
Chapter 9

NON-LINEAR BEHAVIOR

9.1 Introduction

A physical description of nonlinear wave excitation forces as well as the response of ‡oating
structures has been given in chapter 6, where the so-called second order wave drift
forces are described. They consist of mean wave drift forces and low-frequency
wave drift forces. Both are the result of a non-linear behavior of the structure in the
waves.
The present chapter - in which the theory is part based for a major part on the doctor’s
thesis of [Pinkster, 1980] on low-frequency second order wave exciting forces on ‡oating
structures - starts by describing situations in which higher order wave forces are important.
These motivate the more detailed treatment of the associated computations later in this
chapter.

9.2 Some Typical Phenomena

Investigations into the fundamental aspects of the behavior of o¤shore structures have often
been guided by the behavior as observed at sea and as determined from model testing of
such structures in realistically simulated wind, wave and current environments.
This section describes examples of the behavior of these structures which have been shown
to be of signi…cant in‡uence on the design of the structures or on operational aspects of
o¤shore work. All of these examples have motivated extensive fundamental research to
explain the observed behavior.

9.2.1 Bow-Hawser Moored Vessel in Wind and Current

Shuttle tankers, either loading or discharging crude oil o¤shore, are often moored to a
single point mooring (SPM) with a bow hawser.
It has been observed that such vessels can have large amplitude horizontal motions
(surge, sway and yaw) in steady winds and currents. These motions lead in turn to
large peak loads in the bow hawser. An example, showing the time record of the bow
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hawser force of a 200 thousand ton deadweight (kTDW) tanker, is given in …gure 9.1. The
lower part of the …gure shows the bow hawser tension force as a function of time.

Figure 9.1: Unstable Horizontal Motions of a Bow Hawser Moored Tanker

This example shows that signi…cant dynamic e¤ects can occur, even in the absence of
time variations in the environmental forces. In this particular case, these e¤ects are due
to inherent instabilities in the horizontal motions of the tanker, which are related to the
length of the bow-hawser.
Figure 9.2 shows the regions of unstable horizontal motions as a function of the angle
between the wind and current on the one hand and the length of the bow-hawser on the
other hand. See [Wichers, 1979] for further details.

9.2.2 Large Concrete Structure under Tow

After completion of a large concrete Gravity Base Structure in sheltered deep water, it is
towed out to the …eld by 6 to 8 large ocean going tugs. Narrow and shallow fjord passages
have to be negotiated on the way out to the open sea. These passages put restrictions on
the swept path and the draft of the platform.
Figure 9.3 shows that while under tow, this type of platform performs oscillatory motions
in all six degrees of freedom in addition to its constant forward motion. These oscillatory
motions are related - to a considerable extent - to the oscillatory components in the ‡ow
about the platform, as well as the inherent ”towing stability” of the platform.
Important aspects of the ‡ow about the platform are the vortex-shedding phenomenon
about the large diameter vertical columns and ‡ow separation about the large base struc-
ture. The towing force needed for the transportation of the platform is important; this
determines the number and size of the tugs. The force necessary to hold the platform on
location prior to being ballasted down to rest on the sea bed is determined by, among other
factors, the current force that may be exerted by a tidal current. Figure …gure 9.4 shows
an example of the quadratic increase of the current force with the current velocity.
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Figure 9.2: Stability Criterion for a Tanker as a Function of Bow Hawser Length

Figure 9.3: Motions of a Large Concrete Platform



9-4 CHAPTER 9. NON-LINEAR BEHAVIOR

0

2500

5000

7500

0 0.25 0.50 0.75 1.00

Current Speed in m/s 

T
ot

al
 C

ur
re

nt
 F

or
ce

 in
 k

N 

Figure 9.4: Current Force on Gravity Base Structure

Currents are usually assumed to be constant in time, but in some cases, such as during
the positioning of this type of platforms, current speed variations may also give rise to
undesirable horizontal platform motions. Figure 9.5 shows an example of current velocity
variations - expressed in terms of the measured mean, maximum and minimum current
velocities - and the spectral density of the current velocity.

