORE HYDROMECHANICS”, First Edition, January 2001,
Delft University of Technology. For updates see web site: http://www.shipmotions.nl.
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6.2.1 Axis Conventions

The motions of a ship, just as for any other rigid body, can be split into three mutually
perpendicular translations of the center of gravity, G, and three rotations around G. In
many cases these motion components will have small amplitudes.

Three right-handed orthogonal coordinate systems are used to de…ne the ship motions:

² An earth-bound coordinate system S(x0; y0; z0).
The (x0; y0)-plane lies in the still water surface, the positive x0-axis is in the direction
of the wave propagation; it can be rotated at a horizontal angle ¹ relative to the
translating axis system O(x; y; z) as shown in …gure 6.1. The positive z0-axis is
directed upwards.

² A body–bound coordinate system G(xb; yb; zb).
This system is connected to the ship with its origin at the ship’s center of gravity,
G. The directions of the positive axes are: xb in the longitudinal forward direction,
yb in the lateral port side direction and zb upwards. If the ship is ‡oating upright in
still water, the (xb; yb)-plane is parallel to the still water surface.

² A steadily translating coordinate system O(x; y; z).
This system is moving forward with a constant ship speed V . If the ship is stationary,
the directions of the O(x; y; z) axes are the same as those of the G(xb; yb; zb) axes.
The (x; y)-plane lies in the still water surface with the origin O at, above or under
the time-averaged position of the center of gravity G. The ship is supposed to carry
out oscillations around this steadily translating O(x; y; z) coordinate system.

Figure 6.1: Coordinate Systems

The harmonic elevation of the wave surface ³ is de…ned in the earth-bound coordinate
system by:

³ = ³a cos(!t ¡ kx0) (6.1)

in which:
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³a = wave amplitude (m)
k = 2¼=¸ = wave number (rad/m)
¸ = wave length (m)
! = circular wave frequency (rad/s)
t = time (s)

6.2.2 Frequency of Encounter

The wave speed c, de…ned in a direction with an angle ¹ (wave direction) relative to the
ship’s speed vector V , follows from:

¯̄
¯̄c = !

k
=
¸

T

¯̄
¯̄ (see chapter 5) (6.2)

The steadily translating coordinate system O(x; y; z) is moving forward at the ship’s speed
V , which yields:

jx0 = V t cos¹+ x cos¹+ y sin¹j (6.3)

Figure 6.2: Frequency of Encounter

When a ship moves with a forward speed, the frequency at which it encounters the waves,
!e, becomes important. Then the period of encounter, Te, see …gure 6.2, is:

Te =
¸

c+ V cos(¹¡ ¼) =
¸

c ¡ V cos¹ (6.4)

and the circular frequency of encounter, !e, becomes:

!e =
2¼

Te
=
2¼ (c¡ V cos¹)

¸
= k (c¡ V cos¹) (6.5)

Note that ¹= 0 for following waves.
Using k ¢ c = ! from equation 6.2, the relation between the frequency of encounter and the
wave frequency becomes:

j!e = ! ¡ kV cos¹j (6.6)
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Note that at zero forward speed (V = 0) or in beam waves (¹ = 90± or ¹ = 270±) the
frequencies !e and ! are identical.
In deep water, with the dispersion relation k = !2=g, this frequency relation becomes:

!e = ! ¡ !2

g
V cos¹ (deep water) (6.7)

Using the frequency relation in equation 6.6 and equations 6.1 and 6.3, it follows that the
wave elevation can be given by:

j³ = ³a cos(!et¡ kx cos¹¡ ky sin ¹)j (6.8)

6.2.3 Motions of and about CoG

The resulting six ship motions in the steadily translating O(x; y; z) system are de…ned by
three translations of the ship’s center of gravity (CoG) in the direction of the x-, y- and
z-axes and three rotations about them as given in the introduction:

Surge : x = xa cos(!et+ "x³)

Sway : y = ya cos(!et+ "y³)

Heave : z = za cos(!et+ "z³)

Roll : Á = Áa cos(!et+ "Á³)

Pitch : µ = µa cos(!et+ "µ³)

Yaw : Ã = Ãa cos(!et+ "Ã³) (6.9)

in which each of the " values is a di¤erent phase angle.
The phase shifts of these motions are related to the harmonic wave elevation at the origin
of the steadily translating O(x; y; z) system. This origin is located at the average position
of the ship’s center of gravity - even though no wave can be measured there:

Wave elevation at O or G: j³ = ³a cos(!et)j (6.10)

6.2.4 Displacement, Velocity and Acceleration

The harmonic velocities and accelerations in the steadily translating O(x; y; z) coordinate
system are found by taking the derivatives of the displacements. This will be illustrated
here for roll:

Displacement : jÁ = Áa cos(!et + "Á³ )j (see …gure 6.3)

Velocity :
¯̄
¯ _Á = ¡!eÁa sin(!et+ "Á³)

¯̄
¯ = !eÁa cos(!et+ "Á³ + ¼=2)

Acceleration :
¯̄
¯ÄÁ = ¡!2eÁa cos(!et+ "Á³ )

¯̄
¯ = !2eÁa cos(!et+ "Á³ + ¼) (6.11)

The phase shift of the roll motion with respect to the wave elevation in …gure 6.3, "Á³ , is
positive because when the wave elevation passes zero at a certain instant, the roll motion
already has passed zero. Thus, if the roll motion, Á, comes before the wave elevation, ³,
then the phase shift, "Á³, is de…ned as positive. This convention will hold for all other
responses as well of course.
Figure 6.4 shows a sketch of the time histories of the harmonic angular displacements,
velocities and accelerations of roll. Note the mutual phase shifts of ¼=2 and ¼.
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Figure 6.3: Harmonic Wave and Roll Signal

Figure 6.4: Displacement, Acceleration and Velocity

6.2.5 Motions Superposition

Knowing the motions of and about the center of gravity, G, one can calculate the motions
in any point on the structure using superposition.

Absolute Motions

Absolute motions are the motions of the ship in the steadily translating coordinate system
O(x; y; z). The angles of rotation Á, µ and Ã are assumed to be small (for instance < 0.1
rad.), which is a necessity for linearizations. They must be expressed in radians, because
in the linearization it is assumed that:

jsinÁ t Áj and jcos Á t 1:0j (6.12)

For small angles, the transformation matrix from the body-bound coordinate system to
the steadily translating coordinate system is very simple:

0
@
x
y
z

1
A =

0
@

1 ¡Ã µ
Ã 1 ¡Á

¡µ Á 1

1
A ¢

0
@
xb
yb
zb

1
A (6.13)

Using this matrix, the components of the absolute harmonic motions of a certain point
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P (xb; yb; zb) on the structure are given by:

jxP = x¡ ybÃ + zbµj
jyP = y + xbÃ ¡ zbÁj
jzP = z ¡ xbµ + ybÁ j (6.14)

in which x, y, z, Á, µ and Ã are the motions of and about the center of gravity, G, of the
structure.
As can be seen in equation 6.14, the vertical motion, zP , in a point P (xb; yb; zb) on the
‡oating structure is made up of heave, roll and pitch contributions. When looking more
detailed to this motion, it is called here now h, for convenient writing:

h (!e; t) = z ¡xbµ + ybÁ
= za cos(!et+ "z³) ¡ xbµa cos(!et+ "µ³) + ybÁa cos(!et+ "Á³ )
= f+za cos "z³ ¡ xbµa cos "µ³ + ybÁa cos"Á³g ¢ cos(!et)

¡f+za sin "z³ ¡ xbµa sin "µ³ + ybÁa sin "Á³g ¢ sin(!et) (6.15)

As this motion h has been obtained by a linear superposition of three harmonic motions,
this (resultant) motion must be harmonic as well:

h (!e; t) = ha cos(!et+ "h³)

= fha cos "h³g ¢ cos(!et)¡ fha sin "h³g ¢ sin(!et) (6.16)

in which ha is the motion amplitude and "h³ is the phase lag of the motion with respect to
the wave elevation at G.
By equating the terms with cos(!et) in equations 6.15 and 6.16 (!et = 0, so the sin(!et)-
terms are zero) one …nds the in-phase term ha cos "h³; equating the terms with sin(!et) in
equations 6.15 and 6.16 (!et = ¼=2, so the cos(!et)-terms are zero) provides the out-of-
phase term ha sin "h³ of the vertical displacement in P :

ha cos "h³ = +za cos "z³ ¡ xbµa cos "µ³ + ybÁa cos "Á³
ha sin "h³ = +za sin "z³ ¡ xbµa sin "µ³ + ybÁa sin "Á³ (6.17)

Since the right hand sides of equations 6.17 are known, the amplitude ha and phase shift
"h³ become:

¯̄
¯̄ha =

q
(ha sin "h³)

2 + (ha cos "h³ )
2

¯̄
¯̄

¯̄
¯̄"h³ = arctan

½
ha sin "h³
ha cos "h³

¾
with: 0 · "h³ · 2¼

¯̄
¯̄ (6.18)

The phase angle "h³ has to be determined in the correct quadrant between 0 and 2¼. This
depends on the signs of both the numerator and the denominator in the expression for
the arctangent. If the phase shift "h³ has been determined between ¡¼=2 and +¼=2 and
ha cos "h³ is negative, then ¼ should be added or subtracted from this "h³ to obtain the
correct phase shift.
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For ship motions, the relations between displacement or rotation, velocity and acceleration
are very important. The vertical velocity and acceleration of point P on the structure follow
simply from the …rst and second derivative with respect to the time of the displacement in
equation 6.15:

_h = ¡!eha sin (!et+ "h³) = f!ehag ¢ cos (!et+ f"h³ + ¼=2g)
Äh = ¡!2eha cos(!et+ "h³ ) =

©
!2eha

ª
¢ cos (!et+ f"h³ + ¼g) (6.19)

The amplitudes of the motions and the phase shifts with respect to the wave elevation at
G are given between braces f:::g here.

Vertical Relative Motions

The vertical relative motion of the structure with respect to the undisturbed wave surface
is the motion that one sees when looking overboard from a moving ship, downwards toward
the waves. This relative motion is of importance for shipping water on deck and slamming
(see chapter 11). The vertical relative motion s at P (xb; yb) is de…ned by:

js= ³P ¡ hj = ³P ¡ z + xbµ¡ ybÁ (6.20)

with for the local wave elevation:

³P = ³a cos(!et¡ kxb cos¹¡ kyb sin ¹) (6.21)

where ¡kxb cos¹¡ kyb sin¹ is the phase shift of the local wave elevation relative to the
wave elevation in the center of gravity.
The amplitude and phase shift of this relative motion of the structure can be determined
in a way analogous to that used for the absolute motion.

6.3 Single Linear Mass-Spring System

Consider a seaway with irregular waves of which the energy distribution over the wave
frequencies (the wave spectrum) is known. These waves are input to a system that possesses
linear characteristics. These frequency characteristics are known, for instance via model
experiments or computations. The output of the system is the motion of the ‡oating
structure. This motion has an irregular behavior, just as the seaway that causes the
motion. The block diagram of this principle is given in …gure 6.5.
The …rst harmonics of the motion components of a ‡oating structure are often of interest,
because in many cases a very realistic mathematical model of the motions in a seaway can
be obtained by making use of a superposition of these components at a range of frequencies;
motions in the so-called frequency domain will be considered here.
In many cases the ship motions mainly have a linear behavior. This means that, at each
frequency, the di¤erent ratios between the motion amplitudes and the wave amplitudes and
also the phase shifts between the motions and the waves are constant. Doubling the input
(wave) amplitude results in a doubled output amplitude, while the phase shifts between
output and input does not change.
As a consequence of linear theory, the resulting motions in irregular waves can be obtained
by adding together results from regular waves of di¤erent amplitudes, frequencies and
possibly propagation directions. With known wave energy spectra and the calculated
frequency characteristics of the responses of the ship, the response spectra and the statistics
of these responses can be found.
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Figure 6.5: Relation between Motions and Waves

6.3.1 Kinetics

A rigid body’s equation of motions with respect to an earth-bound coordinate system follow
from Newton’s second law. The vector equations for the translations of and the rotations
about the center of gravity are respectively given by:

¯̄
¯̄~F = d

dt

³
m~U

´¯̄
¯̄ and

¯̄
¯̄ ~M =

d

dt

³
~H

´¯̄
¯̄ (6.22)

in which:

~F = resulting external force acting in the center of gravity (N)
m = mass of the rigid body (kg)
~U = instantaneous velocity of the center of gravity (m/s)
~M = resulting external moment acting about the center of gravity (Nm)
~H = instantaneous angular momentum about the center of gravity (Nms)
t = time (s)

The total mass as well as its distribution over the body is considered to be constant during
a time which is long relative to the oscillation period of the motions.

Loads Superposition

Since the system is linear, the resulting motion in waves can be seen as a superposition
of the motion of the body in still water and the forces on the restrained body in waves.
Thus, two important assumptions are made here for the loads on the right hand side of
the picture equation in …gure 6.6:

a. The so-called hydromechanical forces and moments are induced by the harmonic
oscillations of the rigid body, moving in the undisturbed surface of the ‡uid.

b. The so-called wave exciting forces and moments are produced by waves coming
in on the restrained body.

The vertical motion of the body (a buoy in this case) follows from Newton’s second law:
¯̄
¯̄ d
dt
(½r ¢ _z) = ½r ¢ Äz = Fh +Fw

¯̄
¯̄ (6.23)

in which:



6.3. SINGLE LINEAR MASS-SPRING SYSTEM 6-9

Figure 6.6: Superposition of Hydromechanical and Wave Loads

½ = density of water (kg/m3)
r = volume of displacement of the body (m3)
Fh = hydromechanical force in the z-direction (N)
Fw = exciting wave force in the z-direction (N)

This superposition will be explained in more detail for a circular cylinder, ‡oating in still
water with its center line in the vertical direction, as shown in …gure 6.7.

Figure 6.7: Heaving Circular Cylinder

6.3.2 Hydromechanical Loads

First, a free decay test in still water will be considered. After a vertical displacement
upwards (see 6.7-b), the cylinder will be released and the motions can die out freely. The
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vertical motions of the cylinder are determined by the solid mass m of the cylinder and
the hydromechanical loads on the cylinder.
Applying Newton’s second law for the heaving cylinder:

mÄz = sum of all forces on the cylinder

= ¡P + pAw ¡ b _z ¡ aÄz
= ¡P + ½g (T ¡ z)Aw ¡ b _z ¡ aÄz (6.24)

With Archimedes’ law P = ½gTAw, the linear equation of the heave motion becomes:

j(m+ a) Äz + b _z + cz = 0j (6.25)

in which:

z = vertical displacement (m)
P = mg = mass force downwards (N)
m = ½AwT = solid mass of cylinder (kg)
a = hydrodynamic mass coe¢cient (Ns2/m = kg)
b = hydrodynamic damping coe¢cient (Ns/m = kg/s)
c = ½gAw = restoring spring coe¢cient (N/m = kg/s2)
Aw =

¼
4
D2 = water plane area (m2)

D = diameter of cylinder (m)
T = draft of cylinder at rest (s)

The terms aÄz and b _z are caused by the hydrodynamic reaction as a result of the movement
of the cylinder with respect to the water. The water is assumed to be ideal and thus to
behave as in a potential ‡ow.
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Figure 6.8: Mass and Damping of a Heaving Vertical Cylinder
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The vertical oscillations of the cylinder will generate waves which propagate radially from
it. Since these waves transport energy, they withdraw energy from the (free) buoy’s oscil-
lations; its motion will die out. This so-called wave damping is proportional to the velocity
of the cylinder _z in a linear system. The coe¢cient b has the dimension of a mass per
unit of time and is called the (wave or potential) damping coe¢cient. Figure 6.8-b
shows the hydrodynamic damping coe¢cient b of a vertical cylinder as a function of the
frequency of oscillation.
In an actual viscous ‡uid, friction also causes damping, vortices and separation phenomena
quite similar to that discussed in chapter 4. Generally, these viscous contributions to the
damping are non-linear, but they are usually small for most large ‡oating structures; they
are neglected here for now.

The other part of the hydromechanical reaction force aÄz is proportional to the vertical
acceleration of the cylinder in a linear system. This force is caused by accelerations that
are given to the water particles near to the cylinder. This part of the force does not dissipate
energy and manifests itself as a standing wave system near the cylinder. The coe¢cient
a has the dimension of a mass and is called the hydrodynamic mass or added mass.
Figure 6.8-a shows the hydrodynamic mass a of a vertical cylinder as a function of the
frequency of oscillation.

In his book, [Newman, 1977] provides added mass coe¢cients for deeply submerged 2-D
and 3-D bodies.
Graphs of the three added mass coe¢cients for 2-D bodies are shown in …gure 6.9. The
added mass m11 corresponds to longitudinal acceleration, m22 to lateral acceleration in
equatorial plane and m66 denotes the rotational added moment of inertia. These poten-
tial coe¢cients have been calculated by using conformal mapping techniques as will be
explained in chapter 7.

Figure 6.9: Added Mass Coe¢cients of 2-D Bodies

Graphs of the three added mass coe¢cients of 3-D spheroids, with a length 2a and a
maximum diameter 2b, are shown in …gure 6.10. In this …gure, the coe¢cients have been
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made dimensionless using the mass and moment of inertia of the displaced volume of the
‡uid by the body. The added mass m11 corresponds to longitudinal acceleration, m22 to
lateral acceleration in equatorial plane and m55 denotes the added moment of inertia for
rotation about an axis in the equatorial plane.

Figure 6.10: Added Mass Coe¢cients of Ellipsoids

Note that the potential damping of all these deeply submerged bodies is zero since they
no longer generate waves on the water surface.
Since the bottom of the cylinder used in …gure 6.8 is deep enough under the water surface,
it follows from …gure 6.10 that the added mass a can be approximated by the mass of a
hemisphere of ‡uid with a diameter D. The damping coe¢cient, b, will approach to zero,
because a vertical oscillation of this cylinder will hardly produce waves. The actual ratio
between the added mass and the mass of the hemisphere, as obtained from 3-D calculations,
varies for a cylinder as given in …gure 6.8-a between 0.95 and 1.05.

It appears from experiments that in many cases both the acceleration and the velocity
terms have a su¢ciently linear behavior at small amplitudes; they are linear for practical
purposes. The hydromechanical forces are the total reaction forces of the ‡uid on the
oscillating cylinder, caused by this motion in initially still water:

mÄz = Fh with: Fh = ¡aÄz ¡ b _z ¡ cz (6.26)

and the equation of motion for the cylinder with a decaying motion in still water becomes:

(m+ a) ¢ Äz + b ¢ _z + c ¢ z = 0 (6.27)

A similar approach can be followed for the other motions. In case of angular motions, for
instance roll motions, the uncoupled equation of motion (now with moment terms) of the
cylinder in still water becomes:
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(m+ a) ¢ ÄÁ + b ¢ _Á + c ¢ Á = 0 (6.28)

and the coe¢cients in the acceleration term, a and m, are (added) mass moment of inertia
terms. Coupling between motions will be discussed in chapter 8.

Energy Relations

Suppose the cylinder is carrying out a vertical harmonic oscillation:

z = za sin!t

in initially still water of which the linear equation of motion is given by equation 6.27.
The separate work done by the mass, damping and spring force components in this equation
(force component times distance) per unit of time during one period of oscillation, T , are:

1

T

TZ

0

f(m+ a) ¢ Äzg ¢ f _z ¢ dtg =
¡za2(m+ a)!3

T

TZ

0

sin!t ¢ cos!t ¢ dt = 0

1

T

TZ

0

fb ¢ _zg ¢ f _z ¢ dtg =
za2b!2

T

TZ

0

cos2 !t ¢ dt = 1
2
b !2za

2

1

T

TZ

0

fc ¢ zg ¢ f _z ¢ dtg =
za2c!

T

TZ

0

sin!t ¢ cos!t ¢ dt = 0 (6.29)

with:

T = 2¼=! = oscillation period (s)
_z ¢ dt = dz = distance covered in dt seconds (m)

It is obvious from these equations that only the damping force fb ¢ _zg dissipates energy;
damping is the reason why the heave motion, z, dies out.
Observe now a ‡oating horizontal cylinder as given in …gure 6.11, carrying out a vertical
harmonic oscillation in initially still water: z = za sin!t, which causes radiated waves
de…ned by: ³ = ³a sin(!t + "). A frequency-dependent relation between the damping
coe¢cient, b, and the amplitude ratio of radiated waves and the vertical oscillation, ³a=za,
can be found; see also [Newman, 1962].
The energy E (the work done per unit of time) provided by the hydrodynamic damping
force is the over one period (T ) integrated damping force (b ¢ _z) times covered distance
( _z ¢ dt) divided by the time (T):

E =
1

T

TZ

0

fb ¢ _zg ¢ f _z ¢ dtg

=
1

2
b!2za

2 (6.30)

This energy provided by the above mentioned hydrodynamic damping force is equal to the
energy dissipated by the radiated waves. This is 2 (radiation of waves to two sides) times
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Figure 6.11: Oscillating Horizontal Cylinder

the energy of the waves per unit area ( 1
2
½g³a

2) times the covered distance by the radiated
wave energy (cg ¢T) in one period (T) times the length of the cylinder (L), divided by the
time (T):

E =
1

T
¢ 2 ¢

½
1

2
½g³a

2

¾
¢ fcg¢T ¢ Lg

=
½g2³a

2L

2!
(6.31)

To obtain the right hand side of this equation, use has been made of the de…nition of the
group velocity of the waves in deep water: cg = c=2 = g=(2!); see chapter 5.
Thus, the potential damping coe¢cient per unit of length is de…ned by:

1

2
b !2za

2 =
½g2³a

2L

2!
(6.32)

or: ¯̄
¯̄
¯b
0 =

b

L
=
½g2

!3

µ
³a
za

¶2
¯̄
¯̄
¯ (6.33)

Similar approaches can be applied for sway and roll oscillations.

The motions are de…ned here by z = za sin!t. It is obvious that a de…nition of the
body oscillation by z = za cos!t will provide the same results, because this means only
an introduction of a constant phase shift of ¡¼=2 in the body motion as well as in the
generated waves.

Linearisation of Nonlinear damping

In some cases (especially roll motions) viscous e¤ects do in‡uence the damping and can re-
sult in nonlinear damping coe¢cients. Suppose a strongly non-linear roll damping moment,
M , which can be described by:

M = b(1) ¢ _Á + b(2) ¢
¯̄
¯ _Á

¯̄
¯ ¢ _Á+ b(3) ¢ _Á3 (6.34)
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The modulus of the roll velocity in the second term is required to give the proper sign to
its contribution. This damping moment can be linearised by stipulating that an identical
amount of energy be dissipated by a linear term with an equivalent linear damping
coe¢cient b(eq):

1

T

TZ

0

n
b(eq) ¢ _Á

o
¢
n
_Á ¢ dt

o
=
1

T

TZ

0

n
b(1) ¢ _Á + b(2) ¢

¯̄
¯ _Á

¯̄
¯ ¢ _Á + b(3) ¢ _Á3

o
¢
n
_Á ¢ dt

o
(6.35)

De…ne the roll motion by Á = Áa cos(!t+"Á³), as given in equation 6.9. Then a substitution
of _Á = ¡Áa! sin(!t+ "Á³) in equation 6.35 and the use of some mathematics yields:

¯̄
¯M = b(eq) ¢ _Á

¯̄
¯ with:

¯̄
¯̄b(eq) = b(1) + 8

3¼
¢ ! ¢ Áa ¢ b(2) + 3

4
¢ !2 ¢ Á2a ¢ b(3)

¯̄
¯̄ (6.36)

Note that this equivalent linear damping coe¢cient depends on both the frequency and
the amplitude of oscillation.

Restoring Spring Terms

For free ‡oating bodies, restoring ’spring’ terms are present for the heave, roll and pitch
motions only. The restoring spring term for heave has been given already; for the angular
motions they follow from the linearized static stability phenomena as given in chapter 2:

heave : czz = ½gAWL

roll : cÁÁ = ½gO ¢GM
pitch : cµµ = ½gO ¢GML

in which GM and GML are the transverse and longitudinal initial metacentric heights.

Free Decay Tests

In case of a pure free heaving cylinder in still water, the linear equation of the heave motion
of the center of gravity, G, of the cylinder is given by equation 6.27:

j(m+ a) ¢ Äz + b ¢ _z + c ¢ z = 0j

This equation can be rewritten as:

jÄz + 2º ¢ _z + !02 ¢ z = 0j (6.37)

in which the damping coe¢cient and the undamped natural frequency are de…ned by:

¯̄
¯̄2º = b

m+ a

¯̄
¯̄ (a) and

¯̄
¯̄!02 =

c

m+ a

¯̄
¯̄ (b) (6.38)

A non-dimensional damping coe¢cient, ·, is written as:

· =
º

!0
=

b

2
p
(m+ a) ¢ c

(6.39)
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This damping coe¢cient is written as a fraction between the actual damping coe¢cient,
b, and the critical damping coe¢cient, bcr = 2

p
(m+ a) ¢ c; so for critical damping:

·cr = 1. Herewith, the equation of motion 6.37 can be re-written as:

jÄz + 2·!0 ¢ _z +!02 ¢ z = 0j (6.40)

The buoy is de‡ected to an initial vertical displacement, za, in still water and then released.
The solution of the equation 6.37 of this decay motion becomes after some mathematics:

z = zae
¡ºt

µ
cos!zt+

º

!z
sin!zt

¶
(6.41)

where zae¡ºt is the decrease of the ”crest” after one period.
Then the logarithmic decrement of the motion is:

ºTz = ·!0Tz = ln

½
z(t)

z(t + Tz)

¾
(6.42)

Because !z2 = !02 ¡ º2 for the natural frequency oscillation and the damping is small
(º < 0:20) so that º2 ¿ !02, one can neglect º2 here and use !z t !0; this leads to:

!0Tz t !zTz = 2¼ (6.43)

The non-dimensional damping is given now by:
¯̄
¯̄· = 1

2¼
ln

½
z(t)

z(t+ Tz)

¾¯̄
¯̄ = b ¢ !0

2c
(6.44)

These ·-values can easily be found when results of decay tests with a model in still water
are available. These are usually in a form such as is shown in …gure 6.12.

Figure 6.12: Determination of Logarithmic Decrement

Be aware that this damping coe¢cient is determined by assuming an uncoupled heave
motion (no other motions involved). Strictly, this damping coe¢cient is not valid for the
actual coupled motions of a free ‡oating cylinder which will be moving in all directions
simultaneously.
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The results of free decay tests are presented by plotting the non-dimensional damping
coe¢cient (obtained from two successive positive or negative maximum displacements zai
and zai+2 by:

¯̄
¯̄· = 1

2¼
¢ ln

½
zai
zai+2

¾¯̄
¯̄ versus za =

¯̄
¯̄zai + zai+2

2

¯̄
¯̄ (6.45)

To avoid spreading in the successively determined ·-values, caused by a possible zero-shift
of the measuring signal, double amplitudes can be used instead:

¯̄
¯̄· = 1

2¼
¢ ln

½
zai ¡ zai+1
zai+2 ¡ zai+3

¾¯̄
¯̄ versus za =

¯̄
¯̄zai ¡ zai+1 + zai+2 ¡ zai+3

4

¯̄
¯̄ (6.46)

It is obvious that this latter method has preference in case of a record with small amplitudes.
The decay coe¢cient · can therefore be estimated from the decaying oscillation by deter-
mining the ratio between any pair of successive (double) amplitudes. When the damping
is very small and the oscillation decays very slowly, several estimates of the decay can be
obtained from a single record. The method is not really practical when º is much greater
than about 0.2 and is in any case strictly valid for small values of º only. Luckily, this is
generally the case.
The potential mass and damping at the natural frequency can be obtained from all of this.
From equation 6.38-b follows: ¯̄

¯̄a = c

!02
¡m

¯̄
¯̄ (6.47)

in which the natural frequency, !0, follows from the measured oscillation period and the
solid mass, m, and the spring coe¢cient, c, are known from the geometry of the body.
From equation 6.38-a, 6.38-b and equation 6.39 follows:

¯̄
¯̄b = 2·c

!0

¯̄
¯̄ (6.48)

in which · follows from the measured record by using equation 6.45 or 6.46 while c and !0
have to be determined as done for the added mass a.
It is obvious that for a linear system a constant ·-value should be found in relation to
za. Note also that these decay tests provide no information about the relation between
the potential coe¢cients and the frequency of oscillation. Indeed, this is impossible since
decay tests are carried out at one frequency only; the natural frequency.

Forced Oscillation Tests

The relation between the potential coe¢cients and the frequency of oscillation can be found
using forced oscillation tests. A schematic of the experimental set-up for the forced heave
oscillation of a vertical cylinder is given in …gure 6.13. The crank at the top of the …gure
rotates with a constant and chosen frequency, !, causing a vertical motion with amplitude
given by the radial distance from the crank axis to the pin in the slot. Vertical forces are
measured in the rod connecting the exciter to the buoy.
During the forced heave oscillation, the vertical motion of the model is de…ned by:

z(t) = za sin !t (6.49)
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Figure 6.13: Forced Oscillation Test

and the heave forces, measured by the transducer, are:

Fz(t) = Fa sin (!t+ "Fz) (6.50)

The (linear) equation of motion is given by:

j(m + a) Äz + b _z + cz = Fa sin (!t+ "Fz)j (6.51)

The component of the exciting force in phase with the heave motion is associated with
inertia and sti¤ness, while the out-of-phase component is associated with damping.
With:

z = za sin!t

_z = za! cos!t

Äz = ¡za!2 sin!t (6.52)

one obtains:

za
©¡ (m+ a)!2 + cª sin !t+ zab! cos!t = Fa cos "Fz sin !t+ Fa sin "Fz cos!t (6.53)

which provides:

from !t =
¼

2
:

¯̄
¯̄
¯a =

c ¡ Fa
za
cos "Fz

!2
¡m

¯̄
¯̄
¯

from !t = 0:

¯̄
¯̄
¯b =

Fa
za
sin "Fz

!

¯̄
¯̄
¯

from geometry: jc = ½gAwj (6.54)
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To obtain the ’spring’ sti¤ness, c, use has to be made of Aw (area of the waterline), which
can be obtained from the geometry of the model. It is possible to obtain the sti¤ness
coe¢cient from static experiments as well. In such a case equation 6.51 degenerates:

Äz = 0 and _z = 0 yielding: c =
Fz
z

in which z is a constant vertical displacement of the body and Fz is a constant force
(Archimedes’ law).
The in-phase and out-of-phase parts of the exciting force during an oscillation can be found
easily from an integration over a whole number (N ) periods (T) of the measured signal
F (t) multiplied with cos!t and sin !t, respectively:

Fa sin "Fz =
2

NT

NTZ

0

F (t) ¢ cos!t ¢ dt

Fa cos "Fz =
2

NT

NnTZ

0

F (t) ¢ sin!t ¢ dt (6.55)

These are nothing more than the …rst order (and averaged) Fourier series components of
F (t); see appendix C:

6.3.3 Wave Loads

Waves are now generated in the test basin for a new series of tests. The object is restrained
so that one now measures (in this vertical cylinder example) the vertical wave load on the
…xed cylinder. This is shown schematically in …gure 6.7-c.
The classic theory of deep water waves (see chapter 5) yields:

wave potential : © =
¡³ag
!

ekz sin(!t¡ kx) (6.56)

wave elevation : ³ = ³a cos(!t¡ kx) (6.57)

so that the pressure, p, on the bottom of the cylinder (z = ¡T) follows from the linearized
Bernoulli equation:

p = ¡½@©
@t

¡ ½gz
= ½g³ae

kz cos(!t ¡ kx) ¡ ½gz
= ½g³ae

¡kT cos(!t¡ kx) + ½gT (6.58)

Assuming that the diameter of the cylinder is small relative to the wave length (kD t 0),
so that the pressure distribution on the bottom of the cylinder is essentially uniform, then
the pressure becomes:

p = ½g³ae
¡kT cos(!t) + ½gT (6.59)

Then the vertical force on the bottom of the cylinder is:

F =
©
½g³ae

¡kT cos(!t) + ½gT
ª

¢ ¼
4
D2 (6.60)
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where D is the cylinder diameter and T is the draft.
The harmonic part of this force is the regular harmonic wave force, which will be con-
sidered here. More or less in the same way as with the hydromechanical loads (on the
oscillating body in still water), this wave force can also be expressed as a spring coe¢cient
c times a reduced or e¤ective wave elevation ³¤:

jFFK = c ¢ ³¤j with: c = ½g
¼

4
D2 (spring coe¤.)

³¤ = e¡kT ¢ ³a cos(!t) (deep water) (6.61)

This wave force is called the Froude-Krilov force, which follows from an integration of
the pressures on the body in the undisturbed wave.
Actually however, a part of the waves will be di¤racted, requiring a correction of this
Froude-Krilov force. Using the relative motion principle described earlier in this chapter,
one …nds additional force components: one proportional to the vertical acceleration of the
water particles and one proportional to the vertical velocity of the water particles.
The total wave force can be written as:

¯̄
¯Fw = aÄ³

¤
+ b _³

¤
+ c³¤

¯̄
¯ (6.62)

in which the terms aÄ³
¤

and b _³
¤

are considered to be corrections on the Froude-Krilov force
due to di¤raction of the waves by the presence of the cylinder in the ‡uid.
The ”reduced” wave elevation is given by:

³¤ = ³ae
¡kT cos(!t)

_³
¤
= ¡³ae¡kT! sin(!t)

Ä³
¤
= ¡³ae¡kT!2 cos(!t) (6.63)

A substitution of equations 6.63 in equation 6.62 yields:

Fw = ³ae
¡kT ©

c¡ a!2
ª
cos(!t)¡ ³ae¡kT fb!g sin(!t) (6.64)

Also, this wave force can be written independently in terms of in-phase and out-of-phase
terms:

Fw = Fa cos(!t+ "F³ )

= Fa cos("F³) cos(!t) ¡ Fa sin("F³ ) sin(!t) (6.65)

Equating the two in-phase terms and the two out-of-phase terms in equations 6.64 and
6.65 result in two equations with two unknowns:

Fa cos("F³) = ³ae
¡kT ©

c ¡ a!2
ª

Fa sin("F³) = ³ae
¡kT fb!g (6.66)

Adding the squares of these two equations results in the wave force amplitude:

¯̄
¯̄Fa
³a
= e¡kT

q
fc¡ a!2g2 + fb!g2

¯̄
¯̄ (6.67)
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and a division of the in-phase and the out-of-phase term in equation 6.66, results in the
phase shift: ¯̄

¯̄"F³ = arctan
½

b!

c¡ a!2
¾

with: 0 · "z³ · 2¼

¯̄
¯̄ (6.68)

The phase angle, "F³, has to be determined in the correct quadrant between 0 and 2¼.
This depends on the signs of both the numerator and the denominator in the expression
for the arctangent.
The wave force amplitude, Fa, is proportional to the wave amplitude, ³a, and the phase
shift "F³ is independent of the wave amplitude, ³a; the system is linear.
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Figure 6.14: Vertical Wave Force on a Vertical Cylinder

Figure 6.14 shows the wave force amplitude and phase shift as a function of the wave
frequency. For low frequencies (long waves), the di¤raction part is very small and the wave
force tends to the Froude-Krilov force, c³¤. At higher frequencies there is an in‡uence of
di¤raction on the wave force on this vertical cylinder. There, the wave force amplitude
remains almost equal to the Froude-Krilov force.
Di¤raction becomes relatively important for this particular cylinder as the Froude-Krylov
force has become small; a phase shift of ¡¼ occurs then quite suddenly. Generally, this
happens the …rst time as the in-phase term, Fa cos("F³), changes sign (goes through zero);
a with ! decreasing positive Froude-Krylov contribution and a with ! increasing negative
di¤raction contribution (hydrodynamic mass times ‡uid acceleration), while the out-of-
phase di¤raction term (hydrodynamic damping times ‡uid velocity), Fa sin("F³), maintains
its sign.