Figure 9.5: Current Speed Fluctuations

As is seen in …gure 9.5, velocity variations are of low-frequency nature. Often the natural
frequency of the horizontal motions of a moored structure (or a structure being positioned)
is low due to the large mass on the one hand and the relatively soft restraining system on
the other hand. There is little damping at such low frequencies as well; relatively large
dynamic motions can result.
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9.2.3 Horizontal Motions of Moored Tankers in Waves

Figure 9.6 shows the wave elevation record and the motions of a permanently moored
tanker in high head sea conditions. It is seen that the heave and pitch motions contain
the same frequencies; their amplitudes are in the order of the wave amplitudes and wave
slopes respectively. This behavior is predicted using methods as given in chapters 6 and 8.

Figure 9.6: Record of the Motions of a Moored Tanker Model in Head Waves

The surge motion, besides containing a (small) wave frequency motion component, is dom-
inated by a low frequency component with a signi…cant larger amplitude.
Upon closer examination it appears that the large amplitude surge motion contains fre-
quencies near the natural surge period of the moored vessel as dictated by the combination
of the vessel mass and the mooring sti¤ness. The vessel is in fact carrying out resonant
low frequency surge motions in response to small wave forces containing frequencies corre-
sponding to the low natural surge frequency of the moored vessel. The response is further
aggravated by the fact that surge motion damping is especially small at this low frequency.
It will be clear that the mooring system forces will be dominated by this e¤ect; its design
must account for this. This requires a careful analysis of the phenomena involved. A brief
introduction is given here.

Wave loads on structures as well as their responses to those loads can be split into several
components. A table of these is given in chapter 6. These are summarized here too.
Firstly there are wave loads which have the same frequencies as the waves and are linearly
proportional in amplitude to the wave amplitudes. These are known as …rst order wave
forces. Secondly, there are wave load components which have frequencies both higher and
lower than the frequencies of the waves. These forces are proportional to the square of the
wave amplitudes and known as second order wave forces.
Low frequency second order wave forces have frequencies which correspond to the frequen-
cies of wave groups present in irregular waves. These forces, which, beside containing
time-varying components, also contain a non-zero mean component, are known as wave
drift forces. This name is a consequence of the fact that a vessel, ‡oating freely in waves,
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will tend to drift in the direction of propagation of the waves under in‡uence of the mean
second order forces.
High frequency second order forces contain frequencies corresponding to double the fre-
quency of the waves (also known as sum frequencies). The horizontal motions response
of moored structures to these forces is generally small.
The fact that low frequency drift forces can cause large amplitude horizontal motion re-
sponses in moored vessels and that these motions are related to the wave group phenomenon
was demonstrated by [Remery and Hermans, 1971] in chapter 6. One of the results of their
investigations is shown in …gure 9.7. In this …gure the low frequency surge motion ampli-
tude of a barge moored in head seas consisting of regular wave groups (superposition of two
regular waves with small frequency di¤erence corresponding to the wave group frequency)
is shown. It is seen that when the period of the wave groups equals the natural surge
period of the moored vessel, large motion amplitudes are the result.

Figure 9.7: Surge Motions of a Moored Barge in Regular Head Wave Groups

Figure 9.8, taken from reference [Pinkster, 1976], shows that the low frequency surge mo-
tions of a barge moored in head seas increase more or less as a linear function of the square
of the signi…cant wave height. This implies that the wave force is a quadratic function
of the wave amplitude.

9.2.4 Motions and Mooring Forces of Semi-Submersibles

Figure 9.9 shows that not only tankers and other mono-hull vessels are subject to the
e¤ects of …rst and second order wave forces. This …gure shows the surge motion of a large
semi-submersible crane vessel (SSCV) and the forces in the mooring lines. A large low
frequency component is superimposed on wave frequency components.
Figure 9.10 shows a time record of the low frequency second order wave drift force on
a semi-submersible. The relationship between the occurrence of groups of waves in the
incident wave train and peaks in the wave drift force are very clear.
A tension leg platform (TLP) is a semi-submersible structure with vertical mooring tethers
which restrain the vertical motions of the platform. It is also subject to these wave loads.
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Figure 9.8: Low Frequency Surge Motions of a Barge in Irregular Head Waves