6.3.4 Equation of Motion

Equation 6.23: mÄz = Fh + Fw can be written as: mÄz ¡ Fh = Fw. Then, the solid mass
term and the hydromechanic loads in the left hand side (given in equation 6.25) and the
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exciting wave loads in the right hand side (given in equation 6.62) provides the equation
of motion for this heaving cylinder in waves:

¯̄
¯(m + a) Äz + b _z + cz = aÄ³¤ + b _³¤ + c³¤

¯̄
¯ (6.69)

Using the relative motion principle, this equation can also be found directly from Newton’s
second law and the total relative motions of the water particles (Ä³

¤
, _³
¤
and ³¤) of the heaving

cylinder in waves:

mÄz = a
³
Ä³
¤ ¡ Äz

´
+ b

³
_³
¤ ¡ _z

´
+ c (³¤ ¡ z) (6.70)

In fact, this is also a combination of the equations 6.25 and 6.62.

6.3.5 Response in Regular Waves

The heave response to the regular wave excitation is given by:

z = za cos(!t+ "z³ )

_z = ¡za! sin(!t+ "z³ )
Äz = ¡za!2 cos(!t+ "z³ ) (6.71)

A substitution of 6.71 and 6.63 in the equation of motion 6.69 yields:

za
©
c¡ (m + a)!2

ª
cos(!t+ "z³) ¡ za fb!g sin(!t + "z³ ) =

= ³ae
¡kT ©

c¡ a!2
ª
cos(!t)¡ ³ae¡kT fb!g sin(!t) (6.72)

or after splitting the angle (!t+ "z³ ) and writing the out-of-phase term and the in-phase
term separately:

za
©©
c ¡ (m+ a)!2

ª
cos("z³) ¡ fb!g sin("z³)

ª
cos(!t)

¡za
©©
c¡ (m+ a)!2

ª
sin("z³) + fb!g cos("z³)

ª
sin(!t) =

= ³ae
¡kT ©

c¡ a!2
ª

cos(!t)

¡³ae¡kT fb!g sin(!t) (6.73)

By equating the two out-of-phase terms and the two in-phase terms, one obtains two
equations with two unknowns:

za
©©
c ¡ (m+ a)!2

ª
cos("z³) ¡ fb!g sin("z³)

ª
= ³ae

¡kT ©
c¡ a!2

ª

za
©©
c¡ (m+ a)!2

ª
sin("z³ ) + fb!g cos("z³)

ª
= ³ae

¡kT fb!g (6.74)

Adding the squares of these two equations results in the heave amplitude:
¯̄
¯̄
¯
za
³a
= e¡kT

s
fc¡ a!2g2 + fb!g2

fc ¡ (m+ a)!2g2 + fb!g2

¯̄
¯̄
¯ (6.75)

and elimination of za=³ae
¡kT in the two equations in 6.74 results in the phase shift:

¯̄
¯̄"z³ = arctan

½ ¡mb!3
(c¡ a!2) fc¡ (m+ a)!2g + fb!g2

¾
with : 0 · "z³ · 2¼

¯̄
¯̄ (6.76)
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The phase angle "z³ has to be determined in the correct quadrant between 0 and 2¼. This
depends on the signs of both the numerator and the denominator in the expression for the
arctangent.
The requirements of linearity is ful…lled: the heave amplitude za is proportional to the
wave amplitude ³a and the phase shift "z³ is not dependent on the wave amplitude ³a.

Generally, these amplitudes and phase shifts are called:

Fa
³a
(!) and za

³a
(!) = amplitude characteristics

"F³(!) and "z³ (!) = phase characteristics

¾
frequency characteristics

The response amplitude characteristics za
³a
(!) are also referred to as Response Amplitude

Operator (RAO).
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Figure 6.15: Heave Motions of a Vertical Cylinder

Figure 6.15 shows the frequency characteristics for heave together with the in‡uence of
di¤raction of the waves. The annotation ”without di¤raction” in these …gures means that
the wave load consists of the Froude-Krilov force, c³¤, only.

Equation 6.75 and …gure 6.16 show that with respect to the motional behavior of this
cylinder three frequency areas can be distinguished:

1. The low frequency area, !2 ¿ c=(m+ a), with vertical motions dominated by the
restoring spring term.
This yields that the cylinder tends to ”follow” the waves as the frequency decreases;
the RAO tends to 1.0 and the phase lag tends to zero. At very low frequencies, the
wave length is large when compared with the horizontal length (diameter) of the
cylinder and it will ”follow” the waves; the cylinder behaves like a ping-pong ball in
waves.



6-24 CHAPTER 6. RIGID BODY DYNAMICS

2. The natural frequency area, !2 t c=(m+a), with vertical motions dominated by the
damping term.
This yields that a high resonance can be expected in case of a small damping. A
phase shift of ¡¼ occurs at about the natural frequency, !2 t c=(m + a); see the
denominator in equation 6.76. This phase shift is very abrupt here, because of the
small damping b of this cylinder.

3. The high frequency area, !2 À c=(m+ a), with vertical motions dominated by the
mass term.
This yields that the waves are ”losing” their in‡uence on the behavior of the cylinder;
there are several crests and troughs within the horizontal length (diameter) of the
cylinder. A second phase shift appears at a higher frequency, !2 t c=a; see the
denominator in equation 6.76. This is caused by a phase shift in the wave load.

Figure 6.16: Frequency Areas with Respect to Motional Behavior

Note: From equations 6.67 and 6.75 follow also the heave motion - wave force amplitude
ratio and the phase shift between the heave motion and the wave force:

¯̄
¯̄
¯̄
za
Fa
=

1q
fc¡ (m + a)!2g2 + fb!g2

¯̄
¯̄
¯̄

j"zF = "z³ + "³F = "z³ ¡ "F³j (6.77)

6.3.6 Response in Irregular Waves

The wave energy spectrum was de…ned in chapter 5 by:
¯̄
¯̄S³ (!) ¢ d! =

1

2
³2a(!)

¯̄
¯̄ (6.78)
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Analogous to this, the energy spectrum of the heave response z(!; t) can be de…ned by:

Sz(!) ¢ d! =
1

2
z2a(!)

=

¯̄
¯̄za
³a
(!)

¯̄
¯̄
2

¢ 1
2
³2a(!)

=

¯̄
¯̄za
³a
(!)

¯̄
¯̄
2

¢ S³(!) ¢ d! (6.79)

Thus, the heave response spectrum of a motion can be found by using the transfer func-
tion of the motion and the wave spectrum by:

¯̄
¯̄
¯Sz(!) =

¯̄
¯̄ za
³a
(!)

¯̄
¯̄
2

¢ S³(!)
¯̄
¯̄
¯ (6.80)

The principle of this transformation of wave energy to response energy is shown in …gure
6.17 for the heave motions being considered here.
The irregular wave history, ³(t) - below in the left hand side of the …gure - is the sum of
a large number of regular wave components, each with its own frequency, amplitude and
a random phase shift. The value 1

2
³2a(!)=¢! - associated with each wave component on

the !-axis - is plotted vertically on the left; this is the wave energy spectrum, S³(!). This
part of the …gure can be found in chapter 5 as well, by the way.
Each regular wave component can be transferred to a regular heave component by a mul-
tiplication with the transfer function za=³a(!). The result is given in the right hand side
of this …gure. The irregular heave history, z(t), is obtained by adding up the regular heave
components, just as was done for the waves on the left. Plotting the value 1

2z
2
a(!)=¢!

of each heave component on the !-axis on the right yields the heave response spectrum,
Sz(!).
The moments of the heave response spectrum are given by:

¯̄
¯̄
¯̄mnz =

1Z

0

Sz(!) ¢ !n ¢ d!

¯̄
¯̄
¯̄ with: n = 0; 1; 2; ::: (6.81)

where n = 0 provides the area, n = 1 the …rst moment and n = 2 the moment of inertia of
the spectral curve.
The signi…cant heave amplitude can be calculated from the spectral density function of the
heave motions, just as was done for waves. This signi…cant heave amplitude, de…ned
as the mean value of the highest one-third part of the amplitudes, is:

¯̄
¯¹za1=3 = 2 ¢RMS = 2pm0z

¯̄
¯ (6.82)

in which RMS (=
p
m0z) is the Root Mean Square value.

A mean period can be found from the centroid of the spectrum:

¯̄
¯̄T1z = 2¼ ¢ m0z

m1z

¯̄
¯̄ (6.83)
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Figure 6.17: Principle of Transfer of Waves into Responses

Another de…nition, which is equivalent to the average zero-crossing period, is found
from the spectral radius of gyration:

¯̄
¯̄T2z = 2¼ ¢

r
m0z
m2z

¯̄
¯̄ (6.84)

6.3.7 Spectrum Axis Transformation

When wave spectra are given as a function of frequencies in Herz (f = 1=T ) and one needs
this on an !-basis (in radians/sec), they have to be transformed just as was done for waves
in chapter 5. The heave spectrum on this !-basis becomes:

Sz(!) =
Sz(f)

2¼

=

¯̄
¯̄za
³a
(f or !)

¯̄
¯̄
2

¢ S³(f )
2¼

(6.85)
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6.4 Second Order Wave Drift Forces

Now that the …rst order behavior of linear (both mechanical as well as hydromechanical)
systems has been handled, attention in the rest of this chapter shifts to nonlinear systems.
Obviously hydrodynamics will get the most emphasis in this section, too.
The e¤ects of second order wave forces are most apparent in the behavior of anchored
or moored ‡oating structures. In contrast to what has been handled above, these are
horizontally restrained by some form of mooring system. Analyses of the horizontal motions
of moored or anchored ‡oating structures in a seaway show that the responses of the
structure on the irregular waves include three important components:

1. A mean displacement of the structure, resulting from a constant load component.
Obvious sources of these loads are current and wind. In addition to these, there is
also a so-called mean wave drift force. This drift force is caused by non-linear
(second order) wave potential e¤ects. Together with the mooring system, these loads
determine the new equilibrium position - possibly both a translation and (in‡uenced
by the mooring system) a yaw angle - of the structure in the earth-bound coordinate
system. This yaw is of importance for the determination of the wave attack angle.

2. An oscillating displacement of the structure at frequencies corresponding to those of
the waves; the wave-frequency region.
These are linear motions with a harmonic character, caused by the …rst order wave
loads. The principle of this has been presented above for the vertically oscillating
cylinder. The time-averaged value of this wave load and the resulting motion com-
ponent are zero.

3. An oscillating displacement of the structure at frequencies which are much lower than
those of the irregular waves; the low-frequency region.
These motions are caused by non-linear elements in the wave loads, the low-frequency
wave drift forces, in combination with spring characteristics of the mooring system.
Generally, a moored ship has a low natural frequency in its horizontal modes of mo-
tion as well as very little damping at such frequencies. Very large motion amplitudes
can then result at resonance so that a major part of the ship’s dynamic displacement
(and resulting loads in the mooring system) can be caused by these low-frequency
excitations.

Item 2 of this list has been discussed in earlier parts of this chapter; the discussion of item
1 starts below; item 3 is picked up later in this chapter and along with item 1 again in
chapter 9.

6.4.1 Mean Wave Loads on a Wall

Mean wave loads in regular waves on a wall can be calculated simply from the pressure in the
‡uid, now using the more complete (not-linearized!) Bernoulli equation. The superposition
principle can still be used to determine these loads in irregular waves. When the waves are
not too long, this procedure can be used, too, to estimate the mean wave drift forces on a
ship in beam waves (waves approaching from the side of the ship).
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Regular Waves

A regular wave (in deep water) hits a vertical wall with an in…nite depth as shown in …gure
6.18. This wave will be re‡ected fully, so that a standing wave (as described in chapter 5)
results at the wall.

Figure 6.18: Regular Wave at a Wall

The incident undisturbed wave is de…ned by:
¯̄
¯̄©i = ¡³ag

!
¢ ekz ¢ sin(+kx+ !t)

¯̄
¯̄ and j³i = ³a ¢ cos(+kx +!t)j (6.86)

and the re‡ected wave by:
¯̄
¯̄©r = ¡³ag

!
¢ ekz ¢ sin(¡kx+ !t)

¯̄
¯̄ and j³r = ³a ¢ cos(¡kx +!t)j (6.87)

Then the total wave system can be determined by a superposition of these two waves; this
results in a standing wave system:

© = ©i + ©r = ¡2 ¢ ³ag
!

¢ ekz ¢ cos(kx) ¢ sin(!t)
³ = ³i + ³r = 2 ¢ ³a ¢ cos(kx) ¢ cos(!t) (6.88)

The pressure in the ‡uid follows from the complete Bernoulli equation:

p = ¡½g ¢ z ¡ ½ ¢ @©
@t

¡ 1

2
½ ¢ (r©)2

= ¡½g ¢ z ¡ ½ ¢ @©
@t

¡ 1

2
½ ¢

(µ
@©

@x

¶2

+

µ
@©

@z

¶2)
(6.89)

The derivatives of the potential ©(x; z; t) with respect to t, x and z are given by:

@©

@t
= ¡2 ¢ ³a ¢ g ¢ ekz ¢ cos(kx) ¢ cos(!t)

u =
@©

@x
= +2 ¢ ³a ¢ ! ¢ ekz ¢ sin(kx) ¢ sin(!t)

w =
@©

@z
= ¡2 ¢ ³a ¢ ! ¢ ekz ¢ cos(kx) ¢ sin(!t) (6.90)
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At the wall (x = 0), the wave elevation and the derivatives of the potential are:

³ = 2 ¢ ³a ¢ cos(!t)
@©

@t
= ¡2 ¢ ³a ¢ g ¢ ekz ¢ cos(!t)

u =
@©

@x
= 0

w =
@©

@z
= ¡2 ¢ ³a ¢ ! ¢ ekz ¢ sin(!t) (6.91)

and the pressure on the wall is:

p = ¡½g ¢ z ¡ ½ ¢ @©
@t

¡ 1

2
½ ¢

(µ
@©

@x

¶2

+

µ
@©

@z

¶2
)

= ¡½g ¢ z + 2½g ¢ ³a ¢ ekz ¢ cos(!t) ¡ 1

2
½ ¢

¡
4³a

2 ¢ !2 ¢ e2kz sin2(!t)
¢

= ¡½g ¢ z + 2½g ¢ ³a ¢ ekz ¢ cos(!t) ¡ ½ ¢ ³a2 ¢ !2 ¢ e2kz ¢ (1 ¡ cos(2!t)) (6.92)

This time-varying pressure on the wall can also be written as:

p = ¹p(0)+ ~p(1)+ ¹p(2) + ~p(2) (6.93)

where:

¹p(0) = ¡½g ¢ z
~p(1) = +2½g ¢ ³a ¢ ekz ¢ cos(!t)
¹p(2) = ¡½ ¢ ³a2 ¢ !2 ¢ e2kz
~p(2) = +½ ¢ ³a2 ¢ !2 ¢ e2kz ¢ cos(2!t) (6.94)

The general expression for the mean force on the wall follows from:

F = ¡
³Z

¡1

(¹p ¢ ¹n) ¢ dS (6.95)

where the superscript bar over the entire integral indicates a (long) time average.
Because ¹n = (1; 0; 0) and dS = 1 ¢ dz, this mean force becomes:

¹F = ¡
³(t)Z

¡1

p(z; t) ¢ dz (6.96)

which is split into two parts over the vertical axis; one above and one below the still water
level:

¹F = ¡
0Z

¡1

p(z; t) ¢ dz ¡
³(t)Z

0

p(z; t) ¢ dz (6.97)

= F1 + F2 (6.98)
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where:
p(z; t) = ¹p(0) + ~p(1)+ ¹p(2)+ ~p(2) and ³(t) = ~³

(1)
(t) (6.99)

The …rst part F1 comes from the integration from ¡1 to 0; it contributes to the integration
of ¹p(0) and ¹p(2) only:

F1 = ¡
0Z

¡1

p(z; t) ¢ dz

= ¡
0Z

¡1

¡
¡½gz ¡ ½ ¢ ³a2 ¢!2 ¢ e2kz

¢
¢ dz

= ½ ¢ !2 ¢ ³a2
0Z

¡1

e2kz ¢ dz

= +
1

2
½g ¢ ³a2 (6.100)

This force is directed away from the wall. The static …rst term (¡½gz) has been left out
of consideration, while the dispersion relation for deep water (!2 = kg) has been utilized
in the second term.
The second part, F2, comes from the integration from 0 to ³(t); it contributes to the
integration of ¹p(0) and ~p(1) only, so that the time-dependent force F2(t) becomes:

F2(t) = ¡
³(t)Z

0

p(z; t) ¢ dz

= ¡
³(t)Z

0

(¡½g ¢ z + ½g ¢ ³(t)) ¢ dz

= +½g

³(t)Z

0

z ¢ dz ¡ ½g
³(t)Z

0

³(t) ¢ dz

= +
1

2
½g ¢ f³(t)g2 ¡ ½g ¢ f³(t)g2

= ¡1
2
½g ¢ f³(t)g2 (6.101)

Because

³(t) = 2 ¢ ³a ¢ cos(!t) and cos2(!t) =
1

2
¢ (1 + cos(2!t)) (6.102)

this part of the force becomes:

F2(t) = ¡1
2
½g ¢ 4 ¢ ³a2 ¢ cos2(!t)

= ¡½g ¢ ³a2 ¢ (1 + cos(2!t)) (6.103)
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Figure 6.19: Mean Wave Loads on a Wall

The desired time-averaged value becomes:

F2 = ¡½g ¢ ³a2 (6.104)

where ³a is the amplitude of the incoming wave. This force is directed toward the wall.
Finally, see …gure 6.19, the total time-averaged force ¹F per meter length of the wall be-
comes:

¹F = F1 + F2

= +
1

2
½g ¢ ³a2 ¡ ½g ¢ ³a2 (6.105)

Thus: ¯̄
¯̄ ¹F = ¡1

2
½g ¢ ³a2

¯̄
¯̄ (6.106)

in which it is assumed that the incident wave is fully re‡ected. This total force has a
magnitude proportional to the square of the incoming wave amplitude and it is directed
toward the wall.
Note that this force is also directly related to the energy per unit area of the incoming
waves as found in chapter 5:

E =
1

2
½g ¢ ³2a (6.107)

Comparison of equations 6.106 and 6.107 reveals that the mean wave drift force is numer-
ically equal to the energy per unit area of the incoming waves.

Irregular Waves

The discovery just made above will be utilized to determine the mean wave drift force from
irregular waves as well. This is done via the wave spectrum, de…ned by:

S³(!) ¢ d! =
1

2
³a
2(!) with a zero order moment: m0 =

1Z

0

S³ (!) ¢ d! (6.108)

Then the total force on the wall can be written as:

¹F = ¡
X 1

2
½g ¢ ³a2(!)
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= ¡½g
1Z

0

S³(!) ¢ d!

= ¡½g ¢m0³ (6.109)

Because:

H1=3 = 4
p
m0³ or m0³ =

1

16
¢H1=3

2 (6.110)

it follows that the mean wave drift force can be expressed as:
¯̄
¯̄ ¹F = ¡1

16
¢ ½g ¢H1=3

2

¯̄
¯̄ per metre length of the wall (6.111)

Approximation for Ships

It has been assumed so far that the incident wave is fully re‡ected. When the waves are not
too long, so that the water motion is more or less concentrated near the sea surface (over
the draft of the ship), full re‡ection can be assumed for large ships too. Then, equation
6.111 can be used for a …rst estimation of the mean wave drift forces on a ship in beam
waves.
The mean wave drift force on an example ship with a length L of 300 meters in beam waves
with a signi…cant wave height H 1=3 of 4.0 meters can be approximated easily. Assuming
that all waves will be re‡ected, the mean wave drift force is:

¹F =
1

16
¢ ½g ¢H1=3

2 ¢ L

=
1

16
¢ 1:025 ¢ 9:806 ¢ 4:02 ¢ 300 ¼ 3000 kN (6.112)

6.4.2 Mean Wave Drift Forces

[Maruo, 1960] showed for the two-dimensional case of an in…nitely long cylinder ‡oating in
regular waves with its axis perpendicular to the wave direction that the mean wave drift
force per unit length satis…es: ¯̄

¯̄ ¹F 0 =
1

2
½g ¢ ³ar2

¯̄
¯̄ (6.113)

in which ³ar is the amplitude of the wave re‡ected and scattered by the body in a direction
opposite to the incident wave.
Generally only a part of the incident regular wave will be re‡ected; the rest will be trans-
mitted underneath the ‡oating body. Besides the re‡ected wave, additional waves are
generated by the heave, pitch and roll motions of the vessel. The re‡ected and scattered
waves have the same frequency as the incoming wave, so that the sum of these compo-
nents still has the same frequency as the incoming wave. Their amplitudes will depend on
the amplitudes and relative phases of the re‡ected and scattered wave components. The
amplitudes of these components and their phase di¤erences depend on the frequency of
the incident wave, while the amplitudes can be assumed to be linearly proportional to the
amplitude of the incident wave. This is because it is the incident wave amplitude which
causes the body to move in the …rst place. In equation form:

³ar = R(!) ¢ ³a (6.114)
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in which R(!) is a re‡ection coe¢cient.
This means that the mean wave drift force in regular waves per meter length of the cylinder
can be written as: ¯̄

¯̄F 0
d =

1

2
½g ¢ fR(!) ¢ ³ag2

¯̄
¯̄ (6.115)

This expression indicates that the mean wave drift force is proportional to the incident
wave amplitude squared. Note that in case of the previously discussed wall: R(!) = 1:0.

6.4.3 Low-Frequency Wave Drift Forces

[Hsu and Blenkarn, 1970] and [Remery and Hermans, 1971] studied the phenomenon of the
mean and slowly varying wave drift forces in a random sea from the results of model tests
with a rectangular barge with breadth B. It was moored in irregular head waves to a
…xed point by means of a bow hawser. The wave amplitudes provide information about
the slowly varying wave envelope of an irregular wave train. The wave envelope is an
imaginary curve joining successive wave crests (or troughs); the entire water surface motion
takes place with the area enclosed by these two curves.
It seems logical in the light of the earlier results to expect that the square of the envelope
amplitude will provide information about the drift forces in irregular waves. To do this,
one would (in principle) make a spectral analysis of the square of this wave envelope. In
other words, the spectral density of the square of the wave amplitude provides information
about the mean period and the magnitude of the slowly varying wave drift force.
In practice it is very di¢cult to obtain an accurate wave envelope spectrum due to the
long wave record required. Assuming that about 200-250 oscillations are required for an
accurate spectral analysis and that the mean period of the wave envelope record is about
100 seconds, the total time that the wave elevation has to be recorded can be up to 7 hours.

Another very simple method is based on individual waves in an irregular wave train. As-
sume that the irregular wave train is made up of a sequence of single waves of which the
wave amplitude is characterized by the height of a wave crest or the depth of a wave trough,
³ai, while the period, Ti, (or really half its value) is determined by the two adjacent zero
crossings (see …gure 6.20).

Figure 6.20: Wave Drift Forces Obtained from a Wave Record
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Each of the so obtained single waves (one for every crest or trough) is considered to be one
out of a regular wave train, which exerts (in this case) a surge drift force on the barge:

Fi =
1

2
½g ¢ fR(!i) ¢ ³aig2 ¢B with: !i =

2¼

Ti
(6.116)

When this is done for all wave crests and troughs in a wave train, points on a curve
representing a slowly varying wave drift force, F (t), will be obtained. This drift force
consists of a slowly varying force (the low-frequency wave drift force) around a mean value
(the mean wave drift force); see …gure 6.20.

Figure 6.21: Low-Frequency Surge Motions of a Barge

These low-frequency wave drift forces on the barge will induce low-frequency surge motions
with periods of for instance over 100 seconds. An example is given in …gure 6.21 for two
di¤erent spring constants, C. The period ratio, ¤, in this …gure is the ratio between the
natural surge period of the system (ship plus mooring) and the wave envelope period.
(Another term for the wave envelope period is wave group period.) As can be seen
in this …gure the …rst order (wave-frequency) surge motions are relatively small, when
compared with the second order (low-frequency) motions. This becomes especially true
near resonance (when ¤! 1:0).
Resonance may occur when wave groups are present with a period in the vicinity of the
natural period of the mooring system. Due to the low natural frequency for surge of the
bow hawser - barge system and the low damping at this frequency, large surge motions can
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result. According to [Remery and Hermans, 1971], severe horizontal motions can be built
up within a time duration of only a few consecutive wave groups. Obviously, information
about the occurrence of wave groups will be needed to predict this response. This is a
matter for oceanographers.

6.4.4 Additional Responses

The table below summarizes possible responses of a system (such as a moored vessel) to
regular and irregular waves. Both linear and nonlinear mooring systems are included here;
mooring systems can be designed to have nearly linear characteristics, but most are at
least a bit nonlinear.
The right hand side of the table below gives the motions which are possible via each of the
’paths’ from left to right. There will always be …rst order response to …rst order excitations;
these have been discussed already as has the response of a linear or non-linear system to
higher order excitations.

Wave Excitation System Response

Regular First order Linear
First order
(single frequency)

Regular First order Nonlinear
Subharmonic
(single low frequency)

Regular Higher order Linear Time-independent
drift

Regular Higher order Nonlinear
Time-independent
drift

Irregular First order Linear
First order
(wave frequencies)

Irregular First order Nonlinear
Subharmonic
(uncertain)

Irregular Higher order Linear Time-dependent
drift

Irregular Higher order Nonlinear Time-dependent
drift

Subharmonic Response

One path in the table above has not been discussed yet. This involves a subharmonic
response of a nonlinear system to a …rst order excitation from either regular or irregular
waves. The response, itself, looks much like the response to slow drift forces; these two are
di¢cult indeed to distinguish. Luckily perhaps, a signi…cant time is needed to build up
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subharmonic resonant motions of high amplitude. This implies that the excitation must
remain very nicely behaved over quite some time in order for this to happen. Waves at sea
are very often too irregular; this subharmonic motion breaks down before large amplitudes
are generated.

6.5 Time Domain Approach

If (as has been assumed so far in most of this chapter) the system is linear, such that its
behavior is linearly related to its displacement, velocity and acceleration, then the behavior
of the system can be studied in the frequency domain.
However, in a lot of cases there are several complications which violate this linear assump-
tion, for instance nonlinear viscous damping, forces and moments due to currents, wind,
anchoring and not to mention second order wave loads. If the system is nonlinear, then
superposition principle - the foundation of the frequency domain approach - is no longer
valid. Instead, one is forced to revert to the direct solution of the equations of motion as
functions of time. These equations of motion result directly from Newton’s second law.
Approaches to their solution are presented in this section.

6.5.1 Impulse Response Functions

The hydromechanical reaction forces and moments, due to time varying ship motions,
can be described using the classic formulation given by [Cummins, 1962]. Complex po-
tential problems, can be handled via frequency-dependent potential coe¢cients as done by
[Ogilvie, 1964]. The principle of this approach will be demonstrated here for a motion with
one degree of freedom. Insight about the possibilities of this method is more important in
this section than the details of the derivations involved; the result is more important than
the exact route leading to it.

Cummins Equation

The ‡oating object is assumed to be a linear system with a translational (or rotational)
velocity as input and the reaction force (or moment) of the surrounding water as output.
The object is assumed to be at rest at time t = t0.
During a short time interval, ¢t, the body experiences an impulsive displacement, ¢x,
with a constant velocity, V , so that:

¢x = V ¢¢t (6.117)

During this impulsive displacement, the water particles will start to move. Since potential
‡ow is assumed, a velocity potential, ©, proportional to the velocity, V , can be de…ned:

©(x; y; z; t) = ª(x; y; z) ¢ V (t) for: t0 < t < t0 +¢t (6.118)

in which ª is the normalized velocity potential.
Note: This ª is not a stream function as used in chapter 3; this notation is used here to
remain consistent with other literature.
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The water particles are still moving after this impulsive displacement, ¢x. Because the
system is assumed to be linear, the motions of the ‡uid, described by the velocity potential,
©, are proportional to the impulsive displacement, ¢x. So:

©(x; y; z; t) = Â(x; y; z; t) ¢¢x for: t > t0 + ¢t (6.119)

in which Â is another normalized velocity potential.
A general conclusion can be that the impulsive displacement, ¢x, during the time interval
(t0; t0 + ¢t) in‡uences the motions of the ‡uid during this interval as well as during all
later time intervals. Similarly, the motions during the interval (t0; t0 +¢t) are in‡uenced
by the motions before this interval; the system has a form of ”memory”.
When the object performs an arbitrarily time-dependent varying motion, this motion can
be considered to be a succession of small impulsive displacements, so that then the resulting
total velocity potential, ©(t), during the interval (tm; tm +¢t) becomes:

©(t) = Vm ¢ª +
mX

k=1

fÂ(tm¡k; tm¡k +¢t) ¢ Vk ¢¢tg (6.120)

with:
m = number of time steps (-)
tm = t0 +m ¢¢t (s)
tm¡k = t0 + (m¡ k) ¢¢t (s)
Vm = velocity component during time interval (tm; tm + ¢t) (m/s)
Vk = velocity component during time interval (tm¡k; tm¡k + ¢t) (m/s)
ª = normalized velocity potential caused by a displacement

during time interval (tm; tm + ¢t)
Â = normalized velocity potential caused by a displacement

during time interval (tm¡k; tm¡k + ¢t)

Letting ¢t go to zero, yields:

©(t) = _x(t) ¢ª+
tZ

¡1

Â(t¡ ¿) ¢ _x(¿) ¢ d¿ (6.121)

in which _x(¿) is the velocity component of the body at time ¿ .
The pressure in the ‡uid follows from the linearized Bernoulli equation:

p = ¡½ ¢ @©
@t

(6.122)

An integration of these pressures over the wetted surface, S , of the ‡oating object yields
the expression for the hydrodynamic reaction force (or moment), F .
With n is the generalized directional cosine in a vector notation, F becomes:

F = ¡
Z Z

S

p ¢ n ¢ dS

=

8
<
:½

Z Z

S

ª ¢ n ¢ dS

9
=
; ¢ Äx(t)

+

tZ

¡1

8
<
:½

Z Z

S

@Â(t¡ ¿ )
@t

¢ n ¢ dS

9
=
; ¢ _x(¿) ¢ d¿ (6.123)
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By de…ning:

A = ½

Z Z

S

ª ¢ n ¢ dS

B(t) = ½

Z Z

S

@Â(t¡ ¿)
@t

¢ n ¢ dS (6.124)

the hydrodynamic force (or moment) becomes:

F = A ¢ Äx(t) +
tZ

¡1

B(t¡ ¿) ¢ _x(¿) ¢ d¿ (6.125)

Together with a linear restoring spring term C ¢x and a linear external load, X(t), Newton’s
second law yields the linear equation of motion in the time domain:

(M + A) ¢ Äx(t) +
tZ

¡1

B(t¡ ¿) ¢ _x(¿) ¢ d¿ + C ¢ x(t) =X (t) (6.126)

in which:

Äx(t) = translational (or rotational) acceleration at time t (m/s2)
_x(t) = translational (or rotational) velocity in at time t (m/s)
x(t) = translational (or rotational) displacement at time t (m)
M = solid mass or mass moment of inertia (kg)
A = hydrodynamic (or added) mass coe¢cient (kg)
B(t), B(¿) = retardation functions (Ns/m)
C = spring coe¢cient from ship geometry (N/m)
X(t) = external load in at time t (N)
t, ¿ = time (s)

By replacing ”¿” by ”t¡ ¿” in the damping part and changing the integration boundaries,
this part can be written in a more convenient form:

¯̄
¯̄
¯̄(M + A) ¢ Äx(t) +

1Z

0

B(¿) ¢ _x(t¡ ¿) ¢ d¿ + C ¢ x(t) =X(t)

¯̄
¯̄
¯̄ (6.127)

This type of equation is often referred to as a ”Cummins Equation” in honor of his work;
see [Cummins, 1962].

Coe¢cient Determination

If present, the linear restoring (hydrostatic) spring coe¢cient, C; can be determined easily
from the underwater geometry and - when rotations are involved - the center of gravity of
the ‡oating object.
The velocity potentials, ª and Â, have to be found to determine the coe¢cients, A and
B. A direct approach is rather complex. An easier method to determine A and B has
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been found by [Ogilvie, 1964]. He made use of the hydrodynamic mass and damping data
determined using existing frequency domain computer programs based on potential theory.
This allowed him to express the needed coe¢cients A and B relatively simply in terms of
the calculated hydrodynamic mass and damping data. His approach is developed here.
The ‡oating object is assumed to carry out an harmonic oscillation with a unit amplitude:

x = 1:0 ¢ cos(!t) (6.128)

Substitution of this in the Cummins equation 6.127 yields:

¡!2 ¢ (M +A) ¢ cos(!t)¡ ! ¢
1Z

0

B(¿ ) ¢ sin(!t¡ !¿ ) ¢ d¿ +C ¢ cos(!t) = X(t) (6.129)

which can be worked out to yield:

¡!2¢

8
<
:M + A¡ 1

!
¢
1Z

0

B(¿ ) sin(!¿)d¿

9
=
; ¢ cos(!t)

¡!¢

8
<
:

1Z

0

B(¿ ) ¢ cos(!¿ ) ¢ d¿

9
=
; sin(!t) + fCg ¢ cos(!t) = X(t) (6.130)

Alternatively, the classical frequency domain description of this motion is given by:

¡!2¢ fM + a(!)g ¢ cos(!t)
¡!¢ fb(!)g ¢ sin(!t) + fcg ¢ cos(!t) = X(t) (6.131)

with:

a(!) = frequency-dependent hydrodynamic mass coe¢cient (Ns2/m = kg)
b(!) = frequency-dependent hydrodynamic damping coe¢cient (Ns/m)
c = restoring spring term coe¢cient (N/m)
X(t) = external force (N)

[Ogilvie, 1964] compared the time domain and frequency domain equations 6.130 and 6.131
and found:

a(!) = A¡ 1

!
¢
1Z

0

B(¿) sin(!¿ )d¿

b(!) =

1Z

0

B(¿ ) ¢ cos(!¿) ¢ d¿

c = C (6.132)

The …rst two of these equations look very similar to those for determining the …rst order
coe¢cients in a Fourier series; see appendix C. An inverse Fourier Transform can be used
to isolate the desired function, B(¿); the coe¢cient, A, can be evaluated directly with a
bit of algebra.
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This yields the so-called retardation function:
¯̄
¯̄
¯̄B(¿ ) =

2

¼
¢
1Z

0

b(!) ¢ cos(!¿ ) ¢ d!

¯̄
¯̄
¯̄ (6.133)

The mass term is simply:

A = a(!) +
1

!
¢
1Z

0

B(¿ ) ¢ sin(!¿ ) ¢ d¿ (6.134)

This expression is valid for any value of !, and thus also for ! = 1; this provides:

jA = a (!) evaluated at ! =1j (6.135)

The numerical computational problems that have to be solved, because the integrations
have to be carried out from 0 to 1, are not discussed here.
Figure 6.22, is an example of the retardation function for roll of a ship.

Figure 6.22: Retardation Function for Roll

Addition of (External) Loads

So far, discussion has concentrated on the left hand side of equation 6.127. Notice that
this part of the equation is still linear!
Attention shifts now to the right hand side, the external force X(t). Since it can be
convenient to keep the left hand side of the equation of motion linear, one often moves
all the nonlinear e¤ects - even a nonlinear damping or spring force - to the opposite side,
where they are all considered to be part of the external force X(t).
Obviously one will have to know (or at least be able to evaluate) X (t) in order to obtain
a solution to the equation of motion.
Since the …rst order wave force is a linear phenomenon, time histories of the …rst order
wave loads in a certain sea state can be obtained from frequency domain calculations by
using the frequency characteristics of the …rst order wave loads and the wave spectrum by
using the superposition principle:

³(t) =
NX

n=1

³an cos(!nt+ "n)
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with randomly chosen phase shifts, "n, between 0 and 2¼ and:

³an =
q
2 ¢ S³(!n) ¢¢! which follows from:

1

2
³2an = S³(!n) ¢¢!

see chapter 5.
With this, the time history of the …rst order wave load then becomes:

¯̄
¯̄
¯Xw(t) =

NX

n=1

µ
Xwan
³an

¶
¢ ³an cos(!nt+ "n + "Xw³n)

¯̄
¯̄
¯ (6.136)

in which:

Xw(t) = wave load (N)
N = number of frequencies (-)
!n = wave frequency rad/s)
Xwan
³an

= transfer function of wave load (N/m)

"Xw³n = phase shift of wave load (rad)
"n = phase shift of wave (rad)

Note that with a constant frequency interval , ¢!, this time history repeats itself after
2¼=¢! seconds.
With known coe¢cients and the right hand side of this equation of motion, equation 6.127
can be integrated a numerically. Comparisons of calculated and transformed linear motions
in the frequency domain with time domain results show a perfect agreement.