Figure 9.9: Surge Motions and Mooring Line Forces of a SSCV
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Figure 9.10: Second Order Wave Forces of a Semi-Submersible

Figure 9.11 shows the surge sway and yaw motions of a TLP in irregular waves coming at an
angle to the longitudinal axis of the platform. The low frequency components in all three
motion components is clear. The corresponding forces in the mooring tethers of the TLP
- given in …gure 9.12 - are dominated by wave frequency components, however. Although
not apparent from this …gure, tether forces sometimes contain contributions from sum-
frequency second order wave forces which can have frequencies coinciding with the natural
frequency of the vertical motion of a TLP. These frequencies can be high due to the high
axial sti¤ness of the tethers.

Figure 9.11: Horizontal TLP Motions in Irregular Seas

9.2.5 Vertical Motions of Ships in Long Waves

A di¤erent non-linear e¤ect in irregular waves is the occurrence of wave set-down. This
is the phenomenon whereby the ”mean” water level is lower under groups of higher waves
and higher under groups of smaller waves. The phenomenon has been extensively analyzed
using potential theory. Set-down appears as low-frequency second order term in the power
series expansion of the potential and the corresponding wave elevation.
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Figure 9.12: TLP Tether Forces in Irregular Seas

An example of the set-down measured in an irregular wave train is shown in …gure 9.13.
In this case the set-down record has been obtained by low-pass …ltering of the measured
wave elevation record. Bearing in mind the time scale shown in the …gure, it is clear that
the set-down wave components can be considered to be equivalent to long waves.

Figure 9.13: Wave and Set-Down Records

When the horizontal dimensions of a ‡oating object are small compared to this wave length
the vertical motions of the object follows the wave elevation and slope closely. A sea gull
swimming in waves is an extreme example of this. One can conclude from …gure 9.14 that
this must be true for even relatively large vessels such as a 125,000 m3 LNG carrier. If
the water depth is about 15 meters, then with an ”average” long wave period of about 80
seconds, the wave length will be in the order of a kilometer; this is long enough to let the
LNG tanker behave like a sea gull.
Figure 9.15 …nally, shows the three components contributing to the total vertical motions
of the LNG carrier sailing in shallow water. The total vertical displacement consist of a
sinkage contribution (a static contribution related to square of the forward speed), a wave
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Figure 9.14: Second Order Vertical Motions of an LNG Carrier in Head Seas

frequency contribution (linearly related to the wave elevation) and a group frequency
contribution (due to the second order wave set-down e¤ect in the incident waves).

Figure 9.15: Heave Motion Components of an LNG Carrier in Head Waves

9.2.6 Behavior of a Jetty-Moored Tanker

In most harbors, tankers are moored to jetties by means of mooring lines and fenders. A
number of these jetties are situated at open locations so that the vessels moored to them
are subject to the e¤ects of wind, waves and current. Vessel motions and mooring system
forces are the result. Sometimes passing ships induce signi…cant transient mooring loads
as well.
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Figures 9.16 through 9.20 - with data taken from [Oortmerssen et al., 1984] - give some
results of model tests and simulations with a 200 kTDW tanker moored to a jetty in wind
and waves.
Figure 9.16 shows the spectral density of the three irregular waves in which the model tests
were carried out.
Figure 9.17 shows a record of the horizontal motions and the mooring line and fender forces
in beam waves with a relatively short period (spectrum 3) and a steady beam wind of 20
m/s.
Figure 9.18 shows the spectra of the sway motion in beam waves with a long period
(spectrum 1) and a steady beam wind of 20 m/s.
Figure 9.19 shows a record of the horizontal motions and the mooring line and fender forces
in bow-quartering waves and a steady beam wind of 20 m/s.
Figure 9.20 shows the spectra of the sway motion and the fender forces in beam waves with
a relatively short period (spectrum 3) without wind e¤ects.
These results clearly show that the motions and mooring forces show two distinct frequency
ranges: components with wave frequencies and components with very low frequencies.

From foregoing discussions it will be clear that low frequency components in the motions
and forces are related to the drift force phenomenon. However, in the case of jetty moorings,
which have highly nonlinear restoring characteristics (fenders are much sti¤er than mooring
lines), even monochromatic wave frequency excitation of the vessel can induce motions and
mooring forces which contain signi…cant sub- and super-harmonics of the wave frequency.
An example is shown in …gure 9.21, which has been taken from [Oortmerssen, 1976b]. Note
that in this case the excitation side of the equations of motion will be reasonably linear
while it is now the left hand side which has a distinctly nonlinear spring term. This is
an example of a sub-harmonic excitation. The period of the excitation is now an integer
multiple of the excitation frequency as was pointed out in chapter 6.

9.3 Wave Drift Forces and Moments

It is generally acknowledged that the existence of wave drift forces was …rst reported by
[Suyehiro, 1924]. While experimenting with a model rolling in beam seas, he found that
the waves exerted a steady horizontal force which he attributed to the re‡ection of the
incoming waves by the model. The importance of the mean and low frequency wave drift
forces from the point of view of motion behavior and mooring loads is generally recognized
nowadays. It has been mentioned in chapter 6 that work by [Hsu and Blenkarn, 1970]
and [Remery and Hermans, 1972] indicated that large amplitude low frequency horizontal
motions of moored vessels could be induced by slowly varying wave drift forces in irregu-
lar waves. These authors also stressed the importance of knowledge of the mean second
order forces in regular waves in this problem. A considerable number of papers have been
published since, re‡ecting increased insight in the phenomena involved.
Initially, the solution to the problem of predicting motions and mooring forces was sought
in better quantitative data on the low frequency wave drift forces. Accurate knowledge
of these forces, it was felt, would allow accurate estimates to be made of low frequency
horizontal motions and mooring forces. Due to the resonant motion response of the moored
vessels to the wave drift forces, it is nowadays known that for accurate prediction of low
frequency motions in irregular seas attention must also be paid to the hydrodynamic reac-
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Figure 9.16: Wave Spectra Used for a Jetty Moored Tanker

Figure 9.17: Behavior in Beam Waves and Beam Wind
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Figure 9.18: Spectra of Sway Motions in Beam Waves and Beam Wind

Figure 9.19: Behavior in Bow-Quartering Waves and Beam Wind
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Figure 9.20: Spectra of Sway Motions and Fender Forces in Beam Waves without Wind

tion forces. On the basis of experimental and theoretical results it is generally agreed that,
for engineering purposes, the wave drift forces are second order wave forces. This means
that the forces are quadratic functions of the height of the incident waves.

[Pinkster, 1976] and [Pinkster, 1977] introduced a computation method based on direct
integration of all pressure contributions on the wetted hull of the body. This method is
also exact within potential theory.
[Faltinsen and Loken, 1978b] and [Faltinsen and Loken, 1978a] applied a similar method to
the two dimensional case of cylinders in beam waves. They succeeded in giving a complete
solution which includes the mean wave drift force in regular waves and the low frequency
oscillating wave drift force in regular wave groups.
[Pinkster and Hooft, 1978] and [Pinkster, 1979] use a method of direct integration - for
three-dimensional cases - the mean and low frequency part of the wave drift forces using
an approximation for the force contribution due to the second order non-linear potential.
In general it has been found that for voluminous bodies, such as ships, methods based on
potential theory give good results when compared with model test results. Discrepancies
occur at wave frequencies near, for instance, roll resonance. In such cases viscous e¤ects -
not accounted for by potential theory - become important. For relatively slender objects
such as some semi-submersibles, viscous e¤ects may become important at all frequencies;
see for instance [Dev, 1996] for the relevant work in this …eld.
This section deals, almost entirely, with the wave drift exciting forces and moments as
determined by [Pinkster, 1980].