Validation Tests

A series of simple model experiments have been carried out to validate the time domain
calculation routines with non-linear terms. Towing tank number 2 of the Delft Ship Hydro-
mechanics Laboratory with a 1:40 model of the Oil Skimming Vessel m.v. Smal Agt (51.00
x 9.05 x 3.25 meter) was used for this. Horizontal impulse forces in the longitudinal and
lateral direction have been introduced in a tow line between a torque-motor and the model
in still water. The measured motions of the ship model have been compared with the data
calculated in the time domain, using the measured time-series of the impulse forces and
assumed points of application as an input. An example of the comparison is presented in
…gure 6.23 for the sway velocities due to a lateral impulse force amidships.
The …gure shows a good agreement between the calculated and the measured sway motions.
Comparable agreements have been found for the other tests.
A few years ago, the Centre for Applied Research in The Netherlands (TNO) carried out a
series of full scale collision tests with two inland waterway tankers in still water, see …gure
6.24. The contact forces between the two ships and the motions of the rammed ship (80.00
x 8.15 x 2.20 meter) were measured. Computer simulations of the motion behavior of the
rammed ship during the collision have been carried out, using the measured contact forces
on the rammed ship as an input.
Figure 6.25 shows some comparative results for a test with a collision of the rammed ship
at about 0.40 Lpp from the bow on the port side. The ramming ship had a speed of about
15 km/hr. The measured and calculated motions of the rammed ship are presented. Sway,
roll and yaw velocities are predicted here very well.
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Figure 6.23: External Impulse and Resulting Motions

Figure 6.24: Underwater Portion of Rammed Ship

6.5.2 Direct Time Domain Simulation

Retardation functions as described above can be used to solve the equations of motion
for cases in which the nonlinearities can be included in the time-dependent excitation on
the right hand side of the equation. While it is possible to ”move” some nonlinearities to
the excitation side of the equation of motion more or less arti…cially, there are still many
relevant physical systems which do not lend themselves to such a treatment.
One example of such a system will come up at the end of chapter 12 when the hydrodynamic
drag on a moving cylinder in waves will be discussed. A perhaps more spectacular example
involves the launching of an o¤shore tower structure from a barge. It should be obvious
that the hydrodynamic mass and damping of such a structure - and of the barge from
which it is launched - will change quite rapidly as the tower enters the water and load is
transferred from the barge. Notice, now, that the hydromechanical coe¢cients - for both
the tower and barge - can best be expressed as (nonlinear) functions of the position of the
respective structures rather than of time. These functions can easily be accommodated in
a time domain calculation in which all conditions can be re-evaluated at the start of each
time step.
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Figure 6.25: Measured and Calculated Velocities During a Ship Collision

Indeed, any system can be solved by direct integration of the equations of motion in the
time domain. This approach is direct and certainly straightforward in theory, but it is
often so cumbersome to carry out that it becomes impractical in practice. Admittedly,
modern computers continue to shift the limits of practicality, but these limits are still very
present for many o¤shore engineering applications.

Basic Approach

The approach is simple enough: the di¤erential equations of motion resulting from the
application of Newton’s law are simply integrated - using an appropriate numerical method
- in the time domain. This means that all of the input (such as a wave record) must be
known as a function of time, and that a time record of the output (such as a time history
of hydrodynamic force on a vibrating cable) will be generated.

Di¢culties

A …rst and obvious di¢culty with time domain simulation is that a time record of the input
- such as the waves - must be provided, while generally, one only has information about
the wave spectrum available. Wave records will have to be re-generated using methods as
given in chapter 5.
As indicated there, by choosing di¤erent series of random phases one can generate a seem-
ingly endless series of time records, all with identical statistical properties. There is no-one
who can say which - if any - particular time record is correct. What di¤erence does it
make? The di¤erence lies in the fact that the largest wave - very important for an extreme
response, for example - may occur early in the record, or later or even not at all (during a
…nite record). This can have a signi…cant in‡uence on the interpretation of the results, of
course - especially when extreme values are needed.
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The interpretation of time domain simulation results forms a second di¢culty in practice.
A designer often needs a ”design response” (an extreme dynamic internal load or displace-
ment) with an associated (small) probability that it will be exceeded as ”output” from
a dynamic analysis. This interpretation di¢culty is brought into focus by reviewing the
process for a linear system, …rst.
One will generally analyze a linear system in the frequency domain; spectra of the desired
response are generated directly. Since the response spectra will be of essentially the same
form as the input spectra, the output can be transformed to convenient statistical data for
distributions interpretation - just as is done for waves. Once this theoretical distribution
has been …tted, it is a simple matter to extrapolate this to get the value associated with
the chosen design probability.
When time domain simulation is used instead, one must …rst convert the generated time
record of the output to some form of spectrum. If the system being analyzed is nonlinear,
then the spectrum of the output need not look much like that of the input at all: it can
contain energy at entirely di¤erent frequencies for example, so that its best representation
in a mathematical form is not known. This means that one must numerically …t several
theoretical forms in order to …nd the best one. Once this has been done, one will need
to extrapolate - just as above - to a desired (low) probability of exceedance. Since the
quality of this extrapolation is no better than the quality of equation …t, and the (few)
computed extreme values in the generated time record disproportional in‡uence the ’tail’
of the probability distribution, one needs either very long or very many time records of the
output in order to determine these extremes with su¢cient accuracy. This implies that
hours or even days of dynamic response will need to be simulated. Since such simulations
often still run at less than real time on even fast computers, the computational e¤ort
becomes prohibitively expensive.

Constrained Time Domain Simulation

Quite some research has been invested to come to more e¢cient ways of carrying out a time
domain simulation. Tromans has been one of the leaders in this. Since these newer methods
are not yet (as of this writing) widely accepted (and the details of their mathematics would
make this work signi…cantly thicker), they will not be treated here.



Chapter 7

POTENTIAL COEFFICIENTS

7.1 Introduction

Consider a rigid body, oscillating in or below the free surface of a ‡uid. The ‡uid is assumed
to be incompressible, inviscid and irrotational and without surface tension. The body is
forced to carry out simple harmonic motions with a prescribed frequency of oscillation, !.
It is assumed that steady state conditions have been attained. The motion amplitudes and
velocities are small enough so that all but the linear terms of the free surface condition, the
kinematic boundary condition on the body and the Bernoulli equation may be neglected.
The hydrodynamic pressures on the surface of the body can be obtained from the linearized
Bernoulli equation, using the known velocity potentials. Integration of these pressures in
the required direction provides the hydrodynamic force or moment. This force or moment
can also be expressed in terms of potential mass and damping. Comparisons of the in-phase
and out-of-phase parts of the two expressions provide the potential mass and damping
coe¢cients.
This chapter details the steps needed to carry out such a computation.

7.2 Principles

Consider a rigid body ‡oating in an ideal ‡uid with harmonic waves. The water depth is
assumed to be …nite. The time-averaged speed of the body is zero in all directions. For
the sake of simple notation, it is assumed here that the O(x; y; z) system is identical to the
S(x0; y0; z0) system described in chapter 6. The x-axis is coincident with the undisturbed
still water free surface and the z-axis and z0-axis are positive upwards.
The potential theory used here will be developed (and extended) from the relations pre-
sented in chapter 5. There are a few di¤erences, however. The velocity components (u; v; w)
in chapter 5 are replaced here by (vx; vy; vz) in this chapter; this is the more common no-
tation found in the relevant literature. The wave velocity potential ©w in chapter 5 has
been replaced here by a more general velocity potential, ©:

The linear ‡uid velocity potential can be split into three parts:

j©(x; y; z; t) = ©r + ©w +©dj (7.1)

0J.M.J. Journée and W.W. Massie, ”OFFSHORE HYDROMECHANICS”, First Edition, January 2001,
Delft University of Technology. For updates see web site: http://www.shipmotions.nl.



7-2 CHAPTER 7. POTENTIAL COEFFICIENTS

in which:

² ©r = radiation potential from the oscillatory motion of the body in still water.

² ©w = incident undisturbed wave potential.

² ©d = di¤raction potential of the waves about the restrained body.

7.2.1 Requirements

Just as in chapter 5, each of these velocity potentials has to ful…ll a number of requirements
and boundary conditions in the ‡uid. Of these, the …rst four are identical to those in chapter
5; only their results are presented here. Additional boundary conditions are associated with
the ‡oating body which is now present. These will be discussed in detail.

1. Continuity Condition or Laplace Equation
¯̄
¯̄r2© =

@2©

@x2
+
@2©

@y2
+
@2©

@z2
= 0

¯̄
¯̄ (see chapter 5) (7.2)

2. Sea Bed Boundary Condition
¯̄
¯̄@©
@z

= 0 for: z = ¡h
¯̄
¯̄ (see chapter 5) (7.3)

3. Boundary Condition at the Free Surface
For the free surface dynamic boundary condition was found:

@©

@t
+ g³ = 0 or

@2©

@t2
+ g

@³

@t
= 0 for: z = 0 (see chapter 5) (7.4)

and the vertical velocity of the water particle at z = 0 follows from free surface
kinematic boundary condition:

@©

@z
=
@³

@t
for: z = 0 (see chapter 5) (7.5)

Combining equations 7.4 and 7.5 yields:

¯̄
¯̄@2©
@t2

+ g
@©

@z
= 0 for : z = 0

¯̄
¯̄ (7.6)

This equation is has been found already in chapter 5, when determining the Cauchy-
Poisson condition in short waves (deep water). However, equation 7.6 is also valid
for …nite water depths.

4. Kinematic Boundary Condition on the Oscillating Body Surface
The boundary condition at the surface of the rigid body, S , plays a very important
role. The velocity of a water particle at a point at the surface of the body is equal
to the velocity of this (watertight) body point itself. The outward normal velocity,
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vn, at a point P (x; y; z) at the surface of the body (positive in the direction of the
‡uid) is given by:

@©

@n
= vn(x; y; z; t) (7.7)

Because the solution of the potential will be linearized, this can be written as:

¯̄
¯̄
¯
@©

@n
= vn(x; y; z; t) =

6X

j=1

vj ¢ fj(x; y; z)
¯̄
¯̄
¯ (7.8)

in terms of oscillatory velocities and generalized direction cosines on the surface of
the body, S , given by:

surge : f1 = cos(n; x)

sway : f2 = cos(n; y)

heave : f3 = cos(n; z)

roll : f4 = y cos(n; z) ¡ z cos(n; y) = yf3 ¡ zf2
pitch : f5 = z cos(n; x)¡ x cos(n; z) = zf1¡ xf3
yaw : f6 = x cos(n; y) ¡ y cos(n; x) = xf2 ¡ yf1 (7.9)

The direction cosines are called generalized, because f1, f2 and f3 have been normal-
ized (the sum of their squares is equal to 1) and used to obtain f4, f5 and f6.
Note: The subscripts 1; 2; :::6 are used here to indicate the mode of the motion. Also
displacements are often indicated in literature in the same way: x1; x2; :::x6.

5. Radiation Condition
The radiation condition states that as the distance, R, from the oscillating body
becomes large, the potential value tends to zero:

¯̄
¯ lim
R!1

© = 0
¯̄
¯ (7.10)

6. Symmetric or Anti-symmetric Condition
Since ships and many other ‡oating bodies are symmetric with respect to its middle
line plane, one can make use of this to simplify the potential equations:

j©2(¡x; y) = ¡©2(+x; y)j for sway

j©3(¡x; y) = +©3(+x; y)j for heave (7.11)

j©4(¡x; y) = ¡©4(+x; y)j for roll

in which ©i is the velocity potential for the given direction i.
This indicates that for sway and roll oscillations, the horizontal velocities of the water
particles, thus the derivative @©=@x, at any time on both sides of the body must have
the same direction; these motions are anti-symmetric. For heave oscillations these
velocities must be of opposite sign; this is a symmetric motion. However, for all three
modes of oscillations the vertical velocities, thus the derivative @©=@y, on both sides
must have the same directions at any time.
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7.2.2 Forces and Moments

The forces ~F and moments ~M follow from an integration of the pressure, p, over the
submerged surface, S , of the body:

~F = ¡
ZZ

S

(p ¢ ~n) ¢ dS

~M = ¡
ZZ

S

p ¢ (~r £ ~n) ¢ dS (7.12)

in which ~n is the outward normal vector on surface dS and ~r is the position vector of
surface dS in the O(x; y; z) coordinate system.
The pressure p - via the linearized Bernoulli equation - is determined from the velocity
potentials by:

p = ¡½@©
@t

¡ ½gz

= ¡½
µ
@©r
@t

+
@©w
@t

+
@©d
@t

¶
¡ ½gz (7.13)

which can obviously be split into four separate parts, so that the hydromechanical forces
~F and moments ~M can be split into four parts too:

¯̄
¯̄
¯̄ ~F = ½

ZZ

S

µ
@©r
@t

+
@©w
@t

+
@©d
@t

+ gz

¶
~n ¢ dS

¯̄
¯̄
¯̄ (7.14)

¯̄
¯̄
¯̄ ~M = ½

ZZ

S

µ
@©r
@t

+
@©w
@t

+
@©d
@t

+ gz

¶
(~r £ ~n) ¢ dS

¯̄
¯̄
¯̄ (7.15)

or:

~F = ~Fr + ~Fw+ ~Fd + ~Fs
~M = ~Mr + ~Mw+ ~Md + ~Ms (7.16)

Summarizing:

Source Terms
Waves radiated from the oscillating body in still water ~Fr, ~Mr

Approaching waves on the …xed body ~Fw, ~Mw

Di¤racted waves of the …xed body ~Fd, ~Md

Hydrostatic buoyancy in still water ~Fs, ~Ms

These will each be discussed separately below.
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7.2.3 Hydrodynamic Loads

The hydrodynamic loads are the dynamic forces and moments caused by the ‡uid on an
oscillating body in still water; waves are radiated from the body. The radiation potential,
©r, which is associated with this oscillation in still water, can be written in terms, ©j, for
6 degrees of freedom as:

©r(x; y; z; t) =
6X

j=1

©j(x; y; z; t)

=
6X

j=1

Áj(x; y; z) ¢ vj(t) (7.17)

in which the space and time dependent potential term, ©j(x; y; z; t) in direction j, is now
written in terms of a separate space dependent potential, Áj(x; y; z) in direction j, multi-
plied by an oscillatory velocity, vj(t) in direction j.
This allows the normal velocity on the surface of the body to be written as:

@©r
@n

=
@

@n

6X

j=1

©j

=
6X

j=1

½
@Áj
@n

¢vj
¾

(7.18)

and the generalized direction cosines, as given in equation 7.9, are given by:

fj =
@Áj
@n

(7.19)

With this, the radiation term in the hydrodynamic force of equation 7.14 becomes:

~Fr = ½

ZZ

S

µ
@©r
@t

¶
~n ¢ dS

= ½

ZZ

S

Ã
@

@t

6X

j=1

Ájvj

!
~n ¢ dS (7.20)

and the moment term of equation 7.15 becomes:

~Mr = ½

ZZ

S

µ
@©r
@t

¶
(~r £ ~n) ¢ dS

= ½

ZZ

S

Ã
@

@t

6X

j=1

Ájvj

!
(~r £ ~n) ¢ dS (7.21)

The components of these radiation forces and moments are de…ned by:

~Fr = (Xr1; Xr2 ; Xr3) and ~Mr = (Xr4; Xr5; Xr6) (7.22)
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with (see 7.19):

~Xrk = ½

ZZ

S

Ã
@

@t

6X

j=1

Ájvj

!
fk ¢ dS

= ½

ZZ

S

Ã
@

@t

6X

j=1

Ájvj

!
@Ák
@n

¢dS for: k = 1; :::6 (7.23)

Since Áj and Ák are not time-dependent in this expression, it reduces to:

¯̄
¯̄
¯Xrk =

6X

j=1

Xrkj

¯̄
¯̄
¯ for: k = 1; :::6 (7.24)

with: ¯̄
¯̄
¯̄Xrkj =

dvj
dt
½

Z Z

S

Áj
@Ák
@n

¢dS

¯̄
¯̄
¯̄ (7.25)

This radiation force or moment Xrkj in the direction k is caused by a forced harmonic
oscillation of the body in the direction j . This is generally true for all j and k in the range
from 1 to 6. When j = k; the force or moment is caused by a motion in that same direction.
When j 6= k; the force in one direction results from the motion in another direction. This
introduces what is called coupling between the forces and moments (or motions).
The above equation expresses the force and moment components, Xrkj in terms of still
unknown potentials, Áj; not everything is solved yet! A solution for this will be found later
in this chapter.

Oscillatory Motion

Now an oscillatory motion is de…ned; suppose a motion (in a complex notation) given by:
¯̄
sj = saje¡i!t

¯̄
(7.26)

Then the velocity and acceleration of this oscillation are:

_sj = vj = ¡i!saje¡i!t

Äsj =
dvj
dt
= ¡!2saje¡i!t (7.27)

The hydrodynamic forces and moments can be split into a load in-phase with the acceler-
ation and a load in-phase with the velocity:

Xrkj = ¡MkjÄsj ¡Nkj _sj
=

¡
saj!

2Mkj + isaj!Nkj
¢
e¡i!t

=

0
@¡saj!2½

ZZ

S

Áj
@Ák
@n

¢dS

1
A e¡i!t (7.28)

in which the last part is similar to the right hand side of equation 7.25.
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So in case of an oscillation of the body in the direction j with a velocity potential Áj, the
hydrodynamic mass and damping (coupling)coe¢cients are de…ned by:

¯̄
¯̄
¯̄Mkj = ¡<e

8
<
:½

ZZ

S

Áj
@Ák
@n

¢dS

9
=
; and Nkj = ¡=m

8
<
:½!

ZZ

S

Áj
@Ák
@n

¢dS

9
=
;

¯̄
¯̄
¯̄ (7.29)

In case of an oscillation of the body in the direction k with a velocity potential Ák, the
hydrodynamic mass and damping (coupling) coe¢cients are de…ned by:

¯̄
¯̄
¯̄Mjk = ¡<e

8
<
:½

ZZ

S

Ák
@Áj
@n

¢dS

9
=
; and Njk = ¡=m

8
<
:½!

ZZ

S

Ák
@Áj
@n

¢dS

9
=
;

¯̄
¯̄
¯̄ (7.30)

Green’s Second Theorem

Green’s second theorem transforms a large volume-integral into a much easier to handle
surface-integral. Its mathematical background is beyond the scope of this text. It is valid
for any potential function, regardless the fact if it ful…lls the Laplace condition or not.
Consider two separate velocity potentials Áj and Ák. Green’s second theorem, applied to
these potentials, is then:

¯̄
¯̄
¯̄
ZZZ

V ¤

¡
Áj ¢ r2Ák ¡ Ák ¢ r2Áj

¢
¢ dV ¤ =

ZZ

S¤

µ
Áj
@Ák
@n

¡ Ák
@Áj
@n

¶
¢ dS¤

¯̄
¯̄
¯̄ (7.31)

This theorem is generally valid for all kinds of potentials; it is not necessary that they
full…l the Laplace equation.
In Green’s theorem, S¤ is a closed surface with a volume V ¤. This volume is bounded
by the wall of an imaginary vertical circular cylinder with a very large radius R, the sea
bottom at z = ¡h, the water surface at z = ³ and the wetted surface of the ‡oating body,
S ; see …gure 7.1.

Figure 7.1: Boundary Conditions
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Both of the above radiation potentials Áj and Ák must ful…ll the Laplace equation 7.2:

r2Áj = r2Ák = 0 (7.32)

So the left hand side of equation 7.31 becomes zero, which yields for the right hand side
of equation 7.31: ZZ

S¤

Áj
@Ák
@n

¢dS¤ =
ZZ

S¤

Ák
@Áj
@n

¢dS¤ (7.33)

The boundary condition at the free surface, equation 7.6, becomes for © = Á ¢ e¡i!t:

¡!2Á + g@Á
@z
= 0 for: z = 0 (7.34)

or with the dispersion relation, !2=g = k tanhkh:

k tanhkhÁ =
@Á

@z
for: z = 0 (7.35)

This implies that at the free surface of the ‡uid one can write:

k tanhkh ¢ Ák = @Ák
@z =

@Ák
@n ¡!Ák = 1

k tanh kh ¢ @Ák@n

k tanhkh ¢Áj =
@Áj
@z
=

@Áj
@n

¡!Áj = 1
k tanhkh

¢ @Áj
@n

9
=
; at the free surface (7.36)

When taking also the boundary condition at the sea bed (equation 7.3) and the radiation
condition on the wall of the cylinder in …gure 7.1 (equation 7.10):

@Á

@n
= 0 (for: z = ¡h) and lim

R!1
Á = 0

into account, the integral equation 7.33 over the surface S¤ reduces to:

¯̄
¯̄
¯̄
ZZ

S

Áj
@Ák
@n

¢dS =
ZZ

S

Ák
@Áj
@n

¢dS

¯̄
¯̄
¯̄ (7.37)

in which S is the wetted surface of the body only.
Note that in the light of the restriction introduced above, this is now (at least formally)
only valid for deep water. The reader is also reminded that the Áj and Ák still have to be
evaluated as well; this comes up again later in this chapter.

Potential Coe¢cients

A substitution of equation 7.37 in equations 7.29 and 7.30 provides symmetry - for the
zero forward ship speed case - in the coe¢cients matrices with respect to their diagonals
so that:

Mjk = Mkj and Njk = Nkj (7.38)
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Because of the symmetry of a ship some coe¢cients are zero and the two matrices with
hydrodynamic coe¢cients for ship become:

Hydrodynamic mass matrix:

0
BBBBBB@

M11 0 M13 0 M15 0
0 M22 0 M24 0 M26

M31 0 M33 0 M35 0
0 M42 0 M44 0 M46

M51 0 M53 0 M55 0
0 M62 0 M64 0 M66

1
CCCCCCA

(7.39)

Hydrodynamic damping matrix:

0
BBBBBB@

N11 0 N13 0 N15 0
0 N22 0 N24 0 N26
N31 0 N33 0 N35 0
0 N42 0 N44 0 N46
N51 0 N53 0 N55 0
0 N62 0 N64 0 N66

1
CCCCCCA

(7.40)

For clarity, the symmetry of terms about the diagonal in these matrices (for example
that M13 = M31 for zero forward speed) has not been included here. The terms on the
diagonals (such as Mnn for example) are the primary coe¢cients relating properties such
as hydrodynamic mass in one direction to the inertia forces in that same direction. O¤-
diagonal terms (such as M13) represent hydrodynamic mass only which is associated with
an inertia dependent force in one direction caused by a motion component in another.

Forward speed has an e¤ect on the velocity potentials, but is not discussed here. This e¤ect
is quite completely explained by [Timman and Newman, 1962]. Another good reference is
[Vugts, 1970].

7.2.4 Wave and Di¤raction Loads

The second and third term in 7.16 can be treated together. The wave and di¤raction terms
in the hydrodynamic force and moment are:

~Fw+ ~Fd = ½

ZZ

S

µ
@©w
@t

+
@©d
@t

¶
~n ¢ dS (7.41)

and:
~Mw + ~Md = ½

ZZ

S

µ
@©w
@t

+
@©d
@t

¶
(~r £ ~n) ¢ dS (7.42)

The principles of linear superposition allow the determination of these forces on a restrained
body with zero forward speed; @©=@n = 0. This simpli…es the kinematic boundary condi-
tion on the surface of the body to:

@©

@n
=
@©w
@n

+
@©d
@n

= 0 (7.43)

The space and time dependent potentials, ©w(x; y; z; t) and ©d(x; y; z; t), are written now
in terms of isolated space dependent potentials, Áw(x; y; z) and Ád(x; y; z), multiplied by a
normalized oscillatory velocity, v(t) = 1 ¢ e¡i!t:

©w(x; y; z; t) = Áw(x; y; z) ¢ e¡i!t
©d(x; y; z; t) = Ád(x; y; z) ¢ e¡i!t (7.44)
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Then from equation 7.43 follows:
@Áw
@n

= ¡@Ád
@n

(7.45)

With this equation and equation 7.19 for the generalized direction cosines, one then …nds
the wave forces and moments on the restrained body in waves:

Xwk = ¡i½e¡i!t
ZZ

S

(Áw+ Ád)fk ¢ dS

= ¡i½e¡i!t
ZZ

S

(Áw+ Ád)
@Ák
@n

¢dS for: k = 1; :::6 (7.46)

in which Ák is the radiation potential in direction k.
The potential of the incident waves, Áw, is known (see chapter 5), but the di¤raction
potential, Ád, has to be determined. Green’s second theorem from equation 7.37 provides
a relation between this di¤raction potential, Ád, and a radiation potential, Ák:

ZZ

S

Ád
@Ák
@n

¢dS =
ZZ

S

Ák
@Ád
@n

¢dS (7.47)

and with equation 7.45 one …nds:
ZZ

S

Ád
@Ák
@n

¢dS = ¡
ZZ

S

Ák
@Áw
@n

¢dS (7.48)

This elimination of the di¤raction potential results into the so-called Haskind relations:
¯̄
¯̄
¯̄Xwk = ¡i½e¡i!t

ZZ

S

µ
Áw
@Ák
@n

+ Ák
@Áw
@n

¶
¢ dS

¯̄
¯̄
¯̄ for: k = 1; :::6 (7.49)

This limits the problem of the di¤raction potential because the expression forXwk depends
only on the wave potential Áw and the radiation potential Ák.

Note: These relations, found by [Haskind, 1957], are very important; they underlie the
relative motion (displacement - velocity - acceleration) hypothesis, as used in chapter 6
and in strip theory in chapter 8. These relations are valid only for a ‡oating body with a
zero time-averaged speed in all directions. [Newman, 1962] however, has generalized the
Haskind relations for a body with a constant forward speed. He derived equations which
di¤er only slightly from those found by Haskind. According to Newman’s approach the
wave potential has to be de…ned in the moving O(x; y; z) system. The radiation potential
has to be determined for the constant forward speed case, taking an opposite sign into
account.

The corresponding wave potential for deep water, as given in chapter 5, now becomes:

©w =
³ag

!
¢ekz ¢ sin(!t¡ kx cos¹¡ ky sin¹)

=
i³ag

!
¢ekz ¢ e¡ik(xcos¹+y sin ¹)e¡i!t (7.50)
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so that the isolated space dependent term is given by:

Áw =
i³ag

!
¢ ekz ¢ e¡ik(xcos¹+y sin¹) (7.51)

In these equations, ¹ is the wave direction.
The velocity of the water particles in the direction of the outward normal n on the surface
of the body is:

@Áw
@n

=
i³ag

!
¢ k

½
@z

@n
¡ i

µ
@x

@n
cos¹+

@y

@n
sin¹

¶¾
¢ekz ¢ e¡ik(x cos ¹+y sin¹)

= Áw ¢ k ¢
½
@z

@n
¡ i

µ
@x

@n
cos¹+

@y

@n
sin¹

¶¾

= Áw ¢ k ¢ ff3 ¡ i (f1 cos¹+ f2 sin¹)g (7.52)

With this, the wave loads are given by:

Xwk = ¡i½!e¡i!t
ZZ

S

Áwfk ¢ dS

+i½!e¡i!tk
ZZ

S

ÁwÁk ff3¡ i (f1 cos¹+ f2 sin ¹)g ¢ dS

for: k = 1; :::6 (7.53)

The …rst term in this expression for the wave loads is the so-called Froude-Krilov force or
moment, which is the wave load caused by the undisturbed incident wave. The second term
is caused by the wave disturbance due to the presence of the (…xed) body, the so-called
di¤raction force.

7.2.5 Hydrostatic Loads

These buoyancy forces and moments are determined using the methods explained in chapter
2. In the notation used here:

~Fs = ½g

ZZ

S

z~n ¢ dS and ~Ms = ½g

ZZ

S

z (~r x ~n) ¢ dS

or more generally:

¯̄
¯̄
¯̄Xsk = ½g

ZZ

S

zfk ¢ dS

¯̄
¯̄
¯̄ for: k = 1; :::6 (7.54)

in which the Xsk are the components of these hydrostatic forces and moments.
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7.3 2-D Potential Theory

This section describes the 2-D potential theory as for instance has been applied in the com-
puter code SEAWAY, developed at the Delft University of Technology, see [Journée, 1999].
This program computes the potential coe¢cients and the wave-frequency hydrodynamic
loads on and motions of ships and other free-‡oating bodies with L=B > 3, with and
without forward speed.
So far, the wave potential, Áw(x; y; z) is known from chapter 5, but the body-shape-
dependent radiation potentials, Áj(x; y; z), have still to be determined. Several 2-D ap-
proaches for solving this problem will be shown. For this 2-D approach, each cross section
of the body is considered to be part of a horizontal cylinder with constant cross section
and in…nite length; see …gure 7.2.

Figure 7.2: 2-D Con…guration

The three-dimensional coe¢cients for the ship at zero mean forward speed are simply
found by an integration of the 2-D values over the ship length. This so-called ”strip theory
method” allows also a relatively simple inclusion of the e¤ect of ship speed.
Three basic 2-D methods are discussed here:

² Ursell’s analytical solution of the potential theory for a circular cross section.

² Conformal mapping of a ship-like cross section to the unit circle and Tasai’s
extension of Ursell’s theory to conformal mapped cross sections.

² Frank’s pulsating source theory, directly applied to a ship-like cross section.

These methods have been developed sequentially in time; each extends the applicability
of an earlier form. Each method is discussed separately and is presented using more or
less the notation of the relevant literature; this makes it easier for readers to investigate
these further. Since all of the methods share the same general boundary conditions, some
presentations seem very similar, but they often di¤er in detail.
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7.3.1 Theory of Ursell

[Ursell, 1949] made the …rst step towards solving the general problem of calculating the
two-dimensional ‡ow around a cylinder of arbitrary shape ‡oating in a free surface of
in…nitely deep water. He derived an analytical solution for an in…nitely long oscillating
circular cylinder, semi-immersed in a ‡uid, as shown for heave in …gure 7.3-a. The forced
oscillation of this cylinder causes a surface disturbance of the ‡uid. Because the cylinder
is assumed to be in…nitely long, the generated waves will be two-dimensional. After initial
transients have died away, the oscillating cylinder generates a train of regular waves which
radiate away to in…nity on either side of the cylinder; these waves dissipate energy from
the system.

Consider an in…nitely long circular cylinder, oscillating in the surface of a ‡uid; its cross
section is the heavy circle in …gure 7.3-b. Note that a di¤erent coordinate system is used
here; the x-axis is in the still water level and the y-axis is positive downwards. µ is now
de…ned from the y-axis instead of the x-axis, too.

Figure 7.3: Axis System as Used by Ursell

Any point in the ‡uid can be described by x and y or by r = r0 ¢ e® and µ, in which e® is
the scale. The relations between the (x; y) and the (r; µ) coordinate systems are given by:

x = r ¢ sin µ = r0 ¢ e® ¢ sin µ and y = r ¢ cos µ = r0 ¢ e® ¢ cos µ (7.55)

The contour of the cross section of the circular cylinder follows from substituting ® = 0 in
equation 7.55:

x0 = r0 ¢ sin µ and y0 = r0 ¢ cos µ (7.56)

The cylinder is forced to carry out a simple harmonic sway, heave or roll motion with a
frequency of oscillation ! and a small amplitude of displacement xa, ya or ¯a, respectively:

for sway : x = xa cos(!t+ ")

for heave : y = ya cos(!t+ ±)

for roll : ¯ = ¯a cos(!t+ °) (7.57)

in which ", ± and ° are phase angles with respect to the velocity potentials.



7-14 CHAPTER 7. POTENTIAL COEFFICIENTS

The sway, heave and roll velocity and acceleration components of the cylinder are now:

for sway: _x = ¡!xa sin(!t+ ") and Äx = ¡!2xa cos(!t+ ")
for heave: _y = ¡!ya sin(!t+ ±) and Äy = ¡!2ya cos(!t+ ±)
for roll: _̄ = ¡!¯a sin(!t+ °) and Ǟ = ¡!2¯a cos(!t+ °) (7.58)

These forced oscillations of the cylinder cause a surface disturbance of the ‡uid. Because
the cylinder is assumed to be in…nitely long, the generated waves will be two-dimensional.
These waves travel away from the cylinder and a stationary state is rapidly attained; they
dissipate the energy that the forced oscillation adds.

The ‡uid is assumed to be incompressible, inviscid and irrotational, without any e¤ects of
surface tension. The motion amplitudes and velocities are small enough, so that all but
the linear terms of the free surface condition, the kinematic boundary condition on the
cylinder and the Bernoulli equation may be neglected.

Boundary Conditions

For these oscillations, the two-dimensional velocity potentials of the ‡uid have to ful…ll the
six requirements as discussed in the …rst section of this chapter:

1. Laplace equation

r2© =
@2©

@x2
+
@2©

@y2
= 0 (7.59)

2. Sea bed boundary condition
The boundary condition on the bottom in deep water is expressed by:

@©

@y
!0 for: y ! 1 (7.60)

3. Free surface boundary condition
The linearized free surface condition in deep water is expressed as follows:

@2©

@t2
¡ g ¢ @©

@y
= 0 or k©+

@©

@y
= 0

for : jxj ¸ r0 and y = 0 with: k =
!2

g
(7.61)

In the polar coordinate system, this becomes:

¡»r ¢ e® ¢ ©§ @©

@µ
= 0 for: ® ¸ 0 and µ = §¼

2
(7.62)

in which »r is the non-dimensional frequency squared:

»r =
!2

g
¢r0 (7.63)
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4. Kinematic boundary condition on the oscillating body surface
The boundary conditions for sway, heave and roll follow from the de…nition of the
velocity potential on the surface S of the oscillating cylinder (thus for ® = 0):

sway :
@©0(µ)

@n
= _x ¢ @x0

@n

heave :
@©0(µ)

@n
= _y ¢ @y0

@n

roll :
@©0(µ)

@n
= r0 _̄ ¢ @r0

@s
(7.64)

in which n is the outward normal of the cylinder surface S. Using the stream functions
ª, these boundary conditions are:

sway :
@ª0(µ)

@µ
= ¡ _x ¢ @x0

@®

heave :
@ª0(µ)

@µ
= ¡ _y ¢ @y0

@®

roll :
@ª0(µ)

@s
= ¡ _̄ ¢ @

@s

µ
r20
2

¶
(7.65)

Integration results into the following requirements for the stream functions on the
surface of the cylinder:

sway : ª0(µ) = ¡ _xr0 cos µ + C(t)
heave : ª0(µ) = ¡ _yr0 sin µ + C(t)

roll : ª0(µ) = ¡ _̄ r
2
0

2
+ C(t) (7.66)

in which C(t) is a function of the time only.

5. Radiation condition
At a large distance from the cylinder the disturbed surface of the ‡uid has to take
the form of a regular progressive outgoing gravity wave. This means that all other
(possibly present) wave systems have to tend to zero as ® tends to in…nity.

6. Symmetric or anti-symmetric condition
If, for instance for ships, both the sway and the roll motion of the ‡uid are anti-
symmetric and the heave motion is symmetrical, these velocity potentials have the
following relation:

sway : ©(2)(¡x; y) = ¡©(2)(+x; y) or ©(2)(r;¡µ) = ¡©(2)(r;+µ)
heave : ©(3)(¡x; y) = +©(3)(+x; y) or ©(3)(r;¡µ) = +©(3)(r;+µ)

roll : ©(4)(¡x; y) = ¡©(4)(+x; y) or ©(4)(r;¡µ) = ¡©(4)(r;+µ)
(7.67)

The superscript number (i) denotes the mode of the motions (direction) as explained
at the beginning of this chapter.
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Velocity Potentials and Stream Functions

Ursell assumed two types of waves were produced by the oscillating cylinder in still water:

A: Standing Wave
This wave system can be described by an in…nite number of pulsating multipoles
(pulsating source-sink combinations) along the y-axis, with velocity potentials and
stream functions denoted here by©A andªA. The amplitudes of these waves decrease
rapidly with the increasing distance from the cylinder. These waves do not dissipate
energy.

B: Regular Progressive Wave
This wave system can be described by a pulsating horizontal doublet at the
origin for the anti-symmetric sway and roll motions and a pulsating source at the
origin for the symmetric heave motion, with velocity potentials and stream functions
denoted here by ©B and ªB. These waves dissipate energy. At a distance of a
few wave lengths from the cylinder, the waves on each side can be described by a
single regular wave train. The wave amplitude at in…nity, ´a, is proportional to the
amplitude of oscillation of the cylinder xa, ya or ¯a, provided that these amplitudes
are su¢ciently small compared with the radius of the cylinder and the wave length
is not much smaller than the diameter of the cylinder.

Then, the total velocity potentials and stream functions to describe the waves generated
by the oscillating cylinder are:

j© = ©A + ©Bj
jª = ªA +ªBj (7.68)

[Ursell, 1949] found these potentials and worked this out further as outlined below.

The remainder of this section is intended primarily as a reference. The resulting pressure
on the cross section - and the path leading to it - is more important than the derivation
details.

The following set of velocity potentials ful…ll the previous requirements for swaying,
heaving and rolling circular cross sections:

©A =
g´a
¼!

Ã 1X

m=1

©
P2mÁA2m(®; µ) cos(!t)

ª
+

1X

m=1

©
Q2mÁA2m(®; µ) sin(!t)

ª
!

©B =
g´a
¼!

¡
ÁBc(®; µ) cos(!t) + ÁBs(®; µ) sin(!t)

¢

=
g´a
¼!

¡
ÁBc(x; y) cos(!t) + ÁBs(x; y) sin(!t)

¢
(7.69)

in which for sway and roll:

ÁA2m (®; µ) = +e¡(2m+1)® sin ((2m +1) µ) + »r
e¡2m® sin(2mµ)

2m

ÁBc(x; y) = ¡¼e¡ky sin(kx)
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ÁBs(x; y) = +
jxj
x
¼e¡ky cos(kx)

¡
1Z

0

jxj
x

k cos(ºy) + º sin(ºy)

º2 + k2
e¡ºjxjdº +

x

k(x2 + y2)
(7.70)

and for heave:

ÁA2m(®; µ) = +e¡2m® cos(2mµ) + »r
e¡(2m¡1)® cos ((2m¡ 1) µ)

2m¡ 1

ÁBc(x; y) = +¼e¡ky cos(kx)

ÁBs(x; y) = +¼e¡ky sin(kjxj) +
1Z

0

k sin(ºy)¡ º cos(ºy)
º2 + k2

e¡ºjxjdº (7.71)

The set of conjugate stream functions is expressed as:

ªA =
g´a
¼!

Ã 1X

m=1

©
P2mÃA2m(®; µ)cos(!t)

ª
+

1X

m=1

©
Q2mÃA2m(®; µ) sin(!t)

ª
!

ªB =
g´a
¼!

¡
ÃBc(®; µ)cos(!t) +ÃBs(®; µ) sin(!t)

¢

=
g´a
¼!

¡
ÃBc(x; y) cos(!t) + ÃBs(x; y) sin(!t)

¢
(7.72)

in which for sway and roll:

ÃA2m(®; µ) = ¡e¡(2m+1)® cos ((2m+ 1) µ)¡ »r
e¡2m® cos(2mµ)

2m

ÃBc(x; y) = +¼e¡ky cos(kx)

ÃBs(x; y) = +¼e¡ky sin(kjxj)

+

1Z

0

k sin(ºy)¡ º cos(ºy)
º2+ k2

e¡ºjxjdº ¡ y

k(x2 + y2)
(7.73)

and for heave:

ÃA2m(®; µ) = +e¡2m® sin(2mµ) + »r
e¡(2m¡1)® sin ((2m ¡ 1) µ)

2m¡ 1

ÃBc = +¼e¡ky sin(kx)

ÃBs = ¡¼e¡ky jxj
x
cos(kx) +

1Z

0

k cos(ºy) + º sin(ºy)

º2 + k2
e¡ºjxjdº (7.74)

The standing wave (A) is de…ned in a polar coordinate system, while the regular progressive
wave (B) is de…ned in the (x; y) coordinate system. The wave number, k, in the latter one
is related to the frequency of oscillation, !, by the dispersion relation in deep water:
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k = !2=g. The variable º has the dimension of the wave number k; it is not the kinematic
viscosity here.
Notice the symmetric and anti-symmetric relations in the set of velocity potentials and
stream functions.
The unknowns P2m and Q2m in these equations have to be found; they follow from the
boundary conditions in the ‡uid.

Solution

The stream functions for sway, heave and roll on the surface of the cylinder (® = 0)
reduce to:

ª0(µ) =
g´a
¼!

(Ã
ÃB0c(µ) +

1X

m=1

©
P2mÃA02m(µ)

ª
!
cos(!t)

+

Ã
ÃB0s(µ) +

1X

m=1

©
Q2mÃA02m(µ)

ª
!
sin(!t)

)
(7.75)

in which:

for sway and roll : ÃA02m(µ) = cos ((2m+ 1)µ) + »r
cos(2mµ)

2m

for heave : ÃA02m(µ) = sin(2mµ) + »r
sin ((2m ¡ 1)µ)

2m¡ 1 (7.76)

where ÃB0c(µ) and ÃB0s(µ) are the values of ÃBc(®; µ) and ÃBs(®; µ) at the surface of the
cylinder and »r is the non-dimensional frequency of oscillation squared.
These expressions for the stream functions should be equal to the stream functions that
satisfy the kinematic boundary conditions on the surface of the oscillating cylinder, given
in equations 7.66. Doing this makes it possible to determine the values for the P2m and
Q2m series of values as well as the amplitude ratios xa=´a, ya=´a and ¯a=k´a and the phase
shifts ", ± and °.

Once the P2m and Q2m series of values have been found, the velocity potentials for
sway, heave and roll can be determined, too:

©0(µ) =
g´a
¼!

(Ã
ÁB0c(µ) +

1X

m=1

©
P2mÁA02m(µ)

ª
!
cos(!t)

+

Ã
ÁB0s(µ) +

1X

m=1

©
Q2mÁA02m(µ)

ª
!
sin(!t)

)
(7.77)

in which:

for sway and roll : ÁA02m(µ) = sin ((2m +1)µ) + »r
sin(2mµ)

2m

for heave : ÁA02m(µ) = cos(2mµ) + »r
cos ((2m¡ 1)µ)

2m¡ 1 (7.78)
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Hydrodynamic Pressure

With known velocity potentials, the hydrodynamic pressure on the surface of the cylinder
can be obtained from the linearized Bernoulli equation 7.13:

p(µ) = ¡½@©0(µ)
@t

=
¡½g´a
¼

(Ã
ÁB0s(µ) +

1X

m=1

©
Q2mÁA02m(µ)

ª
!
cos(!t)

¡
Ã
ÁB0c(µ) +

1X

m=1

©
P2mÁA02m(µ)

ª
!
sin(!t)

)
(7.79)

where ÁB0c(µ) and ÁB0s(µ) are the values of ÁBc(®; µ) and ÁBs(®; µ) at the surface of the
cylinder.
It is obvious that the pressures for sway and roll are skew-symmetric in µ, thus p(¡µ) =
¡p(+µ), and symmetric in µ for heave, thus: p(¡µ) = p(+µ).

Hydrodynamic Loads

The two-dimensional hydrodynamic sway and heave force and roll moment can be obtained
from integrations of these pressures over the contour, C0 at r = r0, of the circular cross
section. When switching to polar coordinates, derivatives with respect to µ have to be
used:

dx0
dµ

= +r0 cos µ and
dy0
dµ

= ¡r0 sin µ (7.80)

With these, the loads can be expressed in terms of potential mass and damping, as equations
7.81, 7.82 and 7.83 show. A comparison of the in-phase terms (cos(!t)) in each of these
equations provides the potential mass coe¢cients, while a comparison of the out-of-phase
terms (sin(!t)) the potential damping coe¢cients provides.

Fx
0 =

Z

C0

p(µ)dy0 = 2

1
2 ¼Z

0

p(µ)
dy0
dµ
dµ

8
><
>:
= ¡2r0

1
2 ¼Z

0

p(µ) sin µ dµ (for this circular cylinder)

9
>=
>;

= ¡M22
0 ¢ Äx ¡N22 0 ¢ _x (for a swaying cylinder)

= ¡M24
0 ¢ Ǟ ¡N24 0 ¢ _̄ (for a rolling cylinder) (7.81)

Fy
0 = ¡

Z

C0

p(µ)dx0 = ¡2

1
2¼Z

0

p(µ)
dx0
dµ
dµ

8
><
>:
= ¡2r0

1
2 ¼Z

0

p(µ) cos µ dµ (for this circular cylinder)

9
>=
>;
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= ¡M33
0 ¢ Äy ¡N330 ¢ _y (for a heaving cylinder) (7.82)

MR
0 = ¡

Z

C0

p(µ)x0dx0 ¡
Z

C0

p(µ)y0dy0

= ¡2

1
2¼Z

0

p(µ)

µ
x0
dx0
dµ

+ y0
dy0
dµ

¶
dµ

8
><
>:
= ¡2r02

1
2¼Z

0

p(µ)(sin µ cos µ¡ sin µ cos µ) dµ = 0 (for this circular cylinder)

9
>=
>;

= ¡M42
0 ¢ Äx ¡N42 0 ¢ _x (for a swaying cylinder)

= ¡M44
0 ¢ Ǟ ¡N44 0 ¢ _̄ (for a rolling cylinder) (7.83)

with:

M22
0 = 2-D hydrodynamic mass coe¢cient of sway

N22
0 = 2-D hydrodynamic damping coe¢cient of sway

M42
0 = 2-D hydrodynamic mass coupling coe¢cient of sway into roll

N42
0 = 2-D hydrodynamic damping coupling coe¢cient of sway into roll

M33
0 = 2-D hydrodynamic mass coe¢cient of heave

N33
0 = 2-D hydrodynamic damping coe¢cient of heave

M24
0 = 2-D hydrodynamic mass coupling coe¢cient of roll into sway

N24
0 = 2-D hydrodynamic damping coupling coe¢cient of roll into sway

M44
0 = 2-D hydrodynamic mass moment of inertia coe¢cient of roll

N44
0 = 2-D hydrodynamic damping coe¢cient of roll

7.3.2 Conformal Mapping

Ursell’s derivation is valid only for a circular cross section. Since few ships have this shape,
a method is needed to transform realistic shapes so that ”it looks like” a circular cylinder
in Ursell’s method.

More or less arbitrary, but still symmetrical, cross sections can be mapped conformal to a
unit circle. The general transformation formula to do this is given by:

¯̄
¯̄
¯z = Ms

NX

n=0

n
a2n¡1³

¡(2n¡1)
o¯̄
¯̄
¯ (7.84)

with:

z = x + iy = speci…es the ship’s cross section shape (…gure 7.4-b)
³ = ie®e¡iµ = speci…es the circular cross section shape (…gure 7.4-a)
Ms = scale factor
a¡1 = +1
a2n¡1 = conformal mapping coe¢cients (n = 1; :::; N )
N = number of parameters used
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Equation 7.84 is valid only for cross sections which pass through the still water level. It will
not work for fully submerged cross sections, like those of a bulbous bow or a submarine.
Those sections have to be treated by other methods.

Figure 7.4: Mapping Relation between Two Planes

Equation 7.84 yields the relation between the coordinates in the z-plane (of the ship’s cross
section) and the variables in the ³-plane (of the circular cross section):

¯̄
¯̄
¯x = ¡Ms

NX

n=0

f(¡1)na2n¡1e¡(2n¡1)® sin ((2n¡ 1)µ)g
¯̄
¯̄
¯

¯̄
¯̄
¯y = +Ms

NX

n=0

f(¡1)na2n¡1e¡(2n¡1)® cos ((2n¡ 1)µ)g
¯̄
¯̄
¯ (7.85)

® = 0 in Ursell’s solution corresponds to the contour of his circular cross section. Similarly,
the contour of the ship’s cross section follows from putting ® = 0 in the above equation,
yielding:

x0 = ¡Ms

NX

n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g

y0 = +Ms

NX

n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g (7.86)

The breadth on the waterline and the draft of the conformal mapped approximation of the
actual cross section are given by:

b0 = 2Ms¸b = Bs with: ¸b =
NX

n=0

a2n¡1

so that : Ms =
Bs
2¸b

d0 = Ms¸d = Ds with: ¸d =
NX

n=0

f(¡1)na2n¡1g

so that : Ms =
Ds
¸d

(7.87)
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Lewis Conformal Mapping

A very simple and in a lot of cases also a more or less realistic transformation of the cross
section can be obtained with N = 2 in the transformation formula (7.84). This yields the
well known Lewis transformation (see [Lewis, 1929]).
The contour of this so-called Lewis form is expressed by:

x0 = Ms ¢ ((1 + a1) sin µ¡ a3 sin 3µ)
y0 = Ms ¢ ((1¡ a1)cos µ + a3 cos3µ) (7.88)

with the scale factor:

Ms =
Bs=2

1 + a1 + a3
or: Ms =

Ds
1¡ a1 + a3

(7.89)

and:

b0 = Bs = sectional breadth on the water line
d0 =Ds = sectional draft

Now the coe¢cients a1 and a3 and the scale factorMs can be determined in such a way that
the sectional breadth, draft and area of the approximate cross section and of the actual
ship cross section are identical.
The half breadth to draft ratio H0 is given by:

H0 =
Bs=2

Ds
=
1 + a1+ a3
1 ¡ a1 + a3

(7.90)

An integration of the Lewis form delivers the sectional area coe¢cient ¾s:

¾s =
As
BsDs

=
¼

4
¢ 1¡ a12 ¡ 3a32
(1 + a3)2 ¡ a12

(7.91)

in which As is the area of the cross section.
Putting a1, derived from the expression forH0, into the expression for ¾s yields a quadratic
equation in a3:

c1a3
2 + c2a3+ c3 = 0 (7.92)

in which:

c1 = 3 +
4¾s
¼
+

µ
1¡ 4¾s

¼

¶
¢
µ
H0 ¡ 1
H0 +1

¶2

c2 = 2c1 ¡ 6
c3 = c1 ¡ 4 (7.93)

The (valid) solutions for a3 and a1 become:

a3 =
¡c1 + 3+

p
9 ¡ 2c1

c1

a1 =
H0 ¡ 1
H0 + 1

¢ (a3 + 1) (7.94)
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Figure 7.5: Typical Lewis Forms

Lewis forms with the solution a3 =
¡¡c1 + 3¡ p

9¡ 2c1
¢
=c1 - with a minus sign before

the square root - are looped; they intersect themselves somewhere in the fourth quadrant.
Since ship shapes are ”better behaved”, these solutions are not considered here.
It is obvious that a transformation of a half immersed circle with radius R will result in
Ms = R, a1 = 0 and a3 = 0.
Some typical and realistic Lewis forms are presented in …gure 7.5.
In some cases the Lewis transformation can give more or less ridiculous results. The ranges
of the half breadth to draft ratio H0 and the area coe¢cient ¾s for the di¤erent typical
Lewis forms are shown in …gure 7.6.
The re-entrant and the asymmetric forms are not acceptable; conventional, bulbous and
tunneled forms are considered to be valid here. Then, the area coe¢cient ¾s is bounded by
a lower limit to omit re-entrant Lewis forms and by an upper limit to omit non-symmetric
Lewis forms:

for H0 · 1:0 :
3¼

32
(2¡H0) < ¾s <

¼

32

µ
10 +H0 +

1

H0

¶

for H0 ¸ 1:0 :
3¼

32

µ
2¡ 1

H0

¶
< ¾s <

¼

32

µ
10 +H0 +

1

H0

¶
(7.95)

If a value of ¾s is outside this range, it has to be set to the value at the nearest border of
this range, in order to calculate the (best possible) Lewis coe¢cients.
Numerical problems with bulbous or shallow cross sections can be avoided by the require-
ment: 0:01 < H0 < 100:0.

Close-Fit Conformal Mapping

A more accurate transformation of the cross section can be obtained by using a greater
number of parameters N . The scale factor Ms and the conformal mapping coe¢cients
a2n¡1, with a maximum value of n varying from N=2 until N=10, can be determined
successfully from the o¤sets of a cross section in such a manner that the mean squares of
the deviations of the actual cross section from the approximate cross section is minimized.
A very simple and direct iterative least squares method to determine the Close-Fit con-
formal mapping coe¢cients is given by [Journée, 1992]. The procedure starts with initial
values for [Ms ¢ a2n¡1]. The initial values of Ms, a1 and a3 are obtained with the Lewis
method, while the initial values of a5 until a2N¡1 are set to zero. With these [Ms ¢ a2n¡1]
values, a µi-value is determined for each o¤set in such a manner that the actual o¤set
(xi; yi) lies on the normal to the approximate contour of the cross section in (x0i; y0i). Now
µi has to be determined. Therefore a function F (µi) will be de…ned by the distance from
the o¤set (xi; yi) to the normal of the contour to the actual cross section through (x0i; y0i),
see …gure 7.7.
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Figure 7.6: Ranges of Lewis Parameters

These o¤sets have to be selected at approximately equal mutual circumferential lengths,
eventually with somewhat more dense o¤sets near sharp corners. Then ®i is de…ned by:

cos®i =
+xi+1¡ xi¡1p

(xi+1 ¡ xi¡1)2 + (yi+1 ¡ yi¡1)2

sin®i =
¡yi+1 + yi¡1p

(xi+1 ¡ xi¡1)2 + (yi+1 ¡ yi¡1)2
(7.96)

With this µi-value, the numerical value of the square of the deviation of (xi; yi) from
(x0i; y0i) is calculated:

jei = (xi ¡ x0i)2 + (yi ¡ y0i)2j (7.97)

After doing this for all I+1 o¤sets, the numerical value of he sum of the squares of the
deviations is known: ¯̄

¯̄
¯E =

IX

i=0

feig
¯̄
¯̄
¯ (7.98)

The sum of the squares of these deviations can also be expressed as:

E =
IX

i=0

Ã
xi +

NX

n=0

(¡1)n[Ms ¢ a2n¡1] sin ((2n¡ 1)µi)
!2

+
IX

i=0

Ã
yi ¡

NX

n=0

(¡1)n[Ms ¢ a2n¡1] cos ((2n¡ 1)µi)
!2

(7.99)



7.3. 2-D POTENTIAL THEORY 7-25

Figure 7.7: Close-Fit Conformal Mapping De…nitions

Then new values of [Ms ¢ a2n¡1] have to be obtained in such a manner that E is minimized.
This means that each of the derivatives of this equation with respect to each coe¢cient
[Ms ¢ a2n¡1] is zero, so:

¯̄
¯̄ @E

@fMsa2j¡1g
= 0

¯̄
¯̄ for: j = 0; :::N (7.100)

This yields N+1 equations:
NX

n=0

(
(¡1)n[Ms ¢ a2n¡1]

IX

i=0

cos((2j ¡ 2n)µi)
)

=
IX

i=0

f¡xi sin ((2j ¡ 1)µi) + yi cos ((2j ¡ 1)µi)g

for: j = 0; :::N (7.101)

To obtain the exact breadth and draft, the last two equations are replaced by the equations
for the breadth at the waterline and the draft:

NX

n=0

(
(¡1)n[Ms ¢ a2n¡1]

IX

i=0

cos((2j ¡ 2n)µi)
)

=
IX

i=0

f¡xi sin ((2j ¡ 1)µi) + yi cos ((2j ¡ 1)µi)g

for: j = 0; :::N ¡ 2
NX

n=0

f [Ms ¢ a2n¡1]g = Bs=2 j = N ¡ 1

NX

n=0

f (¡1)n[Ms ¢ a2n¡1]g = Ds j = N (7.102)
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These N+1 equations can be solved numerically so that new values for [Ms ¢ a2n¡1] will be
obtained. These new values are used instead of the initial values to obtain new µi-values
of the I+1 o¤sets again, etc. This procedure is repeated several times and stops when
the di¤erence between the numerical E-values of two subsequent calculations becomes less
than a certain threshold value, depending on the dimensions of the cross section. Because
a¡1 = +1 the scale factor Ms is equal to the …nal solution of the …rst coe¢cient (n=0).
The N other coe¢cients a2n¡1 can be found by dividing the …nal solutions of [Ms ¢ a2n¡1]
by this Ms-value.
Attention has to be paid to divergence in the calculation routines and re-entrant forms. In
these cases the number N will be increased until the divergence or re-entrance vanish. In
the worst case a ”maximum” value of N will be attained without success. One can then
switch to Lewis coe¢cients with an area coe¢cient of the cross section set to the nearest
border of the valid Lewis coe¢cient area.

Comparison

An example of conformal mapping results is given here for the amidships cross section
of a container vessel, with a breadth of 25.40 meter and a draft of 9.00 meter. For the
least squares method in the conformal mapping method, 33 new o¤sets at equidistant
length intervals on the contour of this cross section can be determined by a second degree
interpolation routine. The calculated data of the two-parameter Lewis and the N-parameter
Close-Fit conformal mapping of this amidships cross section are given in the table below.
The last line lists the RMS-values for the deviations of the 33 equidistant points on the
approximate contour of this cross section.

Le w is
Con form al N-Param eter C lose Fit Conform al Map ping

M ap ping

N (¡) 2 2 3 4 5 6 7 8 9 10
2N -1 (¡) 3 3 5 7 9 11 13 15 17 19

Ms (m) 12 .2400 12 .2457 12 .2841 12 .3193 12 .3186 12.3183 12 .3191 12.3190 12 .3195 12 .3194

a¡1 (¡) +1 .0000 +1.0000 + 1.0000 +1.0000 +1.0000 + 1.0000 +1.0000 + 1.0000 +1.0000 + 1.0000
a1 (¡) +0 .1511 +0.1511 + 0.1640 +0.1634 +0.1631 + 0.1633 +0.1633 + 0.1632 +0.1632 + 0.1632
a3 (¡) -0 .1136 -0 .1140 -0 .1167 -0 .1245 -0 .1246 - 0.1243 -0 .1244 - 0.1245 -0 .1245 - 0 .1245
a5 (¡) -0 .0134 -0 .0133 -0 .0105 - 0.0108 -0 .0108 - 0.0108 -0 .0107 - 0 .0107
a7 (¡) +0 .0053 +0.0054 + 0.0031 +0.0030 + 0.0032 +0.0031 + 0.0030
a9 (¡) -0 .0024 - 0.0023 -0 .0024 - 0.0026 -0 .0029 - 0 .0029
a11 (¡) + 0.0021 +0.0022 + 0.0012 +0.0014 + 0.0015
a13 (¡) +0 .0002 + 0.0002 +0.0021 + 0.0020
a15 (¡) + 0.0009 +0.0007 + 0.0000
a17 (¡) -0 .0016 - 0 .0015
a19 (¡) + 0 .0006

RM S (m) 0 .181 0 .180 0 .076 0 .039 0 .027 0 .019 0 .018 0 .017 0 .009 0.008

Figure 7.8 shows the di¤erences between a Lewis transformation and a 10-parameter close-
…t conformal mapping of a rectangular cross section with a breadth of 20.00 meters and a
draft of 10.00 meters.

7.3.3 Theory of Tasai

The approach of [Ursell, 1949] is valid for circular cross sections. [Tasai, 1959] (but others
too) used Ursell’s approach and a conformal mapping method to obtain 2-D potential
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Figure 7.8: Lewis and Close-Fit Conformal Mapping of a Rectangle

coe¢cients for an in…nitely long cylinder with ship-like cross sections, swaying, heaving
and rolling in the surface of a ‡uid. Its cross sections are given in …gure 7.9.

Figure 7.9: Axis System and Form used by Tasai

This represents an attempt to bring a more realistic ship form into an Ursell-like compu-
tation. The development followed here is very much like that used by Ursell.

Again, the ‡uid is assumed to be incompressible, inviscid and irrotational, without any
e¤ects of surface tension. The motion amplitudes and velocities are small enough, so that
all but the linear terms of the free surface condition, the kinematic boundary condition on
the cylinder and the Bernoulli equation may be neglected.

Boundary Conditions

Conformal mapping requires that two boundary conditions of Ursell be rewritten:
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² Free surface boundary condition
The free surface condition becomes:

»b
¸b
©

NX

n=0

©
(2n¡ 1)a2n¡1e¡(2n¡1)®

ª
§ @©

@µ
= 0

for : ® ¸ 0 and µ = §¼
2

(7.103)

in which:
»b
¸b
=
!2

g
Ms or: »b =

!2b0
2g

(non-dimensional frequency squared) (7.104)

² Kinematic boundary condition on the oscillating body surface
Conformal mapping results in the following requirements for the stream function on
the surface of the cylinder:

for sway : ª0(µ) = _xMs

NX

n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g + C(t)

for heave : ª0(µ) = _yMs

NX

n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g + C(t)

for roll : ª0(µ) = ¡ _̄ b
2
0

8¸b

(
+

NX

n=0

(¡1)na2n¡1 sin ((2n¡ 1)µ)
)2

(7.105)

¡ _̄ b
2
0

8¸b

(
¡

NX

n=0

(¡1)na2n¡1 cos ((2n¡ 1)µ)
)2

+ C(t)

in which C(t) is a function of the time only.

Velocity Potentials and Stream Functions

The velocity potentials and stream functions in the ‡uid for sway and roll become:

ÁA2m(®; µ) = +e¡(2m+1)® sin ((2m+ 1)µ)

¡ »b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+2n

a2n¡1e
¡(2m+2n)® sin ((2m+ 2n)µ)

ÃA2m(®; µ) = ¡e¡(2m+1)® cos ((2m+ 1)µ) (7.106)

+
»b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m +2n

a2n¡1e
¡(2m+2n)® cos ((2m +2n)µ)

and for heave:

ÁA2m (®; µ) = +e¡2m® cos(2mµ)

¡ »b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+ 2n¡ 1a2n¡1e

¡(2m+2n¡1)® cos ((2m+ 2n¡ 1)µ)

ÃA2m (®; µ) = +e¡2m® sin(2mµ) (7.107)

¡ »b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+ 2n¡ 1a2n¡1e

¡(2m+2n¡1)® sin ((2m +2n¡ 1)µ)
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Solution

The velocity potentials and stream functions for sway and roll on the surface of the cylinder,
® = 0, reduce to:

ÁA02m(µ) = sin ((2m +1)µ)

¡»b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+ 2n

a2n¡1 sin ((2m +2n)µ)

ÃA02m(µ) = cos ((2m+ 1)µ)

¡»b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+ 2n

a2n¡1 cos ((2m+ 2n)µ) (7.108)

and for heave to:

ÁA02m(µ) = cos(2mµ)

¡ »b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+2n¡ 1a2n¡1 cos((2m +2n¡ 1)µ)

ÃA02m(µ) = sin(2mµ)

¡ »b
¸b

NX

n=0

(¡1)n 2n¡ 1
2m+2n¡ 1a2n¡1 sin ((2m+ 2n¡ 1)µ) (7.109)

Again, the resulting pressure on the cross section - and the path leading to it - is more
important than the derivation details.

Hydrodynamic Pressure

With known velocity potentials, the hydrodynamic pressure on the surface of the cylinder
can be obtained from the linearized Bernoulli equation:

p(µ) = ¡½@©0(µ)
@t

=
¡½g´a
¼

Ã
ÁB0s(µ) +

1X

m=1

Q2mÁA02m(µ)

!
cos(!t)

¡½g´a
¼

Ã
ÁB0c(µ) +

1X

m=1

P2mÁA02m(µ)

!
sin(!t) (7.110)

The pressures for sway and roll are still skew-symmetric in µ and for heave still symmetric
in µ.

Hydrodynamic Loads

The two-dimensional hydrodynamic sway and heave force and roll moment can be obtained
from integrations of these pressures over the contour, r = r0, of the circular cross section.
When switching to polar coordinates, derivatives with respect to µ has to be used:

dx0
dµ

= ¡Ms

NX

n=0

(¡1)n(2n¡ 1)a2n¡1 cos ((2n¡ 1)µ)
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dy0
dµ

= ¡Ms

NX

n=0

(¡1)n(2n¡ 1)a2n¡1 sin ((2n¡ 1)µ) (7.111)

With these, the loads can be expressed in terms of potential mass and damping terms and
a comparison of the in-phase and out-of-phase terms delivers the potential coe¢cients.

Fx
0 =

Z

C0

p(µ)dy0 = 2

1
2¼Z

0

p(µ)
dy0
dµ
dµ

= ¡M22
0 ¢ Äx ¡N220 ¢ _x (for a swaying cylinder)

= ¡M24
0 ¢ Ǟ ¡N240 ¢ _̄ (for a rolling cylinder)

Fy
0 = ¡

Z

C0

p(µ)dx0 = ¡2

1
2¼Z

0

p(µ)
dx0
dµ
dµ

= ¡M33
0 ¢ Äy ¡N33 0 ¢ _y (for a heaving cylinder)

MR
0 = ¡

Z

C0

p(µ)x0dx0 ¡
Z

C0

p(µ)y0dy0 = ¡2

1
2¼Z

0

p(µ)

µ
x0
dx0
dµ

+ y0
dy0
dµ

¶
dµ

= ¡M42
0 ¢ Äx ¡N420 ¢ _x (for a swaying cylinder)

= ¡M44
0 ¢ Ǟ ¡N440 ¢ _̄ (for a rolling cylinder) (7.112)

Thus, comparisons of the in-phase and out-of-phase parts of these expressions for sway,
heave and roll deliver the 2-D potential coe¢cients of this approximate cross section. Notice
that, in contradiction with the case of Ursell’s rolling circular cross section, the roll moment
MR

0 is not zero here.

7.3.4 Theory of Frank

As a consequence of conformal mapping to the unit circle, the cross sections need to have
a certain breadth at the water surface; x = r0 ¢ e®. Fully submersed cross sections, such
as at the bulbous bow, cannot be mapped. Mapping problems can also appear for cross
sections outside the area coe¢cients range 0:5 < ¾s < 1:0. These cases require another
approach, which is discussed here.
[Frank, 1967] considered an actual cross section of a ship. He used a non-circular cylin-
der, whose cross section is a simply connected region, which is fully or partly immersed
horizontally in a previously undisturbed ‡uid of in…nite depth; see …gure 7.10.
The x-axis coincides with the undisturbed free surface and the y-axis is positive upwards.
The cross sectional contour C0 of the submerged portion of the cylinder lies in the lower
half plane and the y-axis is the axis of symmetry of C0.
The cylinder is forced to carry out a simple harmonic motionA(m)¢cos(!t) with a prescribed
frequency of oscillation !. The superscript (m) (as used by Frank and maintained here) may
take on the values 2, 3 and 4, denoting swaying, heaving and rolling motions, respectively,
as explained earlier. It is assumed that steady state conditions have been attained.
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Figure 7.10: Axes System and Notation, as Used by Frank

Again, the ‡uid is assumed to be incompressible, inviscid and irrotational, without any
e¤ects of surface tension. The motion amplitudes and velocities are small enough, so that
all but the linear terms of the free surface condition, the kinematic boundary condition on
the cylinder and the Bernoulli equation may be neglected.

Boundary Conditions

A velocity potential has to be found:

¯̄
¯©(m)(x; y; t) = <e

n
Á(m)(x; y) ¢ e¡i!t

o¯̄
¯ (7.113)

satisfying the six conditions as discussed in the …rst section of this chapter:

1. Laplace equation
The equation of Laplace is now:

r2©(m) =
@2©(m)

@x2
+
@2©(m)

@y2
= 0 (7.114)

2. Sea bed boundary condition
For deep water, the boundary condition on the bottom is expressed by:

@©(m)

@y
!0 for: y ! ¡1 (7.115)

3. Free surface boundary condition
The linearized free surface condition outside the cylinder in deep water is expressed
as follows:

@2©(m)

@t2
+ g

@©(m)

@y
= 0 for: y = 0 (7.116)

in which g is the acceleration of gravity.

4. Kinematic boundary condition on the oscillating body surface
The normal velocity component of the ‡uid at the surface of the oscillating cylinder
is equal to the normal component of the forced velocity of the cylinder. If vn is the
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component of the forced velocity of the cylinder in the direction of the outgoing unit
normal vector n, then the kinematic boundary condition has to be satis…ed at the
mean position of the cylindrical surface:

~n ¢ ~r©(m) = vn (7.117)

5. Radiation condition
At a large distance from the cylinder the disturbed surface of the ‡uid has to take
the form of a regular progressive outgoing gravity wave.

6. Symmetric or anti-symmetric condition
Because both the sway and the roll motion are anti-symmetric and the heave motion
is symmetrical, these velocity potentials have the following relation:

sway : ©(2)(¡x; y) = ¡©(2)(+x; y)
heave : ©(3)(¡x; y) = +©(3)(+x; y)

roll : ©(4)(¡x; y) = ¡©(4)(+x; y) (7.118)

Velocity Potentials

A potential function, based on pulsating point-sources and satisfying these six conditions,
has been given by [Frank, 1967]. Based on earlier work of [Wehausen and Laitone, 1960],
the complex potential at z of a pulsating point-source of unit strength at the point ³ in
the lower half plane, as shown in …gure 7.10, was given by Frank as:

G¤(z; ³; t) =
1

2¼

8
<
:ln(z ¡ ³)¡ ln(z ¡b³) + 2PV

1Z

0

e¡ik(z¡b³)

º ¡ k dk

9
=
; ¢ cos!t

¡
n
e¡iº(z¡

b³)
o

¢ sin!t (7.119)

where:

z = x+ iy ³ = » + i´ b³ = » ¡ i´ (7.120)

In here, ³ is de…ned in the lower half plane and b³ in the upper half plane (mirrored), while

º = !2=g is the wave number in deep water and PV
1R
0

e¡ik(z¡b³)
º¡k dk is a principle value

integral with a variable k. These somewhat unconventional notations come from Frank’s
report and are maintained here.
With this, the real part of the point-source potential is de…ned by:

H(x; y; »; ´; t) = <e fG¤(z; ³; t)g (7.121)

The space and time dependent source potential term, G¤(z; ³; t), is now written in terms of
a separate space dependent potential, G(z; ³), multiplied by an oscillatory motion, e¡i!t:

G¤(z; ³; t) = G(z; ³) ¢ e¡i!t (7.122)
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With this space dependent potential:

G(z; ³) =
1

2¼
¢ <e

8
<
:ln(z ¡ ³)¡ ln(z ¡b³) + 2

1Z

0

e¡ik(z¡b³)

º ¡ k dk

9
=
;

¡i¢ <e
n
e¡iº(z¡

b³)
o

(7.123)

two expressions for the point-source potential, satisfying all six boundary conditions, are
found:

H (x; y; »; ´;t ) = <e©
G(z; ³) ¢ e¡i!tª

H(x; y; »; ´; t¡ ¼

2!
) = <e

©
i ¢G(z; ³) ¢ e¡i!t

ª
(7.124)

Since the problem is linear, a superposition of these two valid expressions for the point-
source potential H results in the velocity potential:

¯̄
¯̄
¯̄©(m)(x; y; t) = <e

8
<
:

Z

C0

Q(s) ¢G(z; ³) ¢ e¡i!t ¢ ds

9
=
;

¯̄
¯̄
¯̄ (7.125)

where C0 is the submerged contour of the cylindrical cross section at its mean or rest
position and Q(s) represents the complex source density as a function of the position along
C0.
Application of the kinematic boundary condition on the oscillating cylinder at z yields:

<e

8
<
:(~n ¢ ~r)

Z

C0

Q(s) ¢G(z; ³) ¢ ds

9
=
; = 0

=m

8
<
:(~n ¢ ~r)

Z

C0

Q(s) ¢G(z; ³) ¢ ds

9
=
; = A(m) ¢ ! ¢ n(m) (7.126)

where A(m) denotes the amplitude of oscillation and n(m) the direction cosine of the normal
velocity at z on the cylinder. Both A(m) and n(m) depend on the mode of motion of the
cylinder, as will be shown below.
The fact that Q(s) is complex implies that the last two equations represent a set of coupled
integral equations for the real functions <efQ(s)g and =mfQ(s)g. Frank describes the
evaluation of the integrals in his report; special attention is focussed there on the singularity
for z = ³ and k = º.