9.3.1 Second Order Wave Forces

Expressions for the second order wave force and moment will be deduced in this section
based on the direct integration method of pressures on the hull. This method is
straightforward and gives insight in the mechanism by which waves and the body interact
to produce the force. First, the boundary conditions for the various potentials are treated;
special attention is given to the boundary conditions at the body.
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Figure 9.21: Measured and Computed Ship Motions and Mooring Forces

The theory is developed using perturbation methods. This means that all quantities such
as wave height, motions, potentials, pressures etc., are assumed to vary only very slightly
relative to some initial static value and may all be written in the following form:

X =X(0) + "X(1) + "2X(2) (9.1)

whereX(0) denotes the static value, X(1) indicates the …rst order oscillatory variation, X(2)

the second order variation. The parameter " is some small number, with " ¿ 1, which
denotes the order of oscillation. First order in this case means linearly related to the wave
height and second order means that the quantity depends on the square of the wave height.
In the following, quantities are of second order if preceded by "2. If, as in many cases,
the "2 is discarded, this is due to the fact that the expression contains only second order
quantities. In such instances second order quantities are recognized by the superscript (2)

or by the fact that a component is the product of two …rst order quantities with superscript
(1). For instance, the pressure component ¡1

2

¡
r©(1)

¢2
should be recognized as a second

order quantity.
The derivation of the second order wave forces and moments is based at …rst on the
assumption that the body is ‡oating in small amplitude waves. It is furthermore assumed
that the body is only allowed to move in response to the …rst order hydrodynamic forces
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at frequencies within the wave frequency region. Frequencies outside this region or higher
orders of motion are not permitted. This means that expressions obtained for the second
order wave forces contain only the wave exciting forces.

Coordinate Systems

Figure 9.22: System of Coordinate Axes

Use is made here of three systems of coordinate axes (see …gure 9.22):

² The …rst system of coordinate axes O-(X1; X2; X3) is a right-handed earth-bound
axes system with origin O, theX1- and X2-axes in the mean free surface of the sea
and the X3-axis positive upwards.
A point in space has position or displacement vector ~X = (X1; X2; X3).

² The second system is a right-handed system of G-(x1; x2; x3) body-bound axes
system with as origin the centre of gravity, G, of the body, the positive x1- axis
in the longitudinal direction (bow) and the positive x3-axis upwards. In the mean
position of the oscillating vessel this axes system is parallel to the earth-bound O-
(X1; X2; X3) system.
The hull surface is uniquely de…ned in this system of axes. A point on the body surface
has position vector ~x = (x1; x2; x3) in the body-bound axes system. The orientation
of a surface element in this system of coordinates is de…ned by the outward pointing
normal vector ~n = (n1; n2; n3).

² The third system of coordinates G-(X 0
1; X

0
2; X 0

3) is a moving axes system with
its origin in the mean position of the center of gravity, G, of the body. Its axes are
always parallel to the axes of the earth-bound O-(X1; X2; X3) system. So this axes
system does not translate or rotate with the ship’s motions; it translates only with
the forward ship speed which is not present here..
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The roll, pitch and yaw motions about the body-bound axes of the structure are given by
the Eulerian angles x4, x5 and x6, respectively.

First and Second Order Wave Loads

The …rst order wave loads have been de…ned in the chapter 7. There, the ”body-in-waves”
has no motions (zero order) in the earth-bound axis system. The waves are approaching a
restrained body. Thus, …rst order ‡uid motions and resulting …rst order ‡uid forces have
been considered there.
For the determination of the second order wave loads, the ”body-in-waves” is carrying out
a …rst order harmonic motion, forced by …rst order wave loads. The waves are approaching
a harmonic oscillating body. Then, second order ‡uid motions and resulting second order
‡uid forces have to be considered too.

Body Motions

If the body has small amplitude motions resulting from the …rst order oscillatory wave
forces, the resultant displacement vector ~X = (X1; X2; X3) of a point on the body - relative
to the earth-bound system of axes - is also a small …rst order quantity:

~X = " ~X(1) (9.2)

with:

~X(1) = ~XG
(1)
+ R(1) ¢ ~x (9.3)

where ~XG
(1)

is the oscillatory …rst order motion vector of the center of gravity of the body,
~x = (x1; x2;x3) is the position vector of the point on the body in the body-bound axes
system and R(1) is the linearized rotation transformation matrix, de…ned as:

R(1) =

2
64

0 ¡x(1)6 +x(1)5
+x(1)6 0 ¡x(1)4
¡x(1)5 +x(1)4 0

3
75 (9.4)

in which x(1)4 , x(1)5 and x(1)6 are the …rst order roll, pitch and yaw motions of the structure.
Similarly, the velocity ~V of a point on the body relative to the earth-bound system of axes,
O-(X1; X2; X3), is also a …rst order quantity and follows from:

~V = "~V (1) =
!
_X= "

!
_X
(1)

(9.5)

with:

!
_X
(1)

= ~V (1) =
!
_X
(1)

G +
:

R
(1) ¢~x (9.6)

where:

:

R
(1)
=

2
64

0 ¡ :
x
(1)
6 +

:
x
(1)
5

+
:
x
(1)
6 0 ¡ :

x
(1)
4

¡ _x(1)5 + _x(1)4 0

3
75 (9.7)
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in which
:
x
(1)

4 ,
:
x
(1)

5 and
:
x
(1)

6 are the …rst order roll, pitch and yaw angular velocities of the
structure.
Note that ~X and ~V and their derivatives are the (oscillatory) motions of the body; so far
they are not the motions of the ‡uid.
The orientation of surface elements of the body relative to the G-(x1; x2; x3) body-bound
axes are denoted by the outward pointing normal vector ~n. When the body is carrying
out small …rst order motions, the orientation of a surface element relative to the …xed
O-(X1; X2; X3) or G-(X 0

1; X
0
2; X

0
3) system of axes becomes:

~N = ~n + " ~N (1) (9.8)

with:

~N (1) = R(1) ¢ ~n (9.9)

where the linearized rotation transformation matrices, R(1), follows from equation 9.4.

Fluid Motions

The ‡uid domain is - just as when determining the hydromechanical coe¢cients in chapter
7 - bounded by: 1) the surface of the body, 2) the free sea surface, 3) the sea bed and 4)
a vertical cylinder with an in…nite radius. Assuming that the ‡uid is inviscid, irrotational,
homogeneous and incompressible, the ‡uid motion may be described by means of the
velocity potential ©:

© = "©(1)+ "2©(2) + :::::: (9.10)

The potentials are de…ned relative to the earth-bound system of axes, O-(X1; X2; X3).
As has been pointed out in chapter 7, the (linearized) …rst order potential ©(1) consists of
the sum of potentials associated with the undisturbed incoming waves, ©(1)w , the di¤racted
waves, ©(1)d , and waves due to the …rst order body motions, ©(1)b , respectively; thus:

©(1) = ©(1)w + ©(1)d +©(1)b (9.11)

Continuity Condition

Both the …rst and the second order potentials must satisfy the equation of continuity within
the ‡uid domain; the Laplace equation (see chapter 7) has to be ful…lled by both potentials
as well:

r2©(1) = 0 and r2©(2) = 0 (9.12)

Sea Bed Boundary Condition

Both potentials must satisfy the boundary condition at the horizontal sea bed, too:

@©(1)

@X3
= 0 and

@©(2)

@X3
= 0 for: X3 = ¡h (9.13)

where h is the water depth in the O-(X1; X2; X3) axis system.
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Free Surface Boundary Condition

In order to derive the boundary condition at the mean free surface use has to be made of
the Bernoulli equation and the assumption that ‡uid elements in the free surface remain
there at all times (no-leak condition); see chapter 7. A Taylor expansion can be used
to transform the boundary conditions at the actual moving free surface (X3 = ³) into
boundary conditions at the mean free surface (X3 = 0); see also chapter 5.
Then the homogeneous boundary condition becomes:

g ¢ @©
(1)

@X3
+
@2©(1)

@t2
= 0 (9.14)

For the particular solution of the boundary condition of ©(2), only the …nal result -
which is very complex to solve as will be explained later - is given here:

g ¢ @©
(2)

@X3
+
@2©(2)

@t2
= ¡2

µ
~r©(1) ¢ ~r@©

(1)

@t

¶
+
@©(1)

@t
¢
µ
@2©(1)

@X2
3

+
1

g
¢ @

2

@t2

µ
@©(1)

@X3

¶¶

(9.15)

This equation will be used further on in this chapter.