Solution

Select N + 1 points (»i; ´i) which lie on C0 in the fourth quadrant. Connect these N +1
points by successive straight lines. N straight line segments are obtained which, together
with their re‡ected images in the third quadrant, yield an approximation to the given
contour as shown in …gure 7.10. The coordinates, length and angle associated with the
j-th segment are identi…ed by the subscript j, whereas the corresponding quantities for the
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re‡ected image in the third quadrant are denoted by the subscript ¡j, so that by symmetry
»¡j = ¡»j and ´¡j = ¡´j for 1 · j · N + 1.
Potentials and pressures are to be evaluated at the midpoint of each segment and for
1 · i · N the coordinates of the midpoint of the i-th segment are:

xi =
»i + »i+1

2
and yi =

´i + ´i+1
2

(7.127)

The length of the i-th segment and the angle between by this segment and the positive x
axis are:

jsij =
q¡
»i+1 ¡ »i

¢2
+

¡
´i+1 ¡ ´i

¢2
®i = arctan

½
´i+1¡ ´ i
»i+1¡ »i

¾
(7.128)

The outgoing unit vector normal to the cross section at the i-th midpoint (xi; yi) is:

~ni =~i sin®i ¡ ~j cos®i (7.129)

where ~i and ~j are unit vectors in the x- and y-directions, respectively.

The cylinder is forced into a simple harmonic motion with radian frequency !, according
to the displacement equation:

S(m) = A(m) ¢ cos!t (7.130)

for m = 2, 3 or 4, corresponding to sway, heave or roll, respectively. The rolling motions
are about an axis through a point (0; y0) in the symmetry plane of the cylinder.
In the translational modes, any point on the cylinder moves with the velocity:

sway: ~v(2) = ¡~i A(2)! sin!t
heave: ~v(3) = ¡~j A(3)! sin!t (7.131)

The rolling motion is illustrated in …gure 7.10. Considering a point (xi; yi) on C0, an
inspection of this …gure yields:

Ri =

q
xi2 + (yi ¡ y0)2 and µi = arctan

½
yi ¡ y0
xi

¾

= arcsin

½
yi ¡ y0
Ri

¾

= arccos

½
xi
Ri

¾
(7.132)

Therefore, by elementary two-dimensional kinematics, the unit vector in the direction µ is:

~¿ i = ¡~i sin µi + ~j cos µi
= ¡yi ¡ y0

Ri
~i +

xi
Ri
~j (7.133)

so that:

roll: ~v(4) = RiS
(4)~¿ i

= !A(4)
n
(yi ¡ y0)~i¡ xi~j

o
sin!t (7.134)
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The normal components of the velocity vi(m) = ~ni ¢~v (m) at the midpoint of the i-th segment
(xi; yi) are:

sway: vi
(2) = ¡!A(2) sin ®i sin !t

heave: vi
(3) = +!A(3) cos®i sin!t

roll: vi
(4) = +!A(4) f(yi ¡ y0) sin ®i + xi cos®ig sin!t (7.135)

De…ning:

ni
(m) =

vi
(m)

A(m)! sin!t
(7.136)

then, consistent with the previously mentioned notation, the direction cosines for the three
modes of motion are:

sway: ni
(2) = + sin ®i

heave: ni(3) = ¡ cos®i
roll: ni

(4) = + (yi ¡ y0) sin®i + xi cos®i (7.137)

These equations illustrate that heaving is symmetrical: n¡i(3) = ni(3). Swaying and rolling,
however are antisymmetric modes: n¡i(2) = ¡ni(2) and n¡i(4) = ¡ni(4).
The set of two coupled integral equations for the real functions <efQ(s)g and =mfQ(s)g,
given before, are applied at the midpoints of each of the N segments. It is assumed that
over an individual segment the complex source strength Q(s) remains constant, although
it varies from segment to segment. With these stipulations, the set of coupled integral
equations becomes a set of 2N linear algebraic equations in the unknowns:

<e
©
Q(m) ¢ (sj)

ª
= Qj

(m)

=m
©
Q(m) ¢ (sj)

ª
= QN+j

(m) (7.138)

Thus, for i = 1, 2, ....., N :

+
NX

j=1

n
Qj

(m) ¢ Iij(m)
o
+

NX

j=1

n
QN+j

(m) ¢ Jij(m)
o
= 0

¡
NX

j=1

n
Qj

(m) ¢ Jij(m)
o
+

NX

j=1

n
QN+j

(m) ¢ Iij(m)
o
= ! ¢ A(m) ¢ ni(m) (7.139)

where the superscript (m) in these 2N2 equations denotes the mode of motion.
The in‡uence coe¢cients Iij(m) and Jij(m) and the potential ©(m)(xi; yi; t) have been eval-
uated by [Frank, 1967]. The resulting velocity potential consists of a term in-phase with
the displacement and a term in-phase with the velocity.
The hydrodynamic pressure at (xi; yi) along the cylinder is obtained from the velocity
potential by means of the linearized Bernoulli equation:

p(m)(xi; yi; !; t) = ¡½ ¢ @©
(m)

@t
(xi; yi; !; t) (7.140)

Since:

p(m)(xi; yi; !; t) = pa
(m)(xi; yi;!) ¢ cos!t

+pv
(m)(xi; yi;!) ¢ sin!t (7.141)
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where pa(m) and pv(m) are the hydrodynamic pressures in-phase with the displacement and
in-phase with the velocity, respectively.
As indicated by the previous expressions, the potential as well as the pressure is a function
of the oscillation frequency !. The hydrodynamic force or moment per unit length of
the cylinder, necessary to sustain the oscillations, is the integral of p(m) ¢ n(m) over the
submerged contour of the cross section C0. It is assumed that the pressure at the i-th
midpoint is the mean pressure for the i-th segment, so that the integration reduces to a
summation, so that:

¯̄
¯̄
¯M

(m)(!) = 2
NX

i=1

pa(m)(xi; yi;!) ¢ ni(m) ¢ jsij
¯̄
¯̄
¯

¯̄
¯̄
¯N

(m)(!) = 2
NX

i=1

pv(m)(xi; yi;!) ¢ ni(m) ¢ jsij
¯̄
¯̄
¯ (7.142)

for the potential inertia and damping forces or moments, respectively.

7.3.5 Comparative Results

Figure 7.11 compares the calculated coe¢cients for an amidships cross section of a container
vessel with the three previous methods:

- Ursell-Tasai’s method with 2-parameter Lewis conformal mapping.

- Ursell-Tasai’s method with 10-parameter close-…t conformal mapping.

- Frank’s pulsating source method.

With the exception of the roll motions, the three results are very close. The roll motion de-
viation, predicted with the Lewis conformal mapping method, is caused by the description
of the ”bilge” by the simple Lewis transformation, as can be seen in …gure 7.8.
A disadvantage of Frank’s method can be the large computing time, when compared with
Ursell-Tasai’s method. Generally, it is advised to use Ursell-Tasai’s method with 10 para-
meter close-…t conformal mapping. For submerged sections, bulbous sections and sections
with an area coe¢cient, ¾s, less than 0.5, Frank’s pulsating source method should be used.

7.4 3-D Potential Theory

The previous main section of this chapter has discussed the potential theory for two-
dimensional (plane) shapes. Floating bodies are obviously three-dimensional and it can be
appropriate therefore to attempt to determine their potential theory coe¢cients directly
in three dimensions, similar to what Frank did in the two-dimensional case. Just as earlier
in this chapter, the presentation here is intended to provide only a bit of insight into
the derivation path being followed. The path and the result is more important than the
derivation details.
Three-dimensional methods to evaluate the hydrodynamic loads and motions of …xed or
(with zero mean forward speed) ‡oating structures in waves have been developed based
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Figure 7.11: Comparison of Calculated Coe¢cients

on linear three-dimensional potential theory, see for instance [Oortmerssen, 1976a]. Ex-
perimental veri…cation of results of computations has been carried out for bodies with a
large variety of shapes, see [Oortmerssen, 1976a] and [Pinkster, 1980]. Such comparisons
show that 3-D di¤raction methods generally can be applied to most body shapes and are
therefore a good tool to investigate such e¤ects at zero mean forward speed.
This section gives a brief description of the 3-D di¤raction theory as used in the computer
program DELFRAC developed at the Delft University of Technology. It computes the
wave-frequency hydrodynamic loads on free-‡oating or …xed bodies as well as the wave-
frequency motions of ‡oating bodies. Second order wave drift forces can be computed as
well; these are discussed in chapter 9.
The method is restricted to arbitrarily shaped bodies with zero mean forward speed.
This is an acceptable simpli…cation for the majority of the …xed or ‡oating structures in use
today in the o¤shore industry. It should be mentioned however, that attention is shifting
to the development of methods taking into account low forward speed or (alternatively)
current e¤ects; see [Huijsmans, 1996]. The treatment of such methods is beyond the scope
of this text, however.

7.4.1 Di¤raction Theory

The di¤raction theory used in this approach is given here for an arbitrarily shaped, …xed
or free-‡oating body. Use is made of a right-handed, earth-bound S(x0; y0; z0) system of
axes with origin at the mean water level and the z0-axis vertically upwards. The body axis
G(xb; yb; zb) has its origin in the center of gravity G of the body; the xb-axis is towards the
bow and yb to port. The positive zb-axis is upwards. This coordinate system coincides with
another earth-bound system of …xed axes O(x; y; z) in the mean position of the structure.
This is the same system as was used in chapter 6.
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The wave elevation and all potentials are referenced to the …xed O(x; y; z) system of axes.
Phase shifts of body motions are referenced to the undisturbed wave elevation at the center
of gravity (G= O) of the body; even though no wave can be measured there.
According to linear potential theory, the potential of a ‡oating body is a superposition of
the potentials due to the undisturbed incoming wave ©w, the potential due to the di¤raction
of the undisturbed incoming wave on the …xed body ©d and the radiation potentials due
to the six body motions ©j: ¯̄

¯̄
¯© =

6X

j=1

©j + ©w +©d

¯̄
¯̄
¯ (7.143)

Again, the ‡uid is assumed to be incompressible, inviscid and irrotational, without any
e¤ects of surface tension. The motion amplitudes and velocities are small enough, so that
all but the linear terms of the free surface condition, the kinematic boundary condition on
the body and the Bernoulli equation may be neglected.

The potentials have to satisfy the same boundary conditions, as discussed before:

1. Laplace equation
The continuity condition or Laplace equation:

@2©

@x2
+
@2©

@y2
+
@2©

@z2
= 0 (7.144)

holds in the ‡uid domain.

2. Sea bed boundary condition
At the sea bed:

@©

@z
= 0 with: z = ¡ho (7.145)

in which ho is the distance from the origin of the earth-bound coordinate system,
O(x; y; z), to the sea bed. Note that, in contrast to the earlier theory, this treatment
is for water with a …nite depth.

3. Free surface boundary condition
At the mean free surface:

g
@©

@z
+
@2©

@t2
= 0 (7.146)

4. Kinematic boundary condition on the oscillating body surface
On the wetted part of the oscillating hull of the structure (in its mean position):

@©

@n
= ~v:~n (7.147)

in which ~v is the velocity of a point on the hull of the body and ~n is the normal
vector of the hull, positive into the ‡uid.

5. Radiation condition
The body motion and di¤raction potentials have to satisfy a radiation condition which
states that at great distance from the body these potentials disappear. This condition
imposes a uniqueness which would not otherwise be present, see [Oortmerssen, 1976a].



7.4. 3-D POTENTIAL THEORY 7-39

6. Symmetric or anti-symmetric condition
If, for instance for ships, both the sway and the roll motion of the ‡uid are anti-
symmetric and the heave motion is symmetrical, the velocity potentials have the
following relation:

©(2)(¡x; y) = ¡©(2)(+x; y) for sway

©(3)(¡x; y) = +©(3)(+x; y) for heave (7.148)

©(4)(¡x; y) = ¡©(4)(+x; y) for roll

However, this symmetry condition has not to be used in DELFRAC necessarily,
because this program is suitable for any hull form..

The free-surface condition follows from the assumptions that the pressure at the surface is
constant and that water particles do not pass through the free surface. The condition on
the wetted surface of the body assures the no-leak condition of the (oscillating) hull. The
condition at the sea bed is also a no-leak condition.
Up to now no speci…c wave conditions have been applied. The boundary conditions are
general and apply to all possible realizations of wave conditions. The theory is developed
here for a unidirectional regular wave. Just as in chapter 5, superposition can then be used
to study all sorts of irregular wave conditions - even those with directional spreading.
In regular waves a linear potential ©, which is a function of the earth-…xed coordinates
and of time t, can be written as a product of a space-dependent term and a harmonic
time-dependent term as follows:

j©(x; y; z; t) = Á(x; y; z) ¢ e¡i!tj (7.149)

The boundary conditions for the potential, ©, result in similar conditions for the space
dependent term, Á.

Note: Following [Tuck, 1970] a convenient formulation can be obtained by writing:

Á = ¡i!
7X

j=0

Áj³j (7.150)

in which j = 0 represents the undisturbed incoming wave, j = 1; :::6 are associated with
each of the motion modes of the body and j = 7 represents the di¤racted wave.

The space-dependent part of the velocity potential Á0 - associated with an undisturbed
long-crested regular wave in water of constant depth h - is given by:

Á0 =
³0g

!
¢ coshk(ho + z)

coshkh
¢ eik(xcos¹+y sin¹) (7.151)

in which:

³0 = amplitude of undisturbed wave (m)
k = 2¼=¸ = wave number at shallow water (rad/m)
¸ = wave length (m)
¹ = wave direction (rad); zero for a wave travelling in the positive x-direction
! = wave frequency (rad/s)
ho = distance from the origin, O, of the earth-…xed axes to the sea bed (m)
h = water depth (m)
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The following dispersion relation links the water depth h, the wave frequency !, and the
wave number k:

º ¢ g = !2

= kg ¢ tanhkh (7.152)

in which º = !2=g is the wave number in deep water.
In regular long-crested waves the undisturbed wave elevation follows from the free surface
dynamic boundary condition:

³ = ¡1
g

¢ @©
@t

(see chapter 5) (7.153)

which results in:
³(x; y; t) = ³0 ¢ eik(xcos¹+y sin¹)¡i!t (7.154)

The motions of the body in the j-mode relative to its body axes are given by:

³j(t) = ³j ¢ e¡i!t (7.155)

in which the overline indicates the complex amplitude of the motion.
Note that this overline (which applies to the complex potentials etc.) is neglected in the
remainder of this section.

The complex potential Á follows from the superposition of the undisturbed wave potential
Á0, the wave di¤raction potential Á7 and the potentials Áj associated with the j-modes of
motion of the body (j = 1; :::6):

Á = ¡i!
(
(Á0 + Á7) ³0 +

6X

j=1

Áj ³j

)
(7.156)

The ‡uid pressure follows from the Bernoulli equation:

p(x; y; z; t) = ¡½@©
@t

= ½!2

(
(Á0+ Á7)³0 +

6X

j=1

Áj ³j

)
¢ e¡i!t (7.157)

The …rst order wave exciting forces (k = 1; 2; 3) and moments (k = 4; 5; 6) in the kth

direction are:

Xk = ¡
ZZ

S0

pnk ¢ dS0

= ¡½!2³0e¡i!t
ZZ

S0

(Á0 + Á7) nk ¢ dS0 (7.158)

and the oscillating hydrodynamic forces and moments in the kth direction are:

Fk = ¡
ZZ

S0

pnk ¢ dS0

= ¡½!2
6X

j=1

³je
¡i!t

ZZ

S0

Áj nk ¢ dS0 (7.159)

in which:
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S0 = mean wetted surface of the body
nk = direction cosine of surface element dS0 for the k-mode

The generalized direction cosines on S0 are de…ned as follows:

n1 = cos(n; x)

n2 = cos(n; y)

n3 = cos(n; z)

n4 = yn3 ¡ zn2
n5 = zn1 ¡xn3
n6 = xn2¡ yn1 (7.160)

The added mass and damping (coupling) coe¢cients are de…ned as follows:

akj = ¡<e

2
4½

ZZ

S0

Áj nk ¢ dS0

3
5

bkj = ¡=m

2
4½!

ZZ

S0

Áj nk ¢ dS0

3
5 (7.161)

The following symmetry relationships apply to these coe¢cients :

akj = ajk

bkj = bjk (7.162)

so that both matrices are symmetric.

7.4.2 Solving Potentials

The incident wave potential, Á0, is given in equation 7.151

According to [Lamb, 1932], the potential Áj at a point (x; y; z) on the mean wetted body
surface S0 due to a motion in the mode j (j = 1; :::6) and the di¤raction potential Á7 can
be represented by a continuous distribution of single sources on the body surface:

¯̄
¯̄
¯̄Áj(x; y; z) =

1

4¼

ZZ

S0

¾j(bx;by;bz) ¢ G(x; y; z; bx; by; bz) ¢ dS0

¯̄
¯̄
¯̄ for j = 1; :::7 (7.163)

in which:

² Áj(x; y; z) is the potential function in a point (x; y; z) on the mean wetted body
surface, S0. The cases with j = 1; :::6 correspond to the potentials due to a motion
of the body in the jth mode, while Á7 is the potential of the di¤racted waves. The
individual potentials satisfy all boundary conditions.

² ¾j(bx; by; bz) is the complex source strength in a point (bx;by;bz) on the mean wetted
body surface, S0, due to a motion of the body in the j-mode.
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² G(x; y; z; bx; by; bz) is the Green’s function or in‡uence function of the pulsating
source ¾j(bx; by; bz) in a point located at (bx; by;bz) on the potential Áj(x; y; z) in a point
located at (x; y; z), singular for (bx;by;bz) = (x; y; z). This Green’s function satis…es
the Laplace equation, the linearized boundary conditions on the sea bed and on the
free surface and the radiation condition at in…nity.

Equivalent Green’s functions are given by [Wehausen and Laitone, 1960] and [John, 1949]:

jG(x; y; z;bx;by;bz)j according to [Wehausen and Laitone, 1960] = (7.164)
1

r
+
1

r1

+PV

1Z

0

2(» + º)e¡»h ¢ cosh »(ho+ bz) ¢ cosh »(ho + z)
» sinh »h¡ º cosh »h ¢ J0(»R) ¢ d»

+i ¢ 2¼(k
2 ¡ º2) ¢ cosh k(ho + bz) ¢ coshk(ho + z)

(k2¡ º2)h¡ º ¢ J0(kR)

jG(x; y; z; bx;by; bz)j according to [John, 1949] = (7.165)

2¼ ¢ º2 ¡ k2
(k2¡ º2) h + º ¢ coshk(ho + z) ¢ coshk(ho + bz) ¢ fY0(kr) ¡ iJ0(kR)g

+
1X

i=1

4 (k2i + º
2)

(k2i + º2) h¡ º ¢ coski(ho + z) ¢ cos ki(ho + bz) ¢K0(kiR)

in which:

r =
p
(x¡ bx)2 + (y ¡ by)2 + (z ¡ bz)2

r1 =
p
(x¡ bx)2 + (y ¡ by)2 + (z + 2ho + bz)2 (= mirrored)

R =
p
(x¡ bx)2 + (y ¡ by)2

» = a variable

J0, K0 and Y0 = Bessel functions

ki = positive solutions of tanh(kih) + º = 0

Although these two representations are equivalent, one of the two may be preferred for
numerical computations depending on the values of the variables. In general, equation
7.165 is the most convenient representation for calculations, but when R = 0 the value of
K0 becomes in…nite, so that equation 7.164 must be used when R is small or zero.
In DELFRAC and many other similar di¤raction computer codes, use is made of the
FINGREEN subroutine supplied by MIT for the purpose of computing the Green’s function
and its derivatives. Computation involving both formulations has been speeded up through
the use of polynomial expressions, see [Newman, 1985].
The unknown source strengths ¾j(bx; by;bz) are determined based on the normal velocity
boundary condition on the body, see equation 7.157 combined with equation 7.163:

@Áj
@n

= nj

= ¡1
2
¾j(x; y; z) +

1

4¼

ZZ

S0

¾j(bx; by; bz) ¢ @G(x; y; z;bx;by;bz)
@n

¢ dS0 (7.166)
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In the above equations, the operator @=@n signi…es the gradient in the direction of the
normal to the surface of the body. For the solution of the motion potentials Áj, the right-
hand side of the above equation 7.166 is given by the direction cosines de…ned by equation
7.160.

For the solution of the di¤raction potential Á7 (restrained body), the right-hand side is
given by:

n7 =
@Á7
@n

= ¡@Á0
@n

(7.167)

Solving the integral equation 7.166 results in the unknown source strengths. Substitution
of these in equation 7.162 and in equation 7.159 yields the added mass and damping
coe¢cients and the wave forces respectively.

Finally the motions ³j are determined from the solution of the following coupled equations
of motion for six degrees of freedom:

¯̄
¯̄
¯
6X

j=1

f¡!2(mkj + akj)¡ i!bkj + ckjg ¢ ³j = Xk
¯̄
¯̄
¯ for k = 1; :::6 (7.168)

with:

mkj = inertia matrix of the body for inertia coupling in the k-mode
for acceleration in the j-mode

akj = added mass matrix for the force on the body in the k-mode
due to acceleration of the body in the j-mode

bkj = damping matrix for the force on the body in the k-mode
due to velocity of the body in the j-mode

ckj = spring matrix for the force on the body in the k-mode
due to motion of the body in the j-mode

Xk = wave force on the body in the k-mode

The bkj and ckj matrices may contain contributions arising from mechanical damping de-
vices and springs or even a mooring system.

7.4.3 Numerical Aspects

By discretizing the mean wetted surface of a body into N panels, on which the source
strengths are homogeneously distributed, the following discretized form of equation 7.166
is obtained:

¡1
2
¾mj +

1

4¼

NX

n=1

¾nj
@Gmn
@n

4Sn = nmj for m = 1; :::N n 6= m (7.169)

The normal velocity requirement can only be met at one point for each panel into which
the mean wetted surface of the hull is divided. It is customary to chose the centroid of the
panel. Such points are known as collocation points; see appendix D.
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Equation 7.169 is transformed into a set of simultaneous linear equations in N unknown
complex source strengths:

0
BBBB@

A11 ::: ::: ::: A1N
::: A22 ::: ::: :::
::: ::: A33 ::: :::
::: ::: ::: ::: :::
AN1 ::: ::: ::: ANN

1
CCCCA
:

0
BBBB@

¾1;j
:::
:::
:::
¾N;j

1
CCCCA
=

0
BBBB@

n1;j
:::
:::
:::
nN;j

1
CCCCA

(7.170)

in which:

Ann = ¡1
2

Anm =
1

4¼

@Gmn
@n

4Sn
¾n;j = unknown source strength

nnj = normal velocity component on the oscillating body

This set of equations can be solved by direct solution techniques or by iterative solvers. The
computational e¤ort involved with iterative solvers is quadratic in the number of unknowns
while for direct solvers the e¤ort is a cubic function of the number of unknowns.
It should be noted that in the evaluation of the coe¢cients Anm due care has to be taken
when the …eld point (center of a target panel) is close to the source point. Inaccuracies will
occur due to the 1=r-behavior of the in‡uence function Gmn as seen in equation 7.164. In
this case, the 1=r-contribution is subtracted from the in‡uence function and is analytically
integrated over the …nite sized source panel under the assumption that the source strength
is homogeneously distributed. Use can be made of an algorithm provided by [Fang, 1985].
Similar cases of inaccurate evaluations of the in‡uence functions based directly upon equa-
tion 7.164 and equation 7.165 are found when a source panel is very close to the sea bed
and when close to the free surface. The solution in both cases is to remove the relevant
terms from the above-mentioned equations and to insert equivalent analytical integrations
over the source panel.
The above modi…cations concern simple contributions to the in‡uence function, such
as the 1=r, 1=r1 or logarithmic contributions. Where more complicated contributions
are concerned such as expressed in the Principle Value integral part of equation 7.164,
(PV

R
:::::: d»), a more accurate evaluation of the contribution to the in‡uence function

can be made for smaller values of r by the application of Gauss quadrature methods.
These simply imply that for smaller values of r the source panel is split into 4 or more
parts and the total in‡uence function is the sum of the in‡uences from the parts of the
total panel under the assumption that the source strength per unit surface is the same for
all parts of the panel. In this way the in‡uence function can be determined more accurately
without increasing the number of unknowns to be solved.

A numerical problem associated with the solution of equation 7.170 is the occurrence of
so-called irregular frequencies. For certain, discrete wave frequencies the determinant
of the coe¢cients Amn will become zero, yielding unrealistic results. ”Leakage” of the
e¤ects of these irregular frequencies to a band around these frequencies occurs due to the
discretization of the body. Irregular frequencies are associated with eigenfrequencies of
the internal (non-physical) ‡ow of the body. An e¤ective method to reduce the e¤ects of
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irregular frequencies is, among others, to ”close” the body by means of discretization of the
free surface inside the body (putting a ”lid” on the free surface inside the body); see the
added mass and damping of a hemisphere in …gure 7.12. The solid line in this …gure results
from including the ”lid”. Increasing the number of panels does not remove the irregular
frequency but tends to restrict the e¤ects to a narrower band around it; see for instance
[Huijsmans, 1996]. It should be mentioned that irregular frequencies only occur for free
surface piercing bodies; fully submerged bodies do not display these characteristics.
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Figure 7.12: E¤ect of ”Lid-Method” on Irregular Frequencies

Solving equation 7.170 using direct solution methods (LU-decomposition) is time consum-
ing if the number of unknowns (N complex quantities ¾) is large. The time taken to solve
the equations by a direct method is proportional to N3. Iterative solvers are proportional
to N2. However, due to other program overhead, such as the evaluation of the coe¢cients
Amn for each wave frequency, iterative solvers only become faster if there are more than
about 500 panels on a body. Normally a tanker-shaped vessel can be described adequately
by 300-600 panels. In day-to-day practice one tends to use the direct method based on
LU-decomposition.

A useful method to reduce computation times lies in exploiting any geometrical symmetry
a body may have. A ship-shaped vessel will generally have port side - starboard side
symmetry while, for instance a simple barge or a semi-submersible will often have both
port side - starboard side as well as fore - aft symmetry. In the latter case we need only
describe one quadrant of the hull shape. The three remaining quadrants can be obtained
by simply copying, but taking into account sign changes in the coordinates.

The reduction in computation time lies in the fact that, for instance for a vessel with
port side - starboard side symmetry, the matrix of in‡uence coe¢cients Amn also shows
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symmetry. In such cases the matrix of in‡uence coe¢cients has the following structure:

0
BB@

A11 ::: ::: A1N
::: A22 ::: :::
::: ::: ::: :::
AN1 ::: ::: ANN

1
CCA =

µ
A B
B A

¶
(7.171)

The right-hand-side of equation 7.171 expresses the fact that the self-in‡uence of the port
side half of the vessel (upper left A) is the same as the self-in‡uence of the starboard half
of the vessel (lower right A). The cross-in‡uence of sources on the port side half of the
vessel on panels on the starboard half of the vessel is contained in the lower left matrix B.
The corresponding cross-in‡uence of sources on the starboard half of the vessel on panels
on the port side half are contained in the upper right matrix B.
For vessels which have double symmetry i.e. port side - starboard and fore - aft symmetry,
the matrix of in‡uence coe¢cients has the following structure:

0
BB@

A11 ::: ::: A1N
::: A22 ::: :::
::: ::: ::: :::
AN1 ::: ::: ANN

1
CCA =

0
BB@

A B C D
B A D C
C D A B
D C B A

1
CCA (7.172)

It is left as an exercise for the reader to deduce the e¤ect that exploitation of such sym-
metries can have on the computational e¤ort involved in solving equation 7.170.

7.5 Experimental Determination

The hydrodynamic coe¢cients in the equations of motion can be obtained experimentally
by decay tests or by forced oscillation tests with ship models. The principle and limitations
of these tests have been explained in chapter 6.
Free decay tests with a ship model in still water can be carried out only for those motions
which have a hydromechanical restoring force or moment; heave, pitch and roll motions.
External springs can be used for the other ship motions: surge, sway and yaw. The
hydrodynamic coe¢cients can be found for a restricted range of (natural) frequencies, by
varying the sti¤ness of these springs (if possible) in these decay tests.
Forced oscillation tests in still water yield the hydrodynamic mass and damping coe¢cients
at any frequency of oscillation from the measured exciting loads. The coupling coe¢cients
between the motions can be obtained as well. By means of forced oscillation tests with
ship models, the relation between the potential coe¢cients and the frequency of oscillation
can be found.

7.5.1 Free Decay Tests

Free decay test methodology has been discussed in chapter 6; only an example of some
results for roll of ships is given here.
The successively found values for the dimensionless roll damping coe¢cient, ·, plotted as a
function of the mean roll amplitude, Áa, will often have a non-linear behavior as illustrated
in …gure 7.13.
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Figure 7.13: Nonlinear Roll Damping

This behavior can be described by:

¯̄
· = ·1 + ·2Áa

¡
+·3Á

2
a

¢¯̄
(7.173)

This implies that during frequency domain calculations the damping term depends on
the solution for the roll amplitude. With a certain wave amplitude, this problem can be
solved in an iterative manner. A less accurate method is to use a …xed Áa. Generally, a
linearization will be carried out as described in chapter 6.
Note that a linear damping results in a ’horizontal’ line in …gure 7.13, · = ·1.

[Journée, 1991] published results of a series of free decay experiments with rectangular
barge models at an even keel condition and with the center of gravity at the waterline.
During these experiments, the models (with B=T values up to 10) were free to carry out
heave and roll motions only. He found that the roll damping coe¢cients of these barges
can be approximated by:

·1 = 0:00130 ¢
µ
B

T

¶2

(barge with G at waterline)

·2 = 0:500

·3 = 0:000 (7.174)

in which B is the breadth and T is the draft of the barge.
For large breadth-draft ratios of these barges (B=T > 10), generally the potential part of
the roll damping becomes so important that, at least from a practical point of view, the
viscous part of the damping can be ignored.
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7.5.2 Forced Oscillation Tests

The model is mounted on two vertical struts along its longitudinal center line, spaced
symmetrically with respect to the center of gravity. If the struts are oscillated in unison, so
that the strut motions aft and forward are the same, the model executes a sinusoidal heave
motion. If the strut motions are opposite (a phase shift of 180 degrees) the model executes
a sinusoidal pitch motion. All other motions are restrained and the forces necessary to
impose the heave or pitch oscillation are measured by transducers at the ends of the struts
and suitably recorded. To avoid internal stresses, the aft transducer is …tted with a swinging
link or mounted on a horizontal sled.
A schematic of the experimental set-up for forced heave and pitch oscillations is given in
…gure 7.14.

Figure 7.14: Forced Heave Oscillation Experiment

During the forced heave or pitch oscillations the vertical motions of the transducer aft and
forward are zA(t) and zF (t) respectively, with equal amplitudes za.
Then the motions of the model are de…ned by:

heave oscillations : z(t) = zA(t) = zF (t) = za sin !t (7.175)

pitch oscillations : µ(t) = arctan

½
zA(t) ¡ zF(t)

2r

¾
¼ za
r
sin !t = µa sin!t

During both type of oscillations, the heave forces and pitch moments can be obtained from
the measured forces in the transducer aft FA(t) and the transducer forward FF (t):

heave force : Fz(t) = FA(t) +FF (t) = Fa sin(!t+ "Fz)

pitch moment : Mµ(t) = r fFA(t) ¡ FF(t)g = Ma sin(!t+ "Mz) (7.176)

Heave Oscillations

The linear equations of motion during the heave oscillations are given by:

aÄz + b _z + cz = Fa sin (!t+ "Fz)
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dÄz + e _z + f z = Ma sin (!t+ "Mz) (7.177)

The components of the force and moment which are in-phase with the heave motion are
associated with the inertia and sti¤ness coe¢cients, while the out-of-phase components
(also called in literature: quadrature components) are associated with damping.
With:

z = za sin!t _z = za! cos!t Äz = ¡za!2 sin!t (7.178)

we obtain:

za
¡
¡a!2 + c

¢
sin!t + zab! cos!t = Fa cos "Fz sin !t+ Fa sin "Fz cos!t

za
¡
¡d!2 + f

¢
sin!t+ zae! cos!t = Ma cos "Mz sin!t+Ma sin "Mz cos!t(7.179)

which provides:

a = ½r + azz =
c¡ Fa

za
cos "Fz

!2
with: c = czz = ½gAw

b = bzz =
Fa
za
sin "Fz

!

d = aµz =
f ¡ Ma

za
cos "Mz

!2
with: f = cµz = ½gSw

e = bµz =
Ma
za
sin "Mz

!
(7.180)

To obtain the sti¤ness coe¢cients c and f , use has to be made of Aw (area of the waterline)
and Sw (…rst order moment of the waterline), which can be obtained from the geometry of
the ship model.
It is also possible to obtain the sti¤ness coe¢cients from static experiments:

Äz = 0 and _z = 0 provides: c =
F

z
and f =

M

z

Pitch Oscillations

The linear equations during the pitch oscillations are given by:

aÄµ + b _µ + cµ = Fa sin (!t+ "Fµ)

dÄµ + e _µ + f µ = Ma sin (!t+ "Mµ) (7.181)

The components of the force and moment which are in-phase with the pitch motion are
associated with the inertia and sti¤ness coe¢cients, while the out-of-phase components are
associated with damping.
With:

µ = µa sin !t _µ = µa! cos!t Äµ = ¡µa!2 sin!t (7.182)

we obtain:

µa
¡
¡a!2 + c

¢
sin!t + µab! cos!t = Fa cos"Fµ sin!t+Fa sin "Fµ cos!t

µa
¡
¡d!2 + f

¢
sin !t+ µae! cos!t = Ma cos"Mµ sin!t+Ma sin "Mµ cos!t(7.183)
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which provides:

a = azµ =
c¡ Fa

µa
cos"Fµ

!2
with: c = czµ = ½gSw

b = bzµ =
Fa
µa
sin "Fµ

!

d = Iyy + aµµ =
f ¡ Ma

µa
cos "Mµ

!2
with: f = cµµ = ½grGML

e = bµµ =
Ma

µa
sin "Mµ

!
(7.184)

To obtain the sti¤ness coe¢cients c and f, use has been made of Sw (…rst order moment
of the waterline) and GML (longitudinal metacentric height), which can be obtained from
the geometry of the ship model.
It is also possible to obtain the sti¤ness coe¢cients from static experiments:

Äµ = 0 and _µ = 0 provides: c =
F

µ
and f =

M

µ
(7.185)

Signal Processing

The in-phase and out-of-phase parts of the measured signal can be found easily from an
integration over an integer number n of periods T of the measure signals multiplied by
cos!t and sin!t, respectively. This is in fact a …rst order Fourier analysis; see appendix
C.
For the heave oscillations, this results in:

Fa sin "Fz =
2

nT

nTZ

0

(FA(t) +FF(t)) ¢ cos!t ¢ dt

Fa cos "Fz =
2

nT

nTZ

0

(FA(t) +FF(t)) ¢ sin!t ¢ dt

Ma sin "Mz =
2r

nT

nTZ

0

(FA(t) ¡ FF(t)) ¢ cos!t ¢ dt

Ma cos "Mz =
2r

nT

nTZ

0

(FA(t) ¡ FF(t)) ¢ sin!t ¢ dt (7.186)

Similar expressions can be found for the pitch oscillations.

Equations of Motion

With the measured hydromechanical coe¢cients, the coupled linear equations of heave and
pitch motions in still water are given by:

(½r + azz)Äz + bzz _z + czzz + azµÄµ + bzµ _µ + czµµ = 0

(Ixx + aµµ)Äµ + bµµ _µ + cµµµ + aµz Äz + bµz _z + cµzz = 0 (7.187)
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7.6 Viscous Damping

Motion damping is caused by the generated waves which dissipate energy from the moving
structure as well as by viscous e¤ects such as skin friction, vortices, etc. In most cases
viscous e¤ects are neglected in motion calculations of o¤shore structures as well as for the
sway, heave, pitch and yaw motions of ships. The major part of the damping is caused
by the wave (or potential) damping and the viscous damping contribution to these are of
minor importance.

7.6.1 Viscous Surge Damping

Generally, the hydromechanical coe¢cients for surge are small. The hydrodynamic mass is
5-8 % of the ship’s mass and the damping is small. In fact, the total damping components
for surge of sailing ships have been treated already in chapter 4, because this damping
coe¢cient can be written as:

bxx =
dRt
dV

=
dRf
dV

+
dRr
dV

where Rt is the total resistance, Rf is the frictional (viscous) resistance and Rr is the
residual (potential) resistance and V is the forward ship speed; the viscous part of the
surge damping is dRf=dV .

7.6.2 Viscous Roll Damping

Figure 7.15: Roll Damping as Function of Shape and B/T Ratio

Viscous damping can be signi…cant for rolling ships. This is because the wave potential
damping for roll is generally relatively small itself. A circular cylinder, rotating about its
center, does not produce waves; its potential roll damping is zero. For a breadth-draft
ratio of about 2.5, the major part of the ship has a ”more or less” circular cross section,
see …gure 7.15-a.
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Thus, for many ships a small potential roll damping can be expected too. A relatively
signi…cant viscous contribution, for instance due to bilge keels, can be expected.
The relation between the roll damping and the breadth-draft ratio of a cross section of a
ship is given in …gure 7.15-b.
As indicated above, the roll damping is minimum at a breadth-draft ratio of about 2.5. For
very low breadth-draft ratios (paddle-type wave maker) and for high breadth-draft ratios
(wave damper of a towing carriage in a towing tank) the wave damping component is very
high.

For the estimation of the non-potential parts of the roll damping, in many cases use can be
made of work published by [Ikeda et al., 1978]. This empirical method is often called the
”Ikeda method” and it estimates viscous roll damping contributions due to forward ship
speed, skin friction, eddy making, lift and bilge keels, see …gure 7.16.

Figure 7.16: Roll Damping Components

Ikeda, Himeno and Tanaka claim fairly good agreements between their prediction method
and experimental results. They conclude that the method can be used safely for ordinary
ship forms, which conclusion has been con…rmed by numerous experiments carried out by
other researchers. But for unusual ship forms, very full ship forms and ships with a very
large breadth to draft ratio the method is not always accurate su¢ciently.



Chapter 8

FLOATING STRUCTURES IN
WAVES

8.1 Introduction

The (uncoupled) motions of a simple rigid body at zero forward speed have been discussed
in chapter 6. Potential coe¢cients and their determination for more complex hull forms,
such as those of ships and o¤shore structures, have been described in chapter 7.
This chapter deals with the kinetics, the equations of motion for six degrees of freedom
and some motion related phenomena for ships and o¤shore structures, partly including the
forward speed e¤ect.

8.2 Kinetics

The total mass as well as its distribution over the body is considered to be constant with
time. For ships and other ‡oating structures, this assumption is normally valid during a
time which is large relative to the period of the motions. This holds that small e¤ects,
such as for instance a decreasing mass due to fuel consumption, can be ignored.
The solid mass matrix of a ‡oating structure is given below.

Solid mass matrix: m =

0
BBBBBB@

½r 0 0 0 0 0
0 ½r 0 0 0 0
0 0 ½r 0 0 0
0 0 0 Ixx 0 ¡Ixz
0 0 0 0 Iyy 0
0 0 0 ¡Izx 0 Izz

1
CCCCCCA

(8.1)

The moments of inertia here are often expressed in terms of the radii of inertia and the
solid mass of the structure. Since Archimedes law is valid for a ‡oating structure:

Ixx = kxx
2 ¢ ½r

Iyy = kyy
2 ¢ ½r

Izz = kzz
2 ¢ ½r (8.2)

0J.M.J. Journée and W.W. Massie, ”OFFSHORE HYDROMECHANICS”, First Edition, January 2001,
Delft University of Technology. For updates see web site: http://www.shipmotions.nl.
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When the distribution of the solid mass of a ship is unknown, the radii of inertia can be
approximated by:

for ships:

8
<
:
kxx t 0:30 ¢B to 0:40 ¢B
kyy t 0:22 ¢ L to 0:28 ¢ L
kzz t 0:22 ¢ L to 0:28 ¢ L

in which L is the length and B is the breadth of the ship; the (generally small) coupling
terms, Ixz = Izx, are simply neglected.
Bureau Veritas proposes for the gyradius in roll:

kxx = 0:289 ¢B ¢
Ã
1:0 +

µ
2 ¢KG
B

¶2
!

(8.3)

in which KG is the height of the center of gravity, G, above the keel.
For many ships without cargo on board (ballast condition), the mass is concentrated at
the ends (engine room aft and ballast water forward to avoid a large trim), while for ships
with cargo on board (full load condition) the - more or less amidships laden - cargo plays
an important role. Thus, the radii of inertia, kyy and kzz, are usually smaller in the full
load condition than in the ballast condition for normal ships. Note that the longitudinal
radius of gyration of a long homogeneous rectangular beam with a length L is equal to

about 0:29 ¢ L
³
=

p
1=12 ¢L

´
.

As already mentioned in chapter 6, the equations of motions of a rigid body in a space
…xed coordinate system follow from Newton’s second law. The vector equations for the
translations of and the rotations about the center of gravity are given respectively by:

¯̄
¯̄~F = d

dt

³
m~U

´¯̄
¯̄ and

¯̄
¯̄ ~M =

d

dt

³
~H

´¯̄
¯̄ (8.4)

in which:

~F = resulting external force acting in the center of gravity
m = mass of the rigid body
~U = instantaneous velocity of the center of gravity
~M = resulting external moment acting about the center of gravity
~H = instantaneous angular momentum about the center of gravity
t = time

As mentioned in chapter 6 as well, two important assumptions are made for the loads in
the right hand side of these equations:

a. The so-called hydromechanical forces and moments are induced by the harmonic
oscillations of the rigid body, moving in the undisturbed surface of the ‡uid.

b. The so-called wave exciting forces and moments are produced by waves coming
in on the restrained body.

Since the system is linear, these loads are added to obtain the total loads. Thus, after
assuming small motions, symmetry of the body and that the x-, y- and z-axes are principal
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axes, one can write the following six motion equations for the ship:

Surge:
d

dt
(½r ¢ _x) = ½r ¢ Äx = Xh1 +Xw1

Sway:
d

dt
(½r ¢ _y) = ½r ¢ Äy = Xh2 +Xw2

Heave:
d

dt
(½r ¢ _z) = ½r ¢ Äz =Xh3 +Xw3

Roll:
d

dt

³
Ixx ¢ _Á¡ Ixz ¢ _Ã

´
= Ixx ¢ ÄÁ ¡ Ixz ¢ ÄÃ =Xh4 +Xw4

Pitch:
d

dt

³
Iyy ¢ _µ

´
= Ixx ¢ Äµ = Xh5 +Xw5

Yaw:
d

dt

³
Izz ¢ _Ã ¡ Izx ¢ _Á

´
= Izz ¢ ÄÃ ¡ Izx ¢ ÄÁ = Xh6 +Xw6 (8.5)

in which:

½ = density of water
r = volume of displacement of the ship
Iij = solid mass moment of inertia of the ship
Xh1 , Xh2, Xh3 = hydromechanical forces in the x-, y- and z-directions respectively
Xh4 , Xh5, Xh6 = hydromechanical moments about the x-, y- and z-axes respectively
Xw1, Xw2, Xw3 = exciting wave forces in the x-, y- and z-directions respectively
Xw4, Xw5, Xw6 = exciting wave moments about the x-, y- and z-axes respectively

Note: in many applications, Ixz = Izx is not known or small; hence their terms are often
omitted.

8.3 Coupled Equations of Motion

Once the mass of the ‡oating object and its distribution within that object are known, the
coupled equations of motion in 6 degrees of freedom in waves can be written.

8.3.1 General De…nition

Based on Newton’s second law, the general equations of motion are given by:

¯̄
¯̄
¯
6X

j=1

mi;j ¢ Äxj = Fi
¯̄
¯̄
¯ for: i = 1; :::6 (8.6)

in which:

mi;j = 6x6 matrix of solid mass and inertia of the body
Äxj = acceleration of the body in direction j
Fi = sum of forces or moments acting in direction i
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When de…ning a linear system, with simple harmonic wave exciting forces and moments
given by:

jFwi(!e; t) = Fwai(!e) ¢ cos (!et+ "Fi(!e))j (8.7)

the resulting simple harmonic motions are:

xj(!e; t) = xaj (!e) ¢ cos(!et)
_xj(!e; t) = ¡!e ¢ xaj (!e) ¢ sin(!et)
Äxj(!e; t) = ¡!2e ¢ xaj (!e) ¢ cos(!et) (8.8)

The hydromechanical forces and moments Fhi;j , acting on an oscillating object in still
water, consist of:

- linear hydrodynamic reaction forces and moments expressed in terms with the hy-
drodynamic mass and damping coe¢cients:

¡ai;j(!e) ¢ Äxj(!e; t)¡ bi;j(!e) ¢ _xj(!e; t) (8.9)

- linear hydrostatic restoring forces and moments expressed in a term with a spring
coe¢cient:

¡ci;j ¢ xj(!e; t) (8.10)

With these expressions, the 6 equations of motion become:

6X

j=1

mi;j ¢ Äxj =
6X

j=1

f¡ai;j(!e) ¢ Äxj(!e; t) ¡ bi;j(!e) ¢ _xj(!e; t) ¡ ci;j ¢ xj(!e; t)

+Fwai(!e) ¢ cos (!et+ "i(!e))g
for: i = 1; :::6 (8.11)

After ordering the terms, the general linear equations of motion for 6 degrees of freedom
in the frequency domain are:

6X

j=1

f(mi;j + ai;j(!e)) ¢ Äxj(!e; t) + bi;j(!e) ¢ _xj(!e; t) + ci;j ¢ xj(!e; t)g

= Fwai(!e) ¢ cos(!et+ "i(!e))
for: i = 1; :::6 (8.12)

The hydrodynamic coe¢cients, ai;j(!e) and bi;j(!e), and the exciting wave load compo-
nents, Fwai(!e) and "i(!e), can be calculated with two- or three-dimensional techniques
given in chapter 7.

8.3.2 Motion Symmetry of Ships

Generally, a ship has a vertical-longitudinal plane of symmetry, so that its motions can be
split into symmetric and anti-symmetric components. Surge, heave and pitch motions are
symmetric motions, that is to say that a point to starboard has the same motion as the
mirrored point to port side. It is obvious that the remaining motions sway, roll and yaw
are anti-symmetric motions. Symmetric and anti-symmetric motions are not coupled; they
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don’t have any e¤ect on each other. For instance, a vertical force acting at the center of
gravity can cause surge, heave and pitch motions, but will not result in sway, roll or yaw
motions.
Because of this symmetry and anti-symmetry, two sets of three coupled equations of motion
can be distinguished for ships:

Surge : ½r ¢ Äx ¡Xh1 =Xw1
Heave : ½r ¢ Äz ¡Xh3 =Xw3
Pitch : Ixx ¢ Äµ ¡Xh5 =Xw5

9
=
; symmetric motions

Sway : ½r ¢ Äy ¡Xh2 =Xw2
Roll : Ixx ¢ ÄÁ ¡Ixz ¢ ÄÃ ¡Xh4 =Xw4
Yaw : Izz ¢ ÄÃ ¡Izx ¢ ÄÁ ¡Xh6 =Xw6

9
=
; anti-symmetric motions

The coupled surge, heave and pitch equations of motion are:

(½r + a11) ¢ Äx +b11 ¢ _x +c11 ¢ x
+a13 ¢ Äz +b13 ¢ _z +c13 ¢ z
+a15 ¢ Äµ +b15 ¢ _µ +c15 ¢ µ = Xw1 (surge)

a31 ¢ Äx +b31 ¢ _x +c31 ¢ x
+(½r + a33) ¢ Äz +b33 ¢ _z +c33 ¢ z

+a35 ¢ Äµ +b35 ¢ _µ +c35 ¢ µ = Xw3 (heave)

a51 ¢ Äx +b51 ¢ _x +c51 ¢ x
+a53 ¢ Äz +b53 ¢ _z +c53 ¢ z

+(+Iyy + a55) ¢ Äµ +b55 ¢ _µ +c55 ¢ µ = Xw5 (pitch)

9
>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

symmetric
motions

The coupled sway, roll and yaw equations of motion are:

(½r + a22) ¢ Äy +b22 ¢ _y +c22 ¢ y
+a24 ¢ ÄÁ +b24 ¢ _Á +c24 ¢ Á
+a26 ¢ ÄÃ +b26 ¢ _Ã +c26 ¢ Ã =Xw2 (sway)

a42 ¢ Äy +b42 ¢ _y +c42 ¢ y
+(+Ixx+ a44) ¢ ÄÁ +b44 ¢ _Á +c44 ¢ Á
+(¡Ixz + a46) ¢ ÄÃ +b46 ¢ _Ã +c46 ¢ Ã =Xw4 (roll)

a62 ¢ Äy +b62 ¢ _y +c62 ¢ y
+(¡Izx+ a64) ¢ ÄÁ +b64 ¢ _Á +c64 ¢ Á
+(+Izz + a66) ¢ ÄÃ +b66 ¢ _Ã +c66 ¢ Ã =Xw6 (yaw)

9
>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

anti-symmetric
motions

Note that this distinction between symmetric and anti-symmetric motions disappears when
the ship is anchored. Then, for instance, the pitch motions can generate roll motions via
the anchor lines.

8.3.3 2-D Strip Theory

Strip theory is a computational method by which the forces on and motions of a three-
dimensional ‡oating body can be determined using results from two-dimensional potential
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theory. This method has been described in the literature by several of authors; for a clear
description reference is given to a doctor’s thesis by [Vugts, 1970]. The two-dimensional
potential theory has been discussed in chapter 7; its utilization will be discussed in the
present chapter. Just as in chapter 7, the result of the theoretical work and the path
leading to it, is more important than the derivation details.
Strip theory considers a ship to be made up of a …nite number of transverse two-dimensional
slices which are rigidly connected to each other. Each of these slices will have a form
which closely resembles the segment of the ship which it represents. Each slice is treated
hydrodynamically as if it is a segment of an in…nitely long ‡oating cylinder; see …gure 8.1.

Figure 8.1: Strip Theory Representation by Cross Sections

This means that all waves which are produced by the oscillating ship (hydromechanical
loads) and the di¤racted waves (wave loads) are assumed to travel perpendicular to the
middle line plane (thus parallel to the y-z plane) of the ship. This holds too that the
strip theory supposes that the fore and aft side of the body (such as a pontoon) does not
produce waves in the x direction. For the zero forward speed case, interactions between
the cross sections are ignored as well.
Fundamentally, strip theory is valid for long and slender bodies only. In spite of this
restriction, experiments have shown that strip theory can be applied successfully for ‡oating
bodies with a length to breadth ratio larger than three, (L=B = 3), at least from a practical
point of view.
When applying the strip theory, the loads on the body are found by an integration of the
2-D loads:

surge: Xh1 =

Z

L

X 0
h1

¢ dxb Xw1 =

Z

L

X 0
w1

¢ dxb

sway: Xh2 =

Z

L

X 0
h2 ¢ dxb Xw2 =

Z

L

X 0
w2 ¢ dxb

heave: Xh3 =

Z

L

X 0
h3 ¢ dxb Xw3 =

Z

L

X 0
w3 ¢ dxb
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roll: Xh4 =

Z

L

X 0
h4

¢ dxb Xw4 =

Z

L

X 0
w4

¢ dxb

pitch: Xh5 = ¡
Z

L

X 0
h3

¢ xb ¢ dxb Xw5 = ¡
Z

L

X 0
w3

¢ xb ¢ dxb

yaw: Xh6 =

Z

L

X 0
h2 ¢ xb ¢ dxb Xw6 =

Z

L

X 0
w2 ¢ xb ¢ dxb (8.13)

in which:

X 0
hj

= sectional hydromechanical force or moment
in direction j per unit ship length

X 0
wj = sectional exciting wave force or moment

in direction j per unit ship length

The appearance of two-dimensional surge forces seems strange here. It is strange! A more
or less empirical method is used in program SEAWAY of [Journée, 1999] for the surge
motion, by de…ning an equivalent longitudinal cross section which is swaying. Then, the
2-D hydrodynamic sway coe¢cients of this equivalent cross section are translated to 2-D
hydrodynamic surge coe¢cients by an empirical method based on theoretical results from
three-dimensional calculations and these coe¢cients are used to determine 2-D loads. In
this way, all sets of six surge loads can be treated in the same numerical way in program
SEAWAY for the determination of the 3-D loads. Inaccuracies of the hydromechanical co-
e¢cients of (slender) ships are of minor importance, because these coe¢cients are relatively
small.
Note how in the strip theory the pitch and yaw moments are derived from the 2-D heave
and sway forces, respectively, while the roll moments are obtained directly.
The equations of motions are de…ned in the moving axis system with the origin at the
average position of the center of gravity, G. All two-dimensional potential coe¢cients
have been de…ned so far in an axis system with the origin, O, in the water plane; the
hydromechanical and exciting wave moments have to be corrected for the distance OG.

Potential Coe¢cients

As mentioned before, in strip theory calculations the two-dimensional sway, heave and roll
coe¢cients can be calculated by three methods which are summarized here; full details are
given in chapter 7:

1. Ursell-Tasai’s Method with Lewis Conformal Mapping
Ursell derived an analytical solution for solving the problem of calculating the hy-
drodynamic coe¢cients of an oscillating circular cylinder in the surface of a ‡uid.
Tasai added the so-called Lewis transformation - which is a very simple and in a lot
of cases also more or less realistic method to transform ship-like cross sections to this
unit circle - to Ursell’s solution . This transformation is carried out by using a scale
factor and two mapping coe¢cients. Only the breadth, the draft and the area of the
mapped cross section will be equal to that of the actual cross section.
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2. Ursell-Tasai’s Method with N-Parameter Conformal Mapping
A more accurate mapping has been added by Tasai too, by using more than only
two mapping coe¢cients. The accuracy obtained depends on the number of mapping
coe¢cients. Generally, a maximum of 10 coe¢cients are used for de…ning the cross
section. These coe¢cients are determined in such a way that the Root Mean Square
of the di¤erences between the o¤sets of the mapped and the actual cross section is
minimal.

3. Frank’s Pulsating Source Method
Mapping methods require an intersection of the cross section with the water plane
and, as a consequence of this, they are not suitable for submerged cross sections, like
at a bulbous bow. Also, conformal mapping can fail for cross sections with very low
sectional area coe¢cients, such as are sometimes present in the aft body of a ship.
Frank considered a cylinder of constant cross sections with an arbitrarily symmetrical
shape, of which the cross sections are simply a region of connected line elements. This
vertical cross section can be fully or partly immersed in a previously undisturbed ‡uid
of in…nite depth. He developed an integral equation method utilizing the Green’s
function which represents a complex potential of a pulsating point source of unit
strength at the midpoint of each line element. Wave systems were de…ned in such
a way that all required boundary conditions were ful…lled. The linearized Bernoulli
equation provides the pressures after which the potential coe¢cients were obtained
from the in-phase and out-of-phase components of the resultant hydrodynamic loads.

Forward Ship Speed

In case of a forward ship speed V , potential functions de…ned in the earth bounded coordi-
nate system (x0; y0; z0) have to be transformed to potential functions in the ship’s steadily
translating coordinate system (x; y; z). This requires an operator which transforms the
derivative of a function F (x0; y0; z0; t), in the earth bounded (…xed) coordinate system,
to the derivative of a function F (x; y; z; t), in the ship’s steadily translating coordinate
system:

x = x0 ¡ V t y = y0 z = z0
@

@t
F (x0; y0; z0; t) =

@

@t
F (x; y; z; t) +

@

@x
F (x; y; z; t) ¢ dx

dt

=
@

@t
F (x; y; z; t) ¡ V ¢ @

@x
F (x; y; z; t)

=

µ
@

@t
¡ V ¢ @

@x

¶
F (x; y; z; t)

=
D

Dt
F (x; y; z; t) (8.14)

Thus, the operator is given by:

¯̄
¯̄ D
Dt

=

µ
@

@t
¡ V ¢ @

@x

¶¯̄
¯̄ (8.15)

When assuming small surge motions (x t xb), this operator can also be written as:
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¯̄
¯̄ D
Dt

t
µ
@

@t
¡ V ¢ @

@xb

¶¯̄
¯̄ (8.16)

The e¤ect of this operator can be understood easily when one realizes that in that earth-
bound coordinate system the sailing ship penetrates through a ”virtual vertical disk”.
When a ship sails with speed V and a trim angle, µ, through still water, the relative
vertical velocity of a water particle with respect to the bottom of the sailing ship becomes
V ¢ µ.
Relative to an oscillating ship moving forward with speed V in the undisturbed surface of
the ‡uid, the equivalent displacements, ³¤hj , velocities, _³

¤
hj

, and accelerations, Ä³
¤
hj

, in the
arbitrary direction j of a water particle in a cross section are de…ned by:

³¤hj ,
_³
¤
hj
=
D

Dt

n
³¤hj

o
and Ä³

¤
hj
=
D

Dt

n
_³
¤
hj

o
(8.17)

Relative to a restrained ship, moving forward with speed V in waves, the equivalent j
components of water particle displacements, ³¤wj , velocities, _³

¤
wj , and accelerations, Ä³

¤
wj , in

a cross section are de…ned in a similar way by:

³¤wj ,
_³
¤
wj =

D

Dt

n
³¤wj

o
and Ä³

¤
wj =

D

Dt

n
_³
¤
wj

o
(8.18)

Two di¤erent types of strip theory methods are discussed here:

1. Ordinary Strip Theory Method
According to this classic method, the uncoupled two-dimensional potential hydrome-
chanical loads and wave loads in an arbitrary direction j are de…ned by:

¯̄
¯̄X¤

hj
=
D

Dt

n
M0
jj ¢ _³¤hj

o
+N 0

jj ¢ _³¤hj +X 0
rsj

¯̄
¯̄

¯̄
¯̄X¤

wj =
D

Dt

n
M 0
jj ¢ _³¤wj

o
+ N 0

jj ¢ _³¤wj +X 0
fkj

¯̄
¯̄ (8.19)

This is the …rst formulation of the strip theory that can be found in the literature. It
contains a more or less intuitive approach to the forward speed problem, as published
in detail by [Korvin-Kroukovsky and Jacobs, 1957] and others.

2. Modi…ed Strip Theory Method
According to this modi…ed method, these loads become:

¯̄
¯̄X¤

hj
=
D

Dt

½µ
M 0
jj ¡ i

!e
N

0
jj

¶
¢ _³¤hj

¾
+X 0

rsj

¯̄
¯̄

¯̄
¯̄X¤

wj =
D

Dt

½µ
M 0
jj ¡ i

!e
N

0
jj

¶
¢ _³¤wj

¾
+X 0

fkj

¯̄
¯̄ (8.20)

This formulation is a more fundamental approach of the forward speed problem, as
published in detail by [Tasai, 1969] and others.
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In equations 8.19 and 8.20M 0
jj andN 0

jj are the 2-D potential mass and damping coe¢cients.
X 0
rsj is the two-dimensional quasi-static restoring spring term, generally present for heave,

roll and pitch only. X 0
fkj

is the two-dimensional Froude-Krilov force or moment which is
calculated by an integration of the directional pressure gradient in the undisturbed wave
over the cross sectional area of the hull.
Equivalent directional components of the orbital acceleration and velocity, derived from
these Froude-Krilov loads, are used to calculate the di¤raction parts of the total wave
forces and moments.
From a theoretical point of view, one should prefer the use of the modi…ed method, but it
appeared from user’s experience that for ships with moderate forward speed (Fn5 0:30),
the ordinary method provides sometimes a better …t with experimental data.

The hydromechanical and wave loads are explained in the following sections as an example
for coupled heave and pitch motions only. A similar approach can be used for the other
motions.
Note however, that the potential coe¢cients will be determined in an axes system with
the origin, O, in the waterline and that ship motions will be de…ned with the origin at the
center of gravity, G. This requires, for instance, for roll moments corrections with sway
forces times the lever arm OG. Detailed information about these corrections are given by
[Vugts, 1970] or [Journée, 2000].

Hydromechanical Loads

The hydromechanical forces for heave and moments for pitch are found by integrating the
two-dimensional heave values over the ship length:

Xh3 =

Z

L

X 0
h3 ¢ dxb

Xh5 = ¡
Z

L

X 0
h3

¢ xb ¢ dxb (8.21)

The vertical motions of the water particles, relative to each cross section of an oscillating
ship in still water, are de…ned by using equations 8.17 and 8.15:

³¤h3 = ¡z + xb ¢ µ
_³
¤
h3 = ¡ _z + xb ¢ _µ ¡ V ¢ µ
Ä³
¤
h3

= ¡Äz + xb ¢ Äµ ¡ 2V ¢ _µ (8.22)

The two-dimensional potential hydromechanical force on a heaving cross section in still
water, as de…ned in equations 8.19 and 8.20, becomes:

¯̄
¯̄X 0

h3
=

µ
M 0
33 +

V
!2e

¢ dN0
33

dxb

¶
¢ Ä³¤h3 +

µ
N 0
33¡ V ¢ dM

0
33

dxb

¶
¢ _³¤h3 +2½g ¢ yw ¢ ³¤h3

¯̄
¯̄ (8.23)

In this and following equations, the additional terms associated with the Modi…ed Strip
Theory are enclosed in rectangles. Ignore these terms to get the Ordinary Strip Theory.
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This results in the following hydromechanical expressions and coe¢cients for the coupled
heave and pitch equations:

¡Xh3 = a33 ¢ Äz + b33 ¢ _z + c33 ¢ z + a35 ¢ Äµ + b35 ¢ _µ + c35 ¢ µ
¡Xh5 = a53 ¢ Äz + b53 ¢ _z + c53 ¢ z + a55 ¢ Äµ + b55 ¢ _µ + c55 ¢ µ (8.24)

with:

a33 = +

Z

L

M0
33 ¢ dxb + V

!2e

R
L

dN0
33

dxb
¢ dxb

b33 = +

Z

L

µ
N 0
33¡ V ¢ dM

0
33

dxb

¶
¢ dxb

c33 = +2½g

Z

L

yw ¢ dxb

a35 = ¡
Z

L

M 0
33 ¢xb ¢ dxb ¡ V

!2e

Z

L

µ
N 0
33 ¡V ¢ dM

0
33

dxb

¶
¢ dxb

¡ V
!2e

R
L

N 0
33 ¢ dxb ¡ V

!2e

R
L

dN0
33

dxb
¢ xb ¢ dxb

b35 = ¡
Z

L

µ
N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ xb ¢ dxb +2V

Z

L

M 0
33 ¢ dxb +V 2

!2e

R
L

dN0
33

dxb
¢ dxb

c35 = ¡2½g
Z

L

yw ¢ xb ¢ dxb (8.25)

a53 = ¡
Z

L

M 0
33 ¢xb ¢ dxb ¡ V

!2e

R
L

dN0
33

dxb
¢ xb ¢ dxb

b53 = ¡
Z

L

µ
N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ xb ¢ dxb

c53 = ¡2½g
Z

L

yw ¢ xb ¢ dxb

a55 = +

Z

L

M0
33 ¢ x2b ¢ dxb +

V

!2e

Z

L

µ
N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ xb ¢ dxb

+ V
!2e

R
L

N 0
33 ¢ xb ¢ dxb + V

!2e

R
L

dN 0
33

dxb
¢ x2b ¢ dxb

b55 = +

Z

L

µ
N 0
33¡ V ¢ dM

0
33

dxb

¶
¢ x2b ¢ dxb ¡ 2V

Z

L

M0
33 ¢ xb ¢ dxb ¡V 2

!2e

R
L

dN0
33

dxb
¢ xb ¢ dxb

c55 = +2½g

Z

L

yw ¢ x2b ¢ dxb (8.26)



8-12 CHAPTER 8. FLOATING STRUCTURES IN WAVES

The derivatives of M 0
33 and N 0

33 have to be determined numerically over the whole ship
length in such a way that the following relation is ful…lled:

xb(L)+"Z

xb(0)¡"

df(xb)

dxb
dxb =

xb(0)Z

xb(0)¡"

df (xb)

dxb
dxb +

xb(L)Z

xb(0)

df(xb)

dxb
dxb +

xb(L)+"Z

xb(L)

df(xb)

dxb
dxb

= f(0) +

xb(L)Z

xb(0)

df(xb)

dxb
dxb ¡ f (L)

= 0 (8.27)

with "¿ L, while f(xb) is equal to the local values of M0
33(xb) or N 0

33(xb); see …gure 8.2.

Figure 8.2: Integration of Longitudinal Derivatives

The numerical integrations of the derivatives are carried out in the region xb(0) · xb ·
xb(L) only. So, the additional so-called ”end terms” f(0) and f(L) are de…ned by:

f(0) =

xb(0)Z

xb(0)¡"

df (xb)

dxb
¢ dxb and f (L) =

xb(L)+"Z

xb(L)

df (xb)

dxb
¢ dxb (8.28)

Because the integration of the derivatives has to be carried out in the region xb(0) ¡ " ·
xb · xb(L)+ ", some algebra provides the integral and the …rst and second order moments
(with respect to G) over the whole ship length:

xb(L)+"Z

xb(0)¡"

df(xb)

dxb
¢ dxb = 0
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xb(L)+"Z

xb(0)¡"

df(xb)

dxb
¢ xb ¢ dxb = ¡

xb(L)Z

xb(0)

f(xb) ¢ dxb

xb(L)+"Z

xb(0)¡"

df(xb)

dxb
¢ x2b ¢ dxb = ¡2

xb(L)Z

xb(0)

f(xb) ¢ xb ¢ dxb (8.29)

Using this, more simple expressions for the total hydromechanical coe¢cients in the coupled
heave and pitch equations can be obtained:

a33 = +

Z

L

M 0
33 ¢ dxb

b33 = +

Z

L

N 0
33 ¢ dxb

c33 = +2½g

Z

L

yw ¢ dxb

a35 = ¡
Z

L

M 0
33 ¢ xb ¢ dxb ¡ V

!2e

Z

L

N 0
33 ¢ dxb

b35 = ¡
Z

L

N 0
33 ¢ xb ¢ dxb + V

Z

L

M 0
33 ¢ dxb

c35 = ¡2½g
Z

L

yw ¢ xb ¢ dxb (8.30)

a53 = ¡
Z

L

M 0
33 ¢ xb ¢ dxb + V

!2e

R
L

N 0
33 ¢ dxb

b53 = ¡
Z

L

N 0
33 ¢ xb ¢ dxb ¡ V

Z

L

M 0
33 ¢ dxb

c53 = ¡2½g
Z

L

yw ¢ xb ¢ dxb

a55 = +

Z

L

M 0
33 ¢ x2b ¢ dxb +

V

!2e

Z

L

N 0
33 ¢ xb ¢ dxb +

V 2

!2e

Z

L

M0
33 ¢ dxb

¡ V
!2e

R
L

N 0
33 ¢ xb ¢ dxb

b55 = +

Z

L

N 0
33 ¢ x2b ¢ dxb +V 2

!2e

R
L

N 0
33 ¢ dxb

c55 = +2½g

Z

L

yw ¢ x2b ¢ dxb t ½gr ¢GML (8.31)



8-14 CHAPTER 8. FLOATING STRUCTURES IN WAVES

Note that both strip theory methods are identical for the zero forward speed case.

Wave Loads

By assuming that:
x ¼ xb y ¼ yb z ¼ zb (8.32)

which is exactly true for the restrained ship, the expressions for the wave surface and the
…rst order wave potential can be written in the body-bound coordinate system as:

³ = ³a cos(!et¡ kxb cos¹¡ kyb sin¹)

©w =
¡³ag
!

¢ coshk(h+ zb)
cosh(kh)

¢ sin(!et¡ kxb cos¹¡ kyb sin ¹) (8.33)

in which ¹ is the wave direction.
The local vertical relative orbital velocity of the water particles follows from the derivative
of the wave potential as given in chapter 5. Equations 8.18 and 8.15 provide the vertical
relative orbital acceleration:

_³
0
w3 =

@©w
@zb

=
¡kg
!

¢ sinh k(h + zb)
cosh(kh)

¢ ³a sin(!et¡ kxb cos¹¡ kyb sin ¹)

Ä³
0
w3 = ¡kg ¢ sinhk(h + zb)

cosh(kh)
¢ ³a cos(!et¡ kxb cos¹¡ kyb sin¹) (8.34)

The pressure in the ‡uid follows from the linearized Bernoulli equation:

p = ¡½gzb + ½g ¢ coshk(h + zb)
cosh(kh)

¢ ³a cos(!et¡ kxb cos¹¡ kyb sin¹)

= p0 +
@p

@xb
¢ dxb +

@p

@yb
¢ dyb +

@p

@zb
¢ dzb (8.35)

Only the vertical pressure gradient is of importance for the vertical loads on of a cross
section:

@p

@zb
= ¡½g + ½kg ¢ sinhk(h + zb)

cosh(kh)
¢ ³a cos(!et¡ kxb cos¹¡ kyb sin¹) (8.36)

which can be expressed in terms of the vertical orbital acceleration - instead - as:

@p

@zb
= ¡½ ¢ (g + Ä³ 0w3) (8.37)

Figure 8.3 shows that the vertical Froude-Krilov force can be written as:

X 0
fk3

= ¡
³Z

¡T

+ybZ

¡yb

@p

@zb
¢ dyb ¢ dzb

= ½

³Z

¡T

+ybZ

¡yb

(g+ Ä³
0
w3
) ¢ dyb ¢ dzb (8.38)
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Figure 8.3: Wave Pressure Distribution for Heave

After neglecting the second order terms and some algebra, this Froude-Krilov force can be
written as a spring term:

X 0
fk3 = 2½gyw ¢ C3 ¢ ³a cos(!et ¡ kxb cos¹) (8.39)

with:

C3 =
sin(¡kyw sin¹)

¡kyw sin¹
¡ k

yw
¢

0Z

¡T

sin(¡kyb sin¹)
¡kyb sin¹

¢ sinh k(h + zb)
cosh(kh)

¢ yb ¢ dzb (8.40)

or in deep water with long waves relative to the breadth of the cross section (kyw ¿ 1):

C3 = 1¡ k

yw
¢

0Z

¡T

ekzb ¢ yb ¢ dzb (8.41)

By expanding the exponent in C3 from equation 8.41 in a series, one …nds:

C3 = 1 ¡ k ¢ A
2yw

¡ k2 ¢ Sy
2yw

¡ k3 ¢ Iy
4yw

¡ :::::: (8.42)

with:

A = 2

0Z

¡T

yb ¢ dzb Sy = 2

0Z

¡T

yb ¢ zb ¢ dzb Iy = 2

0Z

¡T

yb ¢ z2b ¢ dzb (8.43)

For deep water with long waves relative to the breadth and draft of the cross section
(kyw ¿ 1 and kT ¿ 1) one can write:

C3 ¼ e¡kT
¤
3 or T ¤3 ¼ ¡ lnC3

k
(8.44)

Now, T ¤3 can be considered as the draft at which the pressure is equal to the average
pressure on the cross section in the ‡uid. By de…ning ³¤a3 = C3 ¢ ³a3, the term ½g ¢ ³¤a3
becomes the amplitude of this mean pressure.
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The e¤ective vertical components of the orbital accelerations and velocities in undisturbed
waves are de…ned at this draft T ¤3 too:

Ä³
¤
w3

= ¡kg ¢ ³¤a3 cos(!et¡ kxb cos¹)

_³
¤
w3

=
¡kg
!

¢ ³¤a3 sin(!et¡ kxb cos¹) (8.45)

With this, the two-dimensional wave exciting force on a restrained cross section of a ship
in waves, as de…ned in equations 8.19 and 8.20, becomes:

X 0
w3 =

µ
M0
33 +

V
!2e

¢ dN0
33

dxb

¶
¢ Ä³¤w3 +

µ
N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ _³¤w3 +X 0

fk3 (8.46)

in which only the modi…ed strip theory includes the outlined term.
These equivalent accelerations and velocities in the undisturbed wave are used to
determine the additional wave loads due to di¤raction of the waves. They are considered
as potential mass and damping terms, just as applied for the hydromechanical loads. This
is the reason why this approach called the relative motion principle in strip theory.
The total wave loads for heave and pitch follows from all this:

Xw3 = +

Z

L

M 0
33 ¢ Ä³ ¤w3 ¢ dxb + V

!¢!e
R
L

dN0
33

dxb
¢ Ä³¤w3 ¢ dxb

+

Z

L

µ
!
!e

¢ N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ _³¤w3 ¢ dxb

+

Z

L

X 0
fk3 ¢ dxb (8.47)

Xw5 = ¡
Z

L

M 0
33 ¢ xb ¢ Ä³¤w3 ¢ dxb ¡ V

!¢!e
R
L

dN0
33

dxb
¢ xb ¢ Ä³¤w3 ¢ dxb

¡
Z

L

µ
!
!e

¢ N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ xb ¢ _³¤w3 ¢ dxb

¡
Z

L

X 0
fk3 ¢ xb ¢ dxb (8.48)

Note that both strip theory methods are identical here for the zero forward speed case and
that the (generally small) in‡uence of the surge wave loads on the pitch wave moment has
been ignored here, too.

Heave and Pitch Equations

Putting all this together yields the coupled equations of motion of heave and pitch:

(½r + a33) ¢ Äz + b33 ¢ _z + c33 ¢ z + a35 ¢ Äµ + b35 ¢ _µ + c35 ¢ µ = Xw3
a53 ¢ Äz + b53 ¢ _z + c53 ¢ z + (Ixx+ a55) ¢ Äµ + b55 ¢ _µ + c55 ¢ µ = Xw5 (8.49)

which can be solved as described in chapter 6.
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8.3.4 3-D Panel Method

This method is restricted to arbitrarily shaped bodies with zero mean forward speed. This
is an acceptable simpli…cation for the majority of the …xed or ‡oating structures in use
today in the o¤shore industry.
The panel method is a numerical method to calculate the (potential) ‡ow around a body,
based on the principle of Green’s integral theorem. According to this theorem it is possi-
ble to transform a three-dimensional linear homogeneous di¤erential equation into a two-
dimensional integral equation. In that way the three-dimensional Laplace (potential) equa-
tion can be transformed to a surface integral equation, known as Green’s identity. The
integral equation represents a distribution of sources (or sinks) and dipoles on the surface.
To solve the integral equation numerically, the surface of the body is divided in a number
of panels, as shown for a crude oil carrier in …gure 8.4.

Figure 8.4: 3-D Representation of the Hull Form of a Crude Oil Carrier

The body surface is divided in N panels small enough to assume that the sources and
doublets strength and the ‡uid pressure is constant over each element. Now a set of
integral equations is made, from which the velocity potentials can be found. The integral
equation can be discretized for each panel by substituting an unknown strength of the
source and dipole distribution. By using the boundary condition of tangential ‡ow, the
unknown strength of the sources and dipoles can be solved. If the strength of each dipole
or source is known the velocities can be determined on the surface.
Note that there are now no restrictions on the form and shape of the body. This method
works equally well for a ship, the base of a concrete GBS structure or a semi-submersible.
The method will work - in principle - with any size of structure as well.
The advantage of panel methods is that the problem is reduced to a two-dimensional
(surface) problem instead of a three-dimensional (volume) problem. The grid generation is
also reduced to a two dimensional problem. So the grid has to be generated on the surface
of the body only. This is in contrast to the three dimensional grid generation, where a lot
of points have to be generated in the space around the body. Another advantage is that
N2 equations, instead of N 3 equations, have to be solved to determine the velocity …eld.
Panel methods are the most common technique used to analyze the linear steady state
response of large-volume structures in regular waves. A wave spectrum is used to describe
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a sea state and irregular sea results can be obtained by linear superposition of results from
regular incident waves.
It is assumed that oscillation amplitudes of the ‡uid and the body are small relative to
cross-sectional dimensions of the body.
Since the panel is based on potential theory, the e¤ect of ‡ow separation is neglected. As
a consequence, the method should not be applied to slender structures, risers or tethers.
Methods for such structures are discussed in chapter 12.
The quality of the results depends on the size and the number of panels used to schematic
the body. There is no unique way to approximate the body surface by elements. Since
it assumed that the source and dipole densities - and consequently the ‡uid pressure -
are constant over each element, one should use smaller elements in areas where the ‡ow
changes more rapidly. It should be realized that the numerical solution for velocities never
is satisfactory on an element closest to a sharp corner. The reason is that the potential
‡ow solution has a singularity there, and that this is inconsistent with the assumption that
the source density and velocity potential are constant over an element. In reality the ‡ow
will separate at a sharp corner. This e¤ect is not included in the method.
In the wave zone the element size should be small compared to the wave length. A char-
acteristic length of an element ought to be less than 1/8 of the wave length.
In the case of semi-submersibles and at least a vertical column with circular cross-section
there ought to be at least 16 circumferential elements at any height. As a consequence
panelling of a semi-submersible platform requires a relatively …ne grid mesh. The result of
that is that numerical models of di¤raction radiation should not be used in the pre-design
process of for instance semi-submersibles.
Typical values for the total number of elements for an o¤shore structure may vary from
500 to 1500. However, …gure 8.5 shows an example where 12608 panels where used for the
total structure.

Figure 8.5: Submerged Portion of One Quadrant of a Six Column TLP

Iterative solutions of the system of linear equations for the source densities are required in
order to be within practical limits of CPU time on available computer hardware. The best
way to …nd a su¢cient number of elements, is to do calculations with increasing numbers
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of elements and check the convergence of the results.
Methods to evaluate the hydrodynamic loads and motions of ‡oating or …xed structures
in waves have been developed based on linear three-dimensional potential theory, see for
instance [Oortmerssen, 1976a]. Both, the wave-frequency hydrodynamic loads on free-
‡oating or …xed bodies and the wave-frequency motions of ‡oating bodies as well as the
second order wave drift forces can be computed. Experimental veri…cation of results of
computations has been carried out for bodies with a large variety of shapes. Such com-
parisons have shown that 3-D di¤raction methods generally can be applied to most body
shapes and are therefore a good tool to investigate such e¤ects.
It may be noted that the 3-D method as described here is suitable for the zero forward
speed case only. Generally the potential coe¢cients are determined in a coordinate system
with G= O in the water line, so that a correction for the actual OG-value is required.

8.4 Motions in Regular Waves

Each equation of motion can be split into an equation with in-phase parts and an equation
with out-of-phase components. After dividing the left and right hand terms of these equa-
tions by the wave amplitude ³a, two sets of six coupled equations of motion are available.
The unknown variables in the 6 coupled equations of motions in the vertical plane are:

surge: xa
³a

¢ cos "x³ and xa
³a

¢ sin "x³

heave: za
³a

¢ cos "z³ and za
³a

¢ sin "z³

pitch: µa
³a

¢ cos "µ³ and µa
³a

¢ sin "µ³

9
>>>>>=
>>>>>;

(8.50)

The unknown variables in the 6 coupled equations of motions in the horizontal plane
are:

sway: ya
³a

¢ cos "y³ and ya
³a

¢ sin "y³

roll: Áa
³a

¢ cos "Á³ and Áa
³a

¢ sin "Á³

yaw: Ãa
³a

¢ cos "Ã³ and Ãa
³a

¢ sin "Ã³

9
>>>>>=
>>>>>;

(8.51)

These 2 sets of equations of motion have to be solved numerically. Their terms are explained
below.

8.4.1 Frequency Characteristics

The transfer functions (also called response amplitude operators) of the motions are
the motion amplitude component to wave amplitude ratios. They and the phase shifts of
these motions relative to the (virtual) wave elevation at the ship’s center of gravity follow
from the solution to 8.50 and 8.51:

xa
³a

ya
³a

za
³a

µa
³a

Áa
³a

Ãa
³a

and

"x³ "y³ "z³ "µ³ "Á³ "Ã³



8-20 CHAPTER 8. FLOATING STRUCTURES IN WAVES

The transfer functions of the translations are dimensionless. The transfer functions of the
rotations can be made non-dimensional by dividing the amplitude of the rotations by the
amplitude of the wave slope, k³a, instead of the wave amplitude, ³a, yielding:

xa
³a

ya
³a

za
³a

µa
k³a

Ãa
k³a

Áa
k³a

The remainder of this section gives some general properties of these frequency characteris-
tics.
Figures 8.6 and 8.7 show the frequency characteristics of the coupled heave and pitch
motions of a crude oil carrier, as computed, using the SEAWAY strip theory program, see
[Journée, 1999], for 0 and 16 knots forward ship speed in head and beam deep water waves.
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Figure 8.6: Heave and Pitch of a Crude Oil Carrier, V = 0 Knots

Examine …rst the heave and pitch motions at zero forward speed in head waves at deep
water. These are the solid line curves in …gure 8.6. In very long waves (! ! 0), the ship
behaves like a sea gull in waves; she follows the wave surface. The heave amplitude, za,
tends to the wave amplitude, ³a, and the pitch amplitude, µa, tends to the wave slope
amplitude, k³a. Both dimensionless transfer functions tend to 1.0. The ship follows the
wave surface, so the phase shift for heave, "z³, tends to zero or -360±and the phase of
the pitch angle relative to the wave elevation, "µ³ , tends to -90±. Resonance can appear,
depending on the magnitude of the damping, somewhere in the neighborhood of the natural
frequencies.
Notice that resonance does not always appear at the natural frequency. When determin-
ing the natural frequency, the right hand side of the (uncoupled) equation of motion is
zero, while when determining the resonant frequency, the right hand side of the (coupled)
equation of motion contains the frequency-dependent wave load(s). Both, the natural
frequencies and the frequency-dependent wave loads determine the resonant frequencies.
Also, coupling e¤ects play a role.
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Resonances are usually marked in these diagrams by a local maximum in the response
amplitude operator (RAO) and a rather abrupt change in response phase. At frequencies
somewhat higher than the natural frequencies of heave and pitch, the transfer functions
decrease and at still higher frequencies - as wave lengths becomes shorter than the ship
length - the transfer functions tend to zero. No general conclusion can be drawn about the
behavior of the phase shifts at higher frequencies.
Examining these motions in beam waves (¹= 90±, the dashed lined in …gure 8.6), in very
long waves (! ! 0), the ship behaves like a sea-gull in waves again; it follows the wave
surface. The heave amplitude, za; tends to the wave amplitude, ³a; the non-dimensional
transfer function tends to 1.0. The phase shift, "z³, tends to zero. In beam waves, it is not
the wave length to ship length ratio but the wave length to ship breadth ratio that is of
importance. When taking this into account, the heave motion behavior in beam waves is
more or less similar to this motion in head waves, but the resonance peak can be higher.
However, the pitch moments and motions become very small in the whole frequency range.
Pitch motions in beam waves can be caused only by the anti-symmetry of the aft and fore
body of the vessel with respect to its amidships section.
Comparable considerations can be given for the motions at forward speed, as given in
…gure 8.7. Notice the start of an ”overshoot” in the heave and pitch motions in head
waves. RAO’s larger than 1.0 at wave lengths of about the ship length are common for
high speed vessels.
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Figure 8.7: Heave and Pitch of a Crude Oil Carrier, V = 16 Knots

An example of predicted and measured transfer functions of the motions in all six degrees
of freedom of an aircraft carrier sailing at 25 knots (obtained from Principles of Naval
Architecture,1989) is given in …gure 8.8. Each column in the …gure is for a di¤erent wave
direction. Notice that the frequency scale has been changed to an equivalent wave length
over ship length scale.
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Figure 8.8: Measured and Calculated RAO’s of an Aircraft Carrier

Figure 8.9 shows the speed dependent transfer functions of the roll motions in beam waves
and the pitch motions in head waves of a container ship. Notice the opposite e¤ect of
forward speed on these two angular motions, caused by a with forward speed strongly
increasing lift-damping of the roll motions. The ‡ow around the sailing and rolling ship is
asymmetric and the ship behaves like an airfoil.

8.4.2 Harmonic Motions

When the translations of, and the rotations about, the center of gravity are known, the
motions of any point, P (xb; yb; zb), on the ship can be determined - again by superposition.

Displacements

The harmonic longitudinal displacement is given by:

xp = x ¡ yb ¢ Ã + zb ¢ µ
= xpa ¢ cos(!et+ "xp³) (8.52)

The harmonic lateral displacement is given by:

yp = y + xb ¢ Ã ¡ zb ¢ Á
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Figure 8.9: RAO’s of Roll and Pitch of a Containership

= ypa ¢ cos(!et+ "yp³ ) (8.53)

The harmonic vertical displacement is given by:

zp = z ¡ xb ¢ µ ¡ yb ¢ Á
= zpa ¢ cos(!et+ "zp³) (8.54)

Velocities

The harmonic velocities in the xb-, yb- and zb-direction of point P (xb; yb; zb) on the ship
are obtained by taking the derivative of the three harmonic displacements.
The harmonic longitudinal velocity is given by:

_xp = _x ¡ yb ¢ _Ã + zb ¢ _µ
= ¡!e ¢ xpa ¢ sin(!et+ "xp³ )
= _xpa ¢ cos(!et+ " _xp³) (8.55)

The harmonic lateral velocity is given by:

_yp = _y + xb ¢ _Ã ¡ zb ¢ _Á
= ¡!e ¢ ypa ¢ sin(!et+ "yp³)
= _ypa ¢ cos(!et+ " _yp³ ) (8.56)

The harmonic vertical velocity is given by:

_zp = _z ¡ xb ¢ _µ + yb ¢ _Á
= ¡!e ¢ zpa ¢ sin(!et+ "zp³)
= _zpa ¢ cos(!et + " _zp³) (8.57)
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Accelerations

The harmonic accelerations in the xb-, yb- and zb-direction of point P (xb; yb; zb) on the
ship are obtained by taking the second derivative of the three harmonic displacements.
However, in a ship-bound axes system, a longitudinal and transverse component of the
acceleration of gravity, g, has to be added to the longitudinal and lateral accelerations
respectively; this yields the total accelerations that the ship and its structural parts and
cargo ”feel”.
The harmonic longitudinal acceleration is given by:

Äxp = Äx ¡ yb ¢ ÄÃ + zb ¢ Äµ¡ g ¢ µ
= ¡!2e ¢ xpa ¢ cos(!et+ "xp³) ¡ g ¢ µa ¢ cos(!et+ "µ³)
= Äxpa ¢ cos(!et+ "Äxp³ ) (8.58)

The harmonic lateral acceleration is given by:

Äyp = Äy + xb ¢ ÄÃ ¡ zb ¢ ÄÁ + g ¢ Á
= ¡!2e ¢ ypa ¢ cos(!et+ "yp³) + g ¢ Áa ¢ cos(!et+ "Á³ )
= Äypa ¢ cos(!et+ "Äyp³) (8.59)

The harmonic vertical acceleration is given by:

Äzp = Äz ¡ xb ¢ Äµ + yb ¢ ÄÁ
= ¡!2e ¢ zpa ¢ cos(!et+ "zp³)
= Äzpa ¢ cos(!et + "Äzp³) (8.60)

Vertical Relative Displacements

The harmonic vertical relative displacement with respect to the undisturbed wave surface
of point P (xb; yb; zb) connected to the ship can be obtained too:

sp = ³p ¡ z + xb ¢ µ ¡ yb ¢ Á
= spa ¢ cos(!et + "sp³) (8.61)

with:

³p = ³a cos(!et¡ kxb cos¹¡ kyb sin¹) (8.62)

This relative motion plays a role in shipping water phenomena, which will be discussed in
chapter 11. It may be noted that the sign of the relative motion is chosen here in such a
way that a positive relative displacement implies a decrease of the freeboard.
Figure 8.10 shows the speed dependent transfer functions of the absolute and the relative
vertical bow motions of a container ship in head waves. Note the opposite characteristics
of these two motions in shorter and longer waves.
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Figure 8.10: Absolute and Relative Vertical Motions at the Bow

Vertical Relative Velocities

The harmonic vertical relative velocity with respect to the undisturbed wave surface of a
certain point, P (xb; yb; zb), connected to the ship, can be obtained by:

_s =
D

Dt

©
³p ¡ z + xb ¢ µ ¡ yb ¢ Á

ª

= _³p ¡ _z + xb ¢ _µ ¡ V ¢ µ ¡ yb ¢ _Á (8.63)

with:
_³p = ¡! ¢ ³a sin(!et¡ kxb cos¹¡ kyb sin¹) (8.64)

This velocity can play an important role in slamming of the bow of the ship; this will be
discussed in chapter 11.

8.4.3 Dynamic Swell-Up

An oscillating ship will produce waves which in turn will in‡uence the vertical relative mo-
tion of the ship. A so-called dynamic swell-up (which is a typical ship hydromechanical
phrase for this phenomenon) should be taken into account.
[Tasaki, 1963] carried out forced oscillation tests with several ship models in still water and
obtained an empirical formula for the dynamic swell-up at the forward perpendicular in
head waves:

¢sa
sa

=
CB ¡ 0:45

3
¢
s
!2eL

g
(8.65)

with the restrictions:

block coe¢cient: 0:60 < CB < 0:80
Froude number: 0:16 < Fn < 0:29
frequency of encounter: 1:60 < !2eLpp=g < 2:60
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In this formula, sa is the amplitude of the relative motion at the forward perpendicular as
obtained in head waves, calculated from the heave, the pitch and the wave motions.
Then the actual amplitude of the relative motions becomes:

s¤a = sa + ¢sa (8.66)

A simple but much more fundamental method to determine the dynamic swell up forward
is given by [Journée and van ’t Veer, 1995]; it is explained here.
Let an oscillating body produce damping waves, ¢³, with amplitude ¢³a. When the
vertical relative motions of a point …xed to the vessel with respect to the wave elevation are
calculated, the in‡uence of the radiated damping waves must be added to the undisturbed
incoming wave. Then the vertical relative motions, s, at a point, P (xb; yb), can be calculated
using:

s(xb; yb) = ³(xb; yb) + ¢³ ¡ z(xb; yb) (8.67)

where ³ is the incoming wave elevation and z(xb; yb) is the vertical motion of the vessel in
P (xb; yb) and where the radiated wave elevation is given by:

¢³ = ¢³a ¢ cos(!t¡ kjybj+ ¼) (8.68)

For zero forward speed, the amplitude ratio of the local heave motion, za(xb); at a cross
section, xb, of the body and the produced transverse radiated waves, ¢³a(xb), follows from
the damping coe¢cient, b033(xb), and the wave speed, c = g=!:

za(xb)

¢³a(xb)
=
1

!
¢
r

½gc

b033(xb)
(8.69)

This has already been discussed for an oscillating cylinder in chapter 6.
Using this equation, the ratio of the amplitudes from the radiated waves due to the heaving
cross section and the incoming wave becomes:

¢³a(xb)

³a
=
za(xb)

³a
¢ ! ¢

s
b
0
33(xb)

½gc
(8.70)

In case of a forward ship speed, V , the cross section is oscillating with the encounter
frequency, !e, and therefore the wave velocity, ce, of the radiated waves depends on this
frequency:

ce =
g

!e
(8.71)

Due to the forward speed the radiated waves are swept back in the wake. The wave
elevation at a certain point, P (xp; yp), in the ship-bounded axes system is now a result of
the radiated waves from a cross section further ahead. The xb-position of this cross section
can be calculated simply, using:

xb = xp + jypj ¢ V
ce

(8.72)

The amplitude of the radiated waves with a non-zero forward speed can now be calculated
using the damping coe¢cient based on the encounter frequency and the previous expression
for xb: ¯̄

¯̄
¯̄
¢³a(xp; yp)

³a
=
za(xb)

³a
¢ !e ¢

s
b033(xb)

½gce

¯̄
¯̄
¯̄ (8.73)
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This calculation method has been veri…ed by using available results of experiments of
[Journée, 1976a], carried out with a self propelled 1:50 model of a fast cargo ship in regular
head waves; see …gure 8.11. In the ballast condition of the model, the vertical relative
motions have been measured at four ship speeds at 10 % of the length aft of the forward
perpendicular. The curves in these …gures marked by ”undisturbed wave” refer to not
accounting for a dynamic swell-up; the curves marked by ”disturbed wave” refer to ac-
counting for a dynamic swell-up as described above. The …gures show a strongly improved
agreement between the measured and the predicted relative motions taking a dynamic
swell-up in to account, especially at frequencies near resonance.
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Figure 8.11: Vertical Relative Motions in Head Waves of a Fast Cargo Ship

8.5 Motions in Irregular Waves

Once the transfer functions between wave energy and motion (component) energy are
known, one can transform any wave energy spectrum to a corresponding motion energy
spectrum. This was explained in chapter 6 for a ship which is not sailing; the average
speed was zero.
When a ship is sailing, it will generally encounter or ”meet” the waves with a di¤erent
apparent frequency, the frequency of encounter !e, than one would observe from a …xed
location; see chapter 6. The …rst part of this section describes additional necessary wave
spectrum axis transformations.

8.5.1 Spectrum Transformations

The spectral value of the waves, S³(!e), based on !e is not equal to the spectral value,
S³(!), based on !. Because there must be an equal amount of energy in the frequency
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bands ¢! and ¢!e, it follows that:

jS³(!e) ¢ d!e = S³(!) ¢ d!j (8.74)

This transformation rule is demonstrated in …gure 8.12.
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Figure 8.12: Transformation of Wave Spectra

The following relation is found from equation 8.74:

¯̄
¯̄
¯S³ (!e) =

S³ (!)
d!e
d!

¯̄
¯̄
¯ (8.75)

The relation between the frequency of encounter and the wave frequency in deep water has
been found in chapter 6:

!e = ! ¡ !2

g
V ¢ cos¹

= ! ¢
µ
1¡ V

c
¢ cos¹

¶
(by using: c = g=!) (8.76)

in which:

! = wave frequency in a …xed reference (rad/s)
!e = frequency of encounter in a moving reference (rad/s)
V = forward ship speed (m/s)
c = wave speed (m/s)
¹ = ship heading relative to wave direction (rad)

Thus, for deep water:
d!e
d!

= 1¡ 2!V ¢ cos¹
g

(8.77)
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Figure 8.13: Relation between !e and !

Equation 8.76 is plotted in …gure 8.13 for a forward speed of 16 knots. The upper curve
is for head waves - approaching from the bow; the frequency of encounter becomes higher
than the wave frequency (!e > !).
There is no frequency shift for waves which approach from abeam (¹ = §¼=2) so that
!e = ! as is shown in the …gure, too.

The situation with following seas requires the most thought:

² When !e ! 0, the speed of the waves becomes high and !e is only slightly in‡uenced
by V (which is smaller than c).

² As! increases - from small values - the wave speed decreases slowly so that V becomes
more and more important. From equation 8.77 follows that !e has a maximum value
(with waves coming from behind) when ! = g=(2V ). The corresponding !e value is
!e = g=(4V ); this is the highest apparent frequency that will be observed with waves
coming from behind. Since d!e=d! is here zero, one can expect problems with S³(!e)
at this frequency - see equation 8.75.

² As ! increases beyond ! = g=(2V ), the wave speeds continue to decrease so that !e
deceases as well.

² At some even higher frequency ! = g=V , the wave speed, c, matches the ship speed,
V . The ship can ”surf” on this wave!

² Waves with frequencies higher than ! = g=V are moving more slowly than the
ship. The ship intercepts these waves from behind so that these behave as head
waves! Because negative frequencies are not ”normal” - these values are shown by
the dashed line - their absolute value is plotted instead.

Note as well that for any wave frequency, !, the di¤erence between the encounter frequency
in head waves and the absolute wave frequency (equal to the encounter frequency in beam
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seas) is the same as the di¤erence between this absolute wave frequency and its encounter
frequency in a following sea. This follows from the symmetry in equation 8.76. These two
values are labeled ”k ¢ V ” in …gure 8.13.
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Figure 8.14: Transformed Wave Spectrum in Following Waves

Figure 8.14 shows how a wave spectrum is distorted when it is transformed in terms of
encounter frequency in following waves. This type of distortion takes place whenever the
waves have a velocity component in the same sense as the ship speed - whenever the waves
approach from any direction aft of ”beam seas”. This spectrum will be hard to work with!
When waves are approaching from any direction forward of ”beam seas” encounter frequen-
cies only become higher than the absolute frequencies; no special problems are encountered
- see …gure 8.15.
This is all used as is described below.

8.5.2 Response Spectra

The response spectrum of a motion (or response, r) on the basis of encounter frequency,
!e, can be found from the transfer function of the motion and the wave spectrum by:

¯̄
¯̄
¯Sr(!e) =

¯̄
¯̄ ra
³a
(!e)

¯̄
¯̄
2

¢ S³ (!e)
¯̄
¯̄
¯ (8.78)

The moments of the response spectrum are given by:
¯̄
¯̄
¯̄mnr =

1Z

0

!ne ¢ Sr(!e) ¢ d!e

¯̄
¯̄
¯̄ with: n = 0; 1; 2; ::: (8.79)

This computation causes no di¢culty when S³³(!e) is not well behaved - as in following
seas. This problem can be avoided if the necessary moments are computed as follows,
instead of using equation 8.79:
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Figure 8.15: Heave Spectra in the Wave and Encounter Frequency Domains

m0r =

1Z

0

Sr(!e) ¢ d!e =

1Z

0

Sr(!) ¢ d!

m1r =

1Z

0

!e ¢ Sr(!e) ¢ d!e =
1Z

0

!e ¢Sr(!) ¢ d!

m2r =

1Z

0

!2e ¢ Sr(!e) ¢ d!e =
1Z

0

!2e ¢ Sr(!) ¢ d! (8.80)

This avoids integrations of Sr(!e) or S³(!e) over !e.
Note that a negative spectral value in …gure 8.14 does not imply a negative energy; both
S³(!e) and d!e are negative and the energy is their product: the area S³ (!e) ¢ d!e (which
is positive).
The signi…cant amplitude can be calculated from the spectral density function of a response.
The signi…cant amplitude is de…ned to be the mean value of the highest one-third part of
the highest response amplitudes, or equivalently:

¯̄
¯ra1=3 = 2

p
m0r = 2 ¢RMS

¯̄
¯ (8.81)

A mean period can be found from the centroid of the spectrum (T1r) or from the radius of
gyration of the spectrum (zero-upcrossing period, T2r):

¯̄
¯̄T1r = 2¼ ¢ m0r

m1r

¯̄
¯̄ and

¯̄
¯̄T2r = 2¼ ¢

r
m0r

m2r

¯̄
¯̄ (8.82)
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Because of the linearity, which results in a linear relationship between the motion amplitude
and the regular wave amplitude, and the (ideal) wave spectrum de…ned by S³³(!) = H2

1=3 ¢
f(!; T), the calculated signi…cant response amplitude values in irregular waves are often
presented as:

ra1=3
H1=3

versus: T ( = T1, T2 or Tp)

in which H1=3 is the signi…cant wave height, T (= T1, T2 or Tp) are mean wave periods and
f(!; T) is a function of ! and T only.
Spectra of response velocities and accelerations are found by a multiplication of the RAO
of the displacement with !e and !2e, respectively. Because the squares of the RAO are used
to de…ne the response spectra, the spectral moments can be written as:

m0_r = m2r and m0Är = m2 _r = m4r

m1_r = m3r and m1Är = m3 _r = m5r

m2_r = m4r and m2Är = m4 _r = m6r (8.83)

8.5.3 First Order Motions

Figure 8.16 shows an example of the striking in‡uence of the average wave period on a
response spectrum. This response is the heave motion of a 175 meter container ship, sailing
with a speed of 20 knots in head waves with a signi…cant wave height of 5.0 meters.
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Figure 8.16: E¤ect of Wave Period on Heave

For the wave spectrum with an average period of 6.0 seconds, the transfer function has
very low values in the wave frequency range. The response spectrum becomes small; only
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small motions result. As the average wave period gets larger (to the right in …gure 8.16),
the response increases dramatically.

A similar e¤ect will be obtained for a larger range of average wave periods if the transfer
function of the motion shifts to the low frequency region. A low natural frequency is
required to obtain this. This principle has been used when designing semi-submersibles,
which have a large volume under water and a very small spring term for heave (small water
plane area). However, such a shape does not make much of a wave when it oscillates; it has
little potential damping. This results in large (sometimes very large) RAO’s at the natural
frequency. As long as there is (almost) no wave energy at this frequency, the response
spectrum will remain small.

Figure 8.17: E¤ect of Natural Period on Heave Motions

Figure 8.17 shows a wave spectrum with sketches of RAO’s for heave of three di¤erent
types of ‡oating structures at zero forward speed:

² The pontoon has a relatively high natural frequency and as a result of this signi…-
cant RAO values over a large part of the normal wave frequency range. Almost all
wave energy will be transferred into heave motions, which results in a large motion
spectrum.
An extreme example is the wave buoy, which has (ideally) an RAO of 1.0 over the
whole frequency range. Then the response spectrum becomes identical to the wave
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spectrum, which is of course the aim of this measuring tool. It should follow the
water surface like a sea gull!

² The ship, with a lower natural frequency, transfers a smaller but still considerable
part of the wave energy into heave motions.

² The semi-submersible however, with a very low natural frequency (large mass and
small intersection with the water line), transfers only a very small part of the wave
energy; very low …rst order heave motions will appear; it remains essentially stable
in the waves.

One can conclude that the natural frequency is a very important phenomenon which dic-
tates (to a signi…cant extent) the behavior of the structure in waves. Whenever possible,
the natural frequency should be shifted out of the wave frequency region.
The fact that the resonant frequency of a motion does not necessarily coincide with the
natural frequency has been explained earlier in this chapter. A clear example of this is given
by [Hooft, 1970], as shown in …gure 8.18, for a semi-submersible platform with di¤erent
dimensions of the under water geometry. This geometry has been con…gured in such a way
that the responses are minimal at the natural frequency.

Figure 8.18: Heave Responses of Semi-Submersible Platforms in Waves

8.5.4 Probability of Exceeding

The probability density function of the maximum and minimum values, in case of a spec-
trum with a frequency range which is not too wide, is given by the Rayleigh distribution -
see chapter 5: ¯̄

¯̄f(ra) =
ra
m0r

¢ exp
½ ¡r2a
2m0r

¾¯̄
¯̄ (8.84)

This implies that the probability of exceeding a threshold value a by the response amplitude
ra becomes:

P fra > ag =
1Z

a

ra
m0r

¢ exp
½ ¡r2a
2m0r

¾
¢ dra (8.85)
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Thus: ¯̄
¯̄P fra > ag = exp

½ ¡a2
2m0r

¾¯̄
¯̄

The average number of times per hour that this happens follows from:

¯̄
¯̄Nhour =

3600

T2r
¢ P fra > ag

¯̄
¯̄ (8.86)

Note that the zero-crossing period, T2r, is used here, because this period determines the
number of cycles per hour.

8.6 Liquids in Tanks

When a double bottom tank, a cargo tank or any other space in a rolling vessel contains
a ‡uid with a free surface, gravity waves will appear at this surface. These gravity waves
will cause additional roll exciting moments from within the vessel. In theory this is true
for pitch as well, but the generally relatively large longitudinal metacentric height makes
the ship less sensitive to this.
Consider a rectangular tank with a length l and a breadth b, which has been …lled until a
level h with a (non-viscous) ‡uid. The bottom of the tank is s meters above the center of
rotation (center of gravity, G) of the vessel. Figure 8.19 shows a 2-D sketch of this tank
with the axis system and notations.

Figure 8.19: De…nitions of a Rolling Tank

The natural frequency of the surface waves in a rolling tank appears when the wave length,
¸, equals twice the breadth, b, so: ¸ = 2b.
With the wave number and the dispersion relation:

k =
2¼

¸
and ! =

p
kg tanh(kh) (8.87)
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it follows for the natural frequency of surface waves in the tank:

¯̄
¯̄
¯!0 =

s
¼g

b
tanh

µ
¼h

b

¶¯̄
¯̄
¯ (8.88)

At small liquid depths (h=b <t 0:1), these resonant frequencies can be associated with
high wave amplitudes. Under these circumstances a hydraulic jump or bore is formed,
which travels periodically back and forth between the walls of the tank. This hydraulic
jump can be a strongly non-linear phenomenon. Extensive 2-D model experiments on the
behavior of the ‡uid in these so-called free surface tanks was carried out in the sixties by
[Bosch and Vugts, 1966]. The experimental results of their study are nowadays still used
to design a very simple anti-rolling device which works also at zero forward speed: the free-
surface anti-roll tank. Apart from this experimental research, a fundamental theory, based
on gas-dynamics for the shock wave in a gas ‡ow under similar resonance circumstances,
was developed in the sixties by [Verhagen and van Wijngaarden, 1965]. They used two
di¤erent approaches: one for low and high frequencies and another one for frequencies near
to the natural frequency of the tank. Recently, their approaches to describe the linear(ized)
motions of the ‡uid have been implemented in a ship motions computer code. A very good
agreement between theory and experiments was found, see [Journée, 1997].

At larger water depths (h=b >t 0:1), the behavior of the ‡uid tends to be more linear. Lin-
ear potential theory with the pulsating source method of [Frank, 1967], as described before
for strip theory, can be used as well to describe the motions and resulting counteracting
moments of ‡uids in a tank.
First, the study of [Bosch and Vugts, 1966] on the e¤ect of a free-surface tanks with a
low water depth on roll motions will be summarized. Then, an application of the potential
theory of [Frank, 1967] for the estimation of counteracting roll moments of ‡uids in a liquid
cargo tank and its e¤ect on roll motions is given and the results are discussed.

8.6.1 Anti-Roll Tanks

Figure 8.20: Passive Anti-Roll Stabilizer and Hydraulic Jump
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A passive free-surface tank can be a very good tool to reduce roll motions, especially at
low speeds where anti-roll …ns are not e¤ective. This tank has a breadth equal to the ship’s
breadth and its length is about 1.5 to 2.5 meter, depending on the size of the ship. The roll
damping, caused by a passive free-surface tank, is essentially based on the existence of a
hydraulic jump or bore in the tank, as shown in …gure 8.20. [Bosch and Vugts, 1966] have
described the physical behavior of passive free-surface tanks, used as an anti-roll device.
They assembled extensive quantitative information on the counteracting moments caused
by the water transfer in the tank. Using their notation, the roll motions and the exciting
moments of an oscillating rectangular free-surface tank, are de…ned by:

' = 'a cos(!t)

Kt = Kta cos(!t + "t') (8.89)

In a practical frequency range, [Bosch and Vugts, 1966] have presented experimental data
on the roll moment amplitudes, Kta , and the phase shifts of these moments with respect
to roll, "t, for three roll amplitudes ('a = 0:033; 0:067; 0:100 rad), four centers of rotations
(¡0:40 5 s=b 5 +0:20) and …ve water depths (0:02 5 h=b 5 0:10). An example of the
experimental data is given …gure 8.21.
The external roll moment due to a free surface tank, oscillating with a frequency !, can
be written as:

Kt = a4' ¢ Ä' + b4' ¢ _' + c4' ¢ ' (8.90)

with:

a4' = 0

b4' =
Kta
!'a

¢ sin "t'

c4' =
Kta

'a
¢ cos "t' (8.91)

It is obvious that for an anti-roll free-surface tank, build in the ship, the motions of ship
and tank are similar:

Áa = 'a and !e = !

One can express the roll motion of the ship as well as the tank moment on the ship as:

Á = Áa cos(!et+ "Á³ )

Kt = Kta cos(!et + "Á³ + "t') (8.92)

Then, an additional exciting moment has to be added to the right hand side of the equations
of motion for roll: ¯̄

¯Xtank4 = a44tank ¢ ÄÁ + b44tank ¢ _Á + c44tank ¢ Á
¯̄
¯ (8.93)

with:

a44tank = 0

b44tank =
Kta
!eÁa

¢ sin "t' (8.94)

c44tank =
Kta
Áa

¢ cos "t' (8.95)
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Figure 8.21: Experimental Data on Anti-Roll Free Surface Tanks

This holds that the anti-roll coe¢cients a44tank , b44tank and c44tank have to be subtracted
from the coe¢cients a44, b44 and c44 in the left hand side of the equations of motion for
roll.
Figure 8.22 shows the signi…cant reduction of the roll transfer functions for a trawler with
a free surface tank.

8.6.2 Tank Loads

[Frank, 1967] used a cylinder, whose cross section is a simply connected region, which is
fully or partly immersed horizontally in a previously undisturbed ‡uid of in…nite depth
for the calculation of the 2-D potential mass and damping of ship-like cross sections, see
chapter 7.
Frank’s method is suitable for the computation of the potential mass and damping of sym-
metric 2-D shapes, in or below the surface of a ‡uid. This method has been incorporated
in a lot of 2-D ship motions computer programs, all over the world. Starting from the
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Figure 8.22: E¤ect of Free Surface Tanks on Roll

keel point of the cross section, the input data (the o¤-sets) have to be read in an upwards
order. Then, the (outward) normal on the elements of the cross section will be de…ned to
be positive in the direction of the ‡uid outside the cross section.
This method can be adapted easily to calculate the linear loads due to a potential ‡ow
‡uid in an oscillating symmetrical tank, too. Starting from the intersection of the free
surface with the tank wall, the o¤sets of the tank have to be read in a downwards order
- in an opposite sequence as has been done for the cross section of a ship. By doing this,
the (inward) normal on the elements of the cross section of the tank will be de…ned to
be positive in the direction of the ‡uid in the tank. Then, the calculated potential mass
and damping delivers the in-phase and out-of-phase parts of the loads due to the moving
liquid in the tank. With this, the in-phase and out-of-phase parts of the additional 2-D
excitation forces and moments on the ship in and about an origin at the still water ‡uid
surface in a rectangular tank are:

Sway tank force, in-phase: X2c = !2M(2)x2a

Sway tank force, out-of-phase: X2s = ¡!N (2)x2a
Heave tank force, in-phase: X3c = !2M(3)x3a

Heave tank force, out-of-phase: X3s = ¡!N (3)x3a

Roll tank moment, in-phase: X4c = !2M(4)x4a + ½g

½
bh

µ
s+

h

2

¶
+
b3

12

¾
x4a

Roll tank moment, out-of-phase: X4s = ¡!N (4)x4a (8.96)

in which M (i) and N (i) are the potential mass and damping terms obtained by Frank’s
method.
The roll moments above must be ”translated” to moments about the ship’s center of
gravity. The second and third term in the in-phase roll moment expression, X4c, are
additional ”static” terms caused by the ”solid or frozen” liquid and by the emerged and
immersed wedges of the ”‡uid or thawed” liquid; see chapter 2 on static ‡oating stability.
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This approach can be carried out easily with many existing 2-D, but also 3-D, ship motions
computer programs.

Roll Moments

Forced roll oscillation experiments have been carried out with a 2-D model of a cargo tank
of an LNG carrier to verify this theoretical approach. A sketch of this 1:25 model of the
tank is given in …gure 8.23.

Figure 8.23: LNG Cargo Tank

The exciting roll moments have been measured for a range of oscillation frequencies and
a …xed roll amplitude of 0.10 radians for several tank …lling levels. Figure 8.24 shows
measured and predicted in-phase and out-of-phase parts of the …rst harmonic of the roll
moments of a 45 per cent …lled LNG tank as a function of the frequency of oscillation,
see [Journée, 1997]. Except at the natural frequency of the ‡uid in the tank, a fairly good
prediction has been found with Frank’s 2-D pulsating source method as incorporated in
the 2-D computer program SEAWAY. Use of the 3-D computer code DELFRAC provides
a similar agreement.

Roll Motions

To investigate the e¤ect of free surface (liquid cargo) tanks on the roll motions of a ship,
three tanks as given in …gure 8.23 were build in a 1:60 model of an LNG carrier and equally
…lled with water up to 45 % of the tank height. All other cargo tanks were assumed to be
…lled up to 97.5 per cent, which was simulated in the experiments by solid ballast weights
and an adaptation of the ship’s roll radius of gyration.
First, the three cargo tanks are supposed to be equally …lled up to 45 % of the tank
height with a homogeneous frozen liquid cargo with a stowage factor of 1.00 ton/m3,
simulated during the experiments by solid ballast weights. The unknown radius of gyration
for roll of the model has been obtained from free decay tests and the roll motions have
been calculated with strip theory program SEAWAY, using the semi-empirical method of
[Ikeda et al., 1978] to obtain the linearized viscous roll damping coe¢cients.
Then, the cargo is ”allowed to melt”. The ship’s roll radius of gyration caused by its own
mass has been obtained from the radius of gyration of the ship with the frozen liquid cargo
and a theoretical correction for thawing this cargo. The exciting roll moments due to the
liquid cargo have been obtained with Frank’s method. Now, the roll motions have been
calculated, including the e¤ect of the ‡uid motions in the three tanks.
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Figure 8.24: Loads Caused by an LNG Cargo Tank

Figure 8.25: Roll an LNG Carrier
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Except for some overestimation at higher frequencies, …gure 8.25 shows a very good agree-
ment between the predicted and the measured response amplitude operators for roll. How-
ever, it must be noted that the natural roll frequency of the ship is about half the lowest
natural frequency of the ‡uid in the three cargo tanks. When these frequencies are closer
to each other, non-linear e¤ects caused by the bore or the hydraulic jump at the surface of
the ‡uid in the tanks will play a much more important role.

8.7 Internal Loads

Attention so far has focussed on the external loads on and response of a ‡oating structure
caused by the surrounding sea and even liquids stored in tanks on board. This section goes
a step further to study the resulting internal reaction forces and moments within the ship
structure which is treated here as a single member for which the shear forces as well as
bending moments on transverse planes are to be determined.
Obviously additional data on the ship will be needed in order to carry out these computa-
tions; the required information includes:
- m0(xb): mass or weight distribution along the ship’s length
- z0m(xb): distribution along the ship’s length of the vertical location of the

center of gravity
- k0xx(xb): distribution along the ship’s length of the mass radius of gyration

Figure 8.26 shows the mass distribution, m0(xb), as well as the mass of the displacement
distribution, ½Ax(xb), of a cruise ship. Indeed, one often …nds that the ship’s weight exceeds
its buoyancy toward the bow and the stern; this is compensated by an excess of buoyancy
amidships.
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Figure 8.26: Mass Distributions of a Cruise Ship

The total mass of the ship, m, is found by an integration of the masses per unit length,
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m0(xb):

m =

bowZ

stern

m0(xb) ¢ dxb (8.97)

It is obvious that this integrated mass should be equal to the mass of displacement, calcu-
lated from the underwater hull form:

m = ½

bowZ

stern

Ax(xb) ¢ dxb = ½r (8.98)

The longitudinal position of the center of gravity, xG, is found from the mass and the
distribution of the masses over the length:

xG =
1

m

bowZ

stern

m0(xb) ¢ xb ¢ dxb (8.99)

The ship’s center of buoyancy, xB, must be at the same longitudinal position (no external
trimming moment), so that :

xG = xB (8.100)

The transverse radius of inertia, kxx, is found from the mass and the distribution of the
radii of gyration of the masses, k0xx(xb), over the length:

k2xx =
1

m

bowZ

stern

m0(xb) ¢ k02xx(xb) ¢ dxb (8.101)

For a relatively slender body, the longitudinal radius of gyration of the mass, kyy and kzz,
are found from the mass and the distribution of the masses over the length:

k2yy = k
2
zz =

1

m

bowZ

stern

m0(xb) ¢ x2b ¢ dxb (8.102)

The position in height of the center of gravity, zG, is found from the mass and the distrib-
ution of the heights of the centers of gravity, z0m(xb), over the length:

zG =
1

m

bowZ

stern

m0(xb) ¢ z0m(xb) ¢ dxb (8.103)

It is obvious that this value should be zero for an axes system with the origin in the center
of gravity, G.
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8.7.1 Basic Approach

The ship will be made schematic as a single beam along its longitudinal axis in order to
determine its the internal loads on each of its transverse cross sections. These internal
loads can come from:

- axial normal force parallel to the xb axis,
- vertical or horizontal shear in a plane parallel to the (yb; zb) plane,
- torsion about an axis parallel to the xb axis,
- bending about axes parallel to the yb or zb axes.

Unlike most more conventional beams, generally all of this beam’s properties will be func-
tions of position along its length. The moment of inertia of its area for example will be
smaller near the bow and stern of most ships.
The axes system (of which the hydrodynamic sign convention di¤ers from that commonly
used in structural engineering) and the internal load de…nitions are given in …gure 8.27.

Figure 8.27: Axis System and Internal Load De…nitions

Consider a section of the ship with a length dxb, as illustrated in …gure 8.28, to calculate
the shear forces and the bending and torsional moments.
When the ship slice is subjected by a load distribution q(xb), this implies for the slice:

q(xb) ¢ dxb = ¡dQ(xb) so:

¯̄
¯̄dQ(xb)
dxb

= ¡q(xb)
¯̄
¯̄

Q(xb) ¢ dxb = +dM (xb) so:

¯̄
¯̄dM(xb)
dxb

= +Q(xb)

¯̄
¯̄ (8.104)

in which Q(xb) is the shear force and M (xb) is the bending moment.
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Figure 8.28: Loads on a Cross Section

The shear force and the bending moment in a cross section at xb = x1 follow from an
integration of these sectional loads from the stern of the ship to this cross section. Indeed,
both Q and M must be zero at the ends of the ship.
The shear force, Q(x1), and the bending moment, M (x1), in a cross section at xb = x1 can
be expressed in the load distribution, q(xb), by the following integrals:

Q(x1) = ¡
x1Z

stern

q(xb) ¢ dxb (8.105)

M (x1) = ¡
x1Z

stern

q(xb) ¢ (x1¡ xb) ¢ dxb

= +

x1Z

stern

q(xb) ¢ xb ¢ dxb ¡ x1 ¢
x1Z

stern

q(xb) ¢ dxb

= +

x1Z

stern

q(xb) ¢ xb ¢ dxb + Q(x1) ¢ x1 (8.106)

For the torsional moment, an approach similar to that given for the shear force can be
used.

8.7.2 Static Equilibrium

Static conditions are used …rst to make a number of concepts more clear. The ”ship as
a beam” is subjected to two distributed vertical loads: one from the weight of the ship
and one from its buoyancy. While overall equilibrium of the ship requires that the total
(integrated) buoyant force be equal to the total (integrated) weight of the ‡oating body,
their distributions need not be exactly the same so that a net load on any transverse section
can be de…ned.
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Consider the forces acting on a section of the ship with a length dxb. The vertical forces
on a transverse ’slice’ of a ship in still water are given by:

(m0 ¢ dxb) ¢ (¡g) = qz(xb) ¢ dxb (8.107)

in which:
jqz(xb) = f½ ¢ Ax(xb) ¡m0(xb)g ¢ gj (8.108)

where Ax is the cross sectional area.
With equations 8.105 and 8.106, the vertical shear force, Qz(x1), and the bending moment,
My(x1), in still water in a cross section can be obtained from the vertical load, qx(xb), by
the following integrals:

¯̄
¯̄
¯̄Qz(x1) = ¡

x1Z

stern

qz(xb) ¢ dxb

¯̄
¯̄
¯̄

¯̄
¯̄
¯̄My(x1) = +

x1Z

stern

qz(xb) ¢ xb ¢ dxb + Qz(x1) ¢ x1

¯̄
¯̄
¯̄ (8.109)

Figure 8.29 shows an example of a calculated still water bending moment, My, curve of a
cruise ship with a weight and buoyancy distribution as given in …gure 8.26.
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Figure 8.29: Distribution of Still Water Bending Moments of a Cruise Ship

The generally positive moment here is common in ships. As used here, a positive moment
implies that the bow and stern of the ship tend to bend down. This if often called hogging;
the opposite tendency is called sagging.
Still water bending moments can become signi…cant. A well-known example of some years
ago is the supertanker Energy Concentration moored in Europoort. It su¤ered the con-
sequences of completely emptying the amidships cargo tanks while the fore and aft tanks
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remained completely …lled. In this case the ship hogged so much that the lower part of
the hull failed in compression and ’folded’; luckily the tanks a¤ected were empty so that a
major oil spill was averted.

Figure 8.30: Damaged Supertanker Energy Concentration

Static shear forces as well as bending moments must also be kept in mind when moving
a heavy o¤shore structure on to a transport barge - or when launching a heavy tower
o¤shore, too, for that matter. Nothing in the o¤shore industry as spectacular as the fate
of the above tanker is known to the authors, however. The important lesson from these
examples is that even when the ship (as a whole) is in static equilibrium, it may at the
same time be experiencing some very signi…cant internal loads.
As long as the center of gravity of each transverse ’slice’ of the ship lies on its midline plane
of symmetry, there will be no torsional moment (about the x-axis) generated in the ship.
On the other hand, a barge carrying two heavy loads - one forward and to port with the
other on the starboard side aft - would have a signi…cant internal torsional moment about
its longitudinal axis. Such a loading would disrupt the dynamic behavior of the ship as
well, reason enough to leave this topic for others.
The bending moment about the z-axis will always be zero for a free-‡oating ship in still
water.

8.7.3 Quasi-Static Equilibrium

A quasi-static situation exists when none of the dynamic excitations involve accelerations.
This means that they change so slowly that the object can be considered to respond
statically to the external loads. Quasi-static horizontal loads can be exerted on a moored
‡oating structure by currents and wind, especially when the heading of the ship is not
optimal.
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The ship is now a beam (when seen from above) which has a location-dependent distributed
load and concentrated reaction forces (similar to the supports of a conventional beam) at
the mooring line attachment points. Otherwise, the analysis is much like that for the static
vertical load case handled above. In general the ends of the ship are still ’free’ so that both
the horizontal crosswise shear, Qy, and moment, Mz, will be zero at each end of the ship.

There is more to this that has not yet been considered, however! In general the horizontal
forces from the anchor lines, the transverse wind loads and the transverse current loads
will not all act at the same elevation; the various forces will act at di¤erent elevations in
the (x; z) plane. This has two consequences.
As a whole, the ‡oating body will generally come to a static roll angle so that any imbalance
of the externally caused external moments will be held in equilibrium by a static roll
moment. A good example of this is how a sailboat with the wind on the beam will heel
as a result of the wind load in one direction on the sails and the lateral hydrodynamic
resistance of the hull working in the other direction; see …gure 8.31.

Figure 8.31: Lateral Forces on a Sailboat

Even though this static roll moment will bring the sailboat (in this example) into over-
all equilibrium, internal torsional moments will generally still exist. Indeed, with most
sailboats, the entire moment from the sail is transferred to the hull at the cross-section
where the mast is located. This moment can be distributed to the rest of the hull only via
torsional moments about the ship’s x-axis.
Quasi-static axial forces can be present in a ship which is sailing (not necessarily a sailboat
now), too. The force driving the ship forward (from the propeller) is transferred via its
shaft to a thrust bearing where this load is transferred to the hull. The hull forward of
this location is obviously ’pushed’ through the water; there will obviously be a compressive
normal stress in the ship sections forward of the thrust bearing. By the same reasoning,
all ship sections aft of the thrust bearing will be under a slight tension as the after body
of the ship is pulled through the water.



8.7. INTERNAL LOADS 8-49

A more striking example of this would be a tugboat (see …gure 8.32) pulling a barge or even
a gravity platform being moved to its o¤shore location. In this case both the towing force
transferred to the ship via its towing bollard and the propulsion force at its thrust bearing
are point loads in the axial force diagram. Since the towing bollard is generally forward of
the thrust bearing, the ship sections between these locations will be under compression.

Figure 8.32: Concentration of Axial Forces on a Tug

When viewed from the side, these two forces are not colinear; indeed they deliver a couple
about the y-axis; this will be compensated by a small positive (bow up) trim of the tug.

Large square-rigged sailing ships su¤ered at times from the opposite problem. The driving
force from their sails was sometimes centered high in the masts, the ship’s hydrodynamic
resistance was below the water line. The generated couple now forced the bow down so
that it was deeper than normal in the water (this is often referred to as rooting). This
increases wave resistance which only reinforces the problem. Admiral Beaufort obviously
was practicing good seamanship when he recommended that the highest sails be taken in
…rst as the wind increased; see chapter 5.

8.7.4 Dynamic Equilibrium

The dynamics will be investigated using the principle of dynamic equilibrium, using
Newton’s second law. The dynamic forces and moments should of course be combined
with its static component - equation 8.109 - in order to calculate the maximum shear force
and bending moment components at each section.

A lot of load components contribute to dynamic forces and moments in a hull; the motion
components as well as the direct hydromechanical and wave exciting forces and moments
contribute directly and sometimes in more than one way. Shear forces and bending mo-
ments are local loads and non-linearities can play a signi…cant role. This is one of the
reasons why the strip theory does not predict them always very accurate; deviations up to
about 25 percent are possible.

Anchor line forces become dynamic as well, now, making the computation even more
complex in terms of bookkeeping. Indeed, since mooring line tensions will generally depend
upon the instantaneous position of their attachment point, they can even introduce a
coupling between vertical motions on the one hand, and roll motions and dynamic torsional
moments on the other. These aspects have not been taken into account here.
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Lateral Dynamic Loads

Consider the horizontal forces acting on a section of the ship with a length dxb. According
to Newton’s second law, the harmonic lateral dynamic load per unit length on a transverse
’slice’ of the ship is given by:

qy(xb) = +X 0
hy(xb) +X

0
wy(xb)

+½gAx(xb) ¢ Á
¡m0(xb) ¢

n
Äy + xb ¢ ÄÃ ¡ z0m ¢ ÄÁ + g ¢ Á

o
(8.110)

where Ax(xb) is the sectional area, X 0
hy(xb) and X 0

wy(xb) are the sectional hydromechanical
and wave forces for sway and m0gÁ is the lateral mass-force component due to the de…nition
of the lateral loads in the ship-bound axes system, respectively.
With equations 8.105 and 8.106, the harmonic lateral shear force, Qy(x1), and the bending
moment, Mz(x1), in waves in cross section x1 can be obtained from the horizontal load,
qy(xb), by the following integrals:

¯̄
¯̄
¯̄Qy(x1) = Qya cos(!et + "Qz³) = ¡

x1Z

stern

qy(xb) ¢ dxb

¯̄
¯̄
¯̄

¯̄
¯̄
¯̄Mz(x1) =Mza cos(!et+ "Mz³) = ¡

x1Z

stern

qy(xb) ¢ xb ¢ dxb ¡Qy(x1) ¢ x1

¯̄
¯̄
¯̄ (8.111)

Vertical Dynamic Loads

Consider the vertical forces acting on a section of the ship with a length dxb. According
to Newton’s second law, the harmonic longitudinal and vertical dynamic forces per unit
length on a transverse ’slice’ of the ship are given by:

qx(xb) = +X 0
hx(xb) +X

0
wx(xb) ¡m0(xb) ¢

n
Äx¡ bG(xb) ¢ Äµ

o

qz(xb) = +X 0
hz(xb) +X

0
wz(xb) ¡m0(xb) ¢

n
Äz ¡ xb ¢ Äµ

o
(8.112)

where bG(xb) is the distance of the centroid of the cross section to the xb axis and
X 0
hx(xb); X

0
hz(xb) and X 0

wx(xb); X
0
wz(xb) are the sectional hydromechanical and wave forces

for surge and heave, respectively.
With equations 8.105 and 8.106, the harmonic vertical shear force, Qz(x1), and the bending
moment, My(x1), in waves in cross section x1 can be obtained from the longitudinal and
vertical loads, qx(xb) and qz(xb), by the following integrals:

¯̄
¯̄
¯̄Qz(x1) = Qza cos(!et + "Qz³ ) = ¡

x1Z

stern

qz(xb) ¢ dxb

¯̄
¯̄
¯̄

¯̄
¯̄
¯̄My(x1) =Mya cos(!et+ "My³) = +

x1Z

stern

qx(xb) ¢ bG(xb) ¢ dxb

¯̄
¯̄
¯̄
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¯̄
¯̄
¯̄ +

x1Z

stern

qz(xb) ¢ xb ¢ dxb + Qz(x1) ¢ x1

¯̄
¯̄
¯̄ (8.113)

Figure 8.33 shows a comparison between measured and calculated distribution of the ver-
tical wave bending moment amplitudes over the length of the ship

Figure 8.33: Distribution of Vertical Bending Moment Amplitudes

Torsional Dynamic Loads

Consider the moments acting on a section of the ship with a length dxb. According to
Newton’s second law, the harmonic torsional dynamic moment per unit length on a trans-
verse ’slice’ of the ship about a longitudinal axis at a distance z1 above the ship’s center
of gravity is given by:

qÁ(xb; z1) = +X 0
hÁ(xb) +X

0
wÁ(xb) (8.114)

+z1 ¢ qy(xb) ¡m0(xb) ¢
n
k0
2

xx ¢ ÄÁ¡ z0m ¢ (Äy + xb ¢ ÄÃ + g ¢ Á)
o

where X 0
hÁ(xb) and X 0

wÁ(xb) are the sectional hydromechanical and wave moments for roll,
respectively.
With equation 8.105, the harmonic torsional moment, Mx(x1; z1), in waves in cross section
x1 at a distance z1 above the ship’s center of gravity can be obtained from the torsional
loads, qÁ(xb; z1), by the following integral:

¯̄
¯̄
¯̄Mx(x1; z1) =Mxa cos(!et + "Mx³) = ¡

x1Z

stern

qÁ(xb; z1) ¢ dxb

¯̄
¯̄
¯̄ (8.115)

It is important to realize, for example, that a ship sailing in quartering waves -approaching
from about 45 degrees o¤ the stern - can experience very signi…cant dynamic torsional
moments - even if it is not rolling very much. Both the wave direction (and associated
relative phases along the ship’s axis) and the low frequency of encounter contribute to a
large transfer function value in this case.
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8.7.5 Internal Loads Spectra

The internal loads spectra can be calculated in a way similar to that described earlier for
other harmonic responses.

8.7.6 Fatigue Assessments

It has already been pointed out that the transfer functions for any of the above forces
can be computed by carefully (and properly!) superposing the components for the already
known functions for forces and ship motions. One can go even deeper into the structural
engineering aspects, however as long as the system remains linear in its behavior.
Knowing all six of the load components on a ship cross-section, a marine structural engineer
can - knowing a lot more details of the internal structure of the ship - convert each of these
forces to associated stress components. Stress concentration factors and other details must
now be taken into account along the way, of course.
These stress components can in turn be combined to determine principal stresses and even
to carry out a fatigue analysis. Structural engineering and o¤shore hydromechanics are
often very closely linked - if not married - within o¤shore engineering! This will show up
again when sea fastening of o¤shore structures to transport barges is discussed in chapter
11.
Fatigue analyses depend upon two independent input data items:

- Magnitude of the (local) stress change - stress range.
- Associated number of cycles with this stress range.

This information can then be combined using the Miner-Palmgren rule to obtain an overall
fatigue damage estimate. The structural analysis details of this are left to others more
expert in this …eld, but a bit more about each of the above two items is discussed here.
The magnitude of the stress change within a ship or other large structure will be linearly
related to the ambient waves. If the object has a …xed location, then wave climate data
is relatively easy to obtain and work with. Even if the object is only seasonally, one can
approach the wave data in a quite straight forward way - see chapter 5.
More ”portable” objects - such as a major pipe laying vessel that may spend some time
near Australia before going to the west coast of Africa before coming to the North sea for
a while - present a formidable bookkeeping problem. If the problem to be solved involves
the determination of the ”remaining fatigue life” of an existing vessel, then obtaining the
cumulative - location and time dependent - wave climate presents a signi…cant problem.
The pragmatic solution in a design situation, on the other hand, would be to determine
fatigue life based upon continuous exposure to some de…ned wave climate such as that for
the northern North Sea.

Global and Local Loads

Fatigue sensitive locations in a vessel are the deck, bottom and possibly the sides-shell.
The loads important for fatigue can be split in global and local loads. Global loads are
loads in a cross section of the hull girder and make equilibrium with the ”acceleration
forces” due to the motions and the pressure integration over the speci…c hull section; these
have been determined above. Local internal loads result from pressures at speci…c spots
on the hull inducing additional locally ‡uctuating stresses. The simple e¤ect of external
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pressure variations (from waves) causing local (bending) stresses in the hull plating is an
example of this.
Global loads - important for fatigue - are the vertical and horizontal bending moments. An
important local load is the external pressure causing cyclic bending of longitudinals between
their supporting frames (webs or web/bulkhead). The local external pressure loading is
mainly of interest for tankers and bulk carriers. Especially FPSO tankers operated on
the North Sea are to be examined thoroughly on the fatigue strength since they are built
according to the rules for trading vessels but are used di¤erently. These vessels more often
encounter head waves and are permanently on site in a harsh environment.
Fatigue in the deck structure is induced by vertical and horizontal bending of the hull girder.
The bottom structure is loaded both by the vertical and horizontal bending moments and
the external wave pressure. The side shell is mainly loaded by the external wave pressure
and horizontal bending moment and slightly by the vertical bending moment depending
on the position of the neutral axis; see …gure 8.34, illustrating the global and local loads
acting on a vessel.

Figure 8.34: Global and Local Loads Acting on a Cross Section

Combining the horizontal and vertical wave bending moments is done by calculating one
stress transfer function at the spot of interest.

H¾³(yb; zb; !) cos(!t+ "¾³) =
z1
Iyy

HQ5³(yb; zb; !) cos (!t+ "Q5³ )

+
y1
Izz

HQ6³(yb; zb; !) cos (!t+ "Q6³ ) (8.116)

Expand the cosines into cosine products and sine products. One can determine H¾³ and
"¾³ by stating that the equation must be valid for !t = 0 and !t = ¼=2. This gives:

H¾³(yb; zb; !) cos "¾³ =
z1
Iyy
HQ5³(yb; zb; !) cos "Q5³ +

y1
Izz
HQ6³ (yb; zb; !) cos "Q6³

H¾³ (yb; zb; !) sin "¾³ =
z1
Iyy
HQ5³(yb; zb; !) sin "Q5³ +

y1
Izz
HQ6³(yb; zb; !) sin "Q6³

(8.117)

Squaring and summing these equations results in an expressions forH¾³ and dividing these
two equations gives an expression for tan "¾³.
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The external pressure can be incorporated as well for those position which are always
wet - the bottom and bilges. In this case a pressure transfer function is required along
with a structural model to determine the local stress contribution - just as is needed
for the global internal loads as well. Side shell loading is more complicated. Since the
water surface is ‡uctuating the side shell is sometimes wet and sometimes dry. Hence this
loading is strongly nonlinear which is di¢cult to account for properly. For calculation
routines and ways to combine this nonlinear load with the global loads one is referred to
[Cramer and et.al., 1993], [Pastoor, 1997b] and [Pastoor, 1997a].

Once the proper overall transfer functions and some form of cumulative wave scatter dia-
gram has been determined, each of its ”cells” - with its own characteristic wave height and
period - can be transformed to:

² A characteristic stress variation dependent upon the waves and a whole ”chain” of
transfer functions.

² A number of stress variation cycles dependent upon the wave period and the number
of observations associated with that wave scatter diagram cell.

Often several adjacent cells in the wave scatter diagram are combined when carrying out
this transformation.
Once this procedure has been followed for all wave scatter diagram cells, one can sum up
the results in order to obtain the input data for a Miner-Palmgren sum.

8.8 Added Resistance in Waves

A ship moving forward in a wave …eld will generate ”two sets of waves”: waves associated
with forward speed through still water and waves associated with its vertical relative motion
response to waves. Since both wave patterns dissipate energy, it is logical to conclude that
a ship moving through still water will dissipate less energy than one moving through waves.
The extra wave-induced loss of energy can be treated as an added propulsion resistance -
see chapter 4.
Figure 8.35 shows the resistance in regular waves as a function of the time: a constant
part due the calm water resistance and an oscillating part due to the motions of the ship,
relative to the incoming regular waves. The time-averaged part of the increase of resistance
is called: the added resistance due to waves, Raw.
Two theoretical methods for the estimation of the time-averaged added resistance of a ship
due to its vertical motions relative to the waves are described here:

² a radiated wave energy method
introduced by [Gerritsma and Beukelman, 1972] and suitable for head to beam waves

² an integrated pressure method
introduced by [Boese, 1970] and suitable for all wave directions.
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Figure 8.35: Increase of Resistance in Regular Waves

8.8.1 Radiated Energy Method

The energy relation of an oscillating body has been determined in chapter 6. Based on
this relation and strip theory, the radiated wave energy during one period of oscillation of
a ship in regular waves is de…ned by [Gerritsma and Beukelman, 1972] as:

P =

Z

L

8
<
:

TeZ

0

(b033 ¢ V ¤z ) ¢ (V ¤z ¢ dt)

9
=
; ¢ dxb

=

TeZ

0

Z

L

b033 ¢ V ¤z 2 ¢ dxb ¢ dt (8.118)

in which:

b033 = hydrodynamic damping coe¢cient of the vertical motion of the cross section,
V ¤z = vertical average velocity of the water particles, relative to the cross sections,
Te = period of vertical oscillation of the cross section.

The speed dependent hydrodynamic damping coe¢cient for the vertical motion of a cross
section is de…ned here as shown before in equation 8.25:

b033 = N
0
33 ¡ V ¢ dM

0
33

dxb
(8.119)

The harmonic vertical relative velocity of a point on the ship with respect to the water
particles is de…ned by:

Vz = _³
0
w3

¡ D

Dt
fz ¡ xb ¢ µ + yb ¢ Ág

= _³
0
w3 ¡

³
_z ¡ xb ¢ _µ + V ¢ µ + yb ¢ _Á

´
(8.120)
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For a cross section of the ship, an equivalent harmonic vertical relative velocity has to be
found. This equivalent relative velocity is de…ned by:

V ¤z = _³
¤
w3

¡
³
_z ¡ xb ¢ _µ + V ¢ µ

´

= V ¤za ¢ cos(!et+ "V ¤
z ³ ) (8.121)

With this the radiated energy during one period of oscillation is given by:

P =
¼

!e

Z

L

µ
N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢ V ¤za2 ¢ dxb (8.122)

To maintain a constant forward ship speed, this energy should be provided by the ship’s
propulsion plant. A mean added resistance, Raw, has to be gained. The energy provided
to the surrounding water is given by:

P = Raw ¢
µ
V ¡ c

cos¹

¶
¢ Te

= Raw ¢ 2¼

¡k cos¹ (8.123)

From this the transfer function of the mean added resistance according to Gerritsma and
Beukelman can be found:

¯̄
¯̄
¯̄
Raw
³2a

=
¡k cos¹
2!e

¢
Z

L

µ
N 0
33 ¡ V ¢ dM

0
33

dxb

¶
¢
µ
V ¤za
³a

¶2
¢ dxb

¯̄
¯̄
¯̄ (8.124)

This method gives good results in head to beam waves. However, this method fails in
following waves. When the wave speed in following waves approaches the ship speed the
frequency of encounter in the denominator tends to zero. At these low frequencies, the
potential sectional mass is very high and the potential sectional damping is almost zero.
The damping multiplied with the relative velocity squared in the numerator does not tend
to zero, as fast as the frequency of encounter. This is caused by the presence of a natural
frequency for heave and pitch at this low !e, so a high motion peak can be expected. This
results in extreme (positive and negative) added resistances.

8.8.2 Integrated Pressure Method

[Boese, 1970] calculates the added resistance by integrating the longitudinal components of
the oscillating pressures on the wetted surface of the hull. A second small contribution of
the longitudinal component of the vertical hydrodynamic and wave forces has been added.
The wave elevation is given by:

³ = ³a cos(!et ¡ kxb cos¹¡ kyb sin¹) (8.125)

The pressure in the undisturbed waves in deep water is given by:

p = ¡½gz + ½g ¢ ekz³ (8.126)
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The horizontal force on an oscillating cross section is given by:

f(xb; t) =

³Z

¡Ds+zx

p dzb with: zx = z ¡ xbµ (8.127)

As the mean added resistance during one period will be calculated, the constant term and
the …rst harmonic term can be ignored, so:

f ¤(xb; t) = ¡1
2
½g

©
³2 ¡ (¡Ds + zx)2

ª

= ¡1
2
½g (³ ¡ zx)2 (8.128)

The vertical relative motion is de…ned by s = ³ ¡ zx, so:

f ¤(xb; t) = ¡1
2
½g s2 (8.129)

The average horizontal force on a cross section follows from:

f¤(xb) =

TeZ

0

f¤(xb; t) dt =
1

4
½g s2a (8.130)

The added resistance due to this force is:

Raw1 = 2

Z

L

f¤(xb)
µ

¡dyw
dxb

¶
dxb (8.131)

so that this part of the mean added resistance reduces to:

Raw1 = ¡1
2
½g

Z

L

s2a
dyw
dxb

dxb (8.132)

The integrated vertical hydromechanical and wave forces in the ship bounded axis system
varies not only in time but also in direction with the pitch angle. From this follows a
second contribution to the mean added resistance:

Raw2 =
¡1
Te

T eZ

0

fXh3(t) +Xw3 (t)g µ(t) dt

=
¡1
Te

T eZ

0

½r Äz(t) µ(t) dt (8.133)

This second contribution can be written as:

Raw2 =
1

2
½r !2e za µa cos("z³ ¡ "µ³) (8.134)

so that the transfer function of the total mean added resistance according to Boese is given
by: ¯̄

¯̄
¯̄
Raw

³2a
=
1

2
½g

Z

L

µ
sa
³a

¶2 dyw
dxb

dxb +
1

2
½r !2e

za
³a

µa
³a
cos("z³ ¡ "µ³)

¯̄
¯̄
¯̄ (8.135)
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8.8.3 Non-dimensional Presentation

The transfer function of the mean added resistance Raw=³2a is often presented in a non-
dimensional way as: ¯̄

¯̄R 0aw =
Raw

½g³2aB
2=L

¯̄
¯̄ (8.136)

in which:

L = length between perpendiculars
B = (maximum) breadth of the waterline

Figure 8.36 shows a comparison of calculated and measured added resistance data of a
container vessel. Because of the added resistance of a ship due to the waves is proportional
to the relative motions squared, inaccuracies in the predicted motions will be ampli…ed in
resistance errors.

0

5

10

15

0 0. 5 1.0 1 .5 2.0 2.5

µ = 180o

Fn = 0.20

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

µ = 150o

Fn = 0.15

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

µ = 120o

Fn = 0.15

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

µ = 180o

Fn = 0.25

L/λ 

Ad
de

d 
re

si
st

an
ce

 (-
) 

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

µ = 180o

Fn = 0.30

L/λ 

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

µ = 150o

Fn = 0.25

L/λ 

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

µ = 120o

Fn = 0.25

L/λ  

0

5

10

15

0 0.5 1.0 1.5 2.0 2.5

Exp. Nakam ura
Exp. Fujii
From  energy
From  pressure

µ = 180o

Fn = 0.15

Ad
de

d 
re

si
st

an
ce

 (-
) 

Figure 8.36: Computed and Measured Added Resistance

The deviations in the …gure at low wave lengths (high frequencies) are caused by di¤raction
of the waves against the ship; this e¤ect has not been taken into account. But the amount
energy in irregular waves at these high frequencies is small; so generally, these deviations
will not have a large in‡uence on the added resistance in irregular waves.

8.8.4 Added Resistance in Irregular Waves

The mean added resistance in a frequency range ¢! can be written as:

Raw(!) = 2 ¢
¯̄
¯̄Raw
³2a
(!)

¯̄
¯̄ ¢ 1
2
³2a (8.137)

= 2 ¢
¯̄
¯̄Raw
³2a
(!)

¯̄
¯̄ ¢ S³ (!) ¢¢! (8.138)
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Then, the total mean added resistance in a seaway follows from a summation or an inte-
gration of the contributions over the whole frequency range:

RAW = 2
1X

!=0

¯̄
¯̄Raw
³2a
(!)

¯̄
¯̄ ¢ S³(!) ¢¢! (8.139)

Thus: ¯̄
¯̄
¯̄RAW = 2

1Z

0

¯̄
¯̄Raw
³2a
(!)

¯̄
¯̄ ¢ S³(!) ¢ d!

¯̄
¯̄
¯̄ (8.140)

Because of the linear motions, which results in a linear relation between the mean added
resistance and the regular wave amplitude squared, and the (ideal) wave spectrum de…ned
by S³ (!) = H2

1=3 ¢ f (!; T), the calculated mean added resistance values in irregular waves
are often presented as:

RAW
H2
1=3

=2

1Z

0

¯̄
¯̄Raw
³2a
(!)

¯̄
¯̄ ¢ f(!; T) ¢ d! versus T = T1, T2 or Tp

in which H1=3 is the signi…cant wave height, T (= T1, T2 or Tp) are mean wave periods and
f(!; T) is a function of ! and T only.
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