Body Boundary Condition

In general the boundary condition on the body is that no ‡uid passes through the hull
(no-leak condition); the relative velocity between the ‡uid and the hull in the direction of
the normal to the hull must be zero; see chapter 7.
This boundary condition has to be satis…ed at the instantaneous position of the hull
surface; thus the ‡uid motions in the direction of the normal on the body, ~r© ¢ ~N , have
to be equal to the body motion in this normal direction, ~V ¢ ~N :

~r© ¢ ~N = ~V ¢ ~N (9.16)

or taking into account equations 9.5, 9.8 and 9.10:
³
"~r©(1) + "2~r©(2)

´
¢
³
~n + " ~N (1)

´
=

³
"~V (1)

´
¢
³
~n + " ~N (1)

´
(9.17)

Grouping similar powers of " results in the …rst and second order body boundary conditions.
The boundary conditions for the …rst order potential, "©(1), on the body is as follows:

~r©(1) ¢ ~n = ~V (1) ¢ ~n (9.18)

The boundary condition for the second order potential on the body, "2©(2), states that:

~r©(2) ¢ ~n =
³
~V (1) ¡ ~r©(1)

´
¢ ~N (1) (9.19)

in which the …rst part, ~V (1) ¢ ~N (1), represents the body motions and the second part,
~r©(1) ¢ ~N (1), the ‡uid motions.
Equations 9.18 and 9.19 have to be satis…ed at the instantaneous position of the surface
of the body. Assuming that the motions are small, and applying a Taylor expansion,
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similar conditions may be stipulated for the potentials at the mean position of the
hull surface.
The …rst order boundary condition then becomes:

~r©(1) ¢ ~n = ~V (1) ¢ ~n (9.20)

and the second order boundary condition becomes:

~r©(2) ¢ ~n = ¡
³
~X(1) ¢ ~r

´
¢
³
~r©(1) ¢ ~n

´
+

³
~V (1) ¡ ~r©(1)

´
¢ ~N (1) (9.21)

in which the last term is the di¤erence of the two velocity vectors along the hull surface
caused by the …rst order change of the direction normal.
The potentials and their derivatives in equations 9.20 and 9.21 have to be evaluated at the
mean position of the body.

Substitution of equation 9.11 in boundary condition 9.20 - so splitting the potential in
three parts - yields the following:

³
~r©(1)w + ~r©(1)d + ~r©(1)b

´
¢ ~n = ~V (1) ¢ ~n (9.22)

It is customary to decompose this equation into two components:

² Di¤raction component:
³
~r©(1)w + ~r©(1)d

´
¢ ~n = 0 (see chapter 7) (9.23)

or (9.24)
~r©(1)d ¢ ~n = ¡~r©(1)w ¢ ~n (9.25)

² Motion component:
~r©(1)b ¢ ~n = ~V (1) ¢ ~n (9.26)

The methods in use to solve for the unknown …rst order potentials ©(1)w , ©(1)d and ©(1)b have
already been discussed in chapters 5 and 7.

Substitution of the …rst order potential ©(1) from 9.11 in the non-homogeneous second order
free surface boundary condition of equation 9.15 shows that the second order potential
includes in the most general form the following components:

©(2) = ©(2)d (9.27)

+©(2)ww +©
(2)
dd + ©

(2)
bb +©

(2)
wd + ©

(2)
wb + ©

(2)
db + ©

(2)
dw + ©

(2)
bw +©

(2)
bd

The …rst potential on the right-hand side of equation 9.27, ©(2)d , is a potential which satis…es
the homogeneous boundary condition:

g ¢ @©
(2)
d

@X3
+
@2©(2)d
@t2

= 0 (9.28)



9.3. WAVE DRIFT FORCES AND MOMENTS 9-21

and ©
(2)
d is therefore an ”ordinary” potential which satis…es the linearized free surface

condition.

The last nine components on the right-hand side of equation 9.27 are potentials which are
particular solutions to the type of boundary condition as given in equation 9.18.
For instance for ©(2)ww:

g ¢ @©
(2)
ww

@X3
+
@2©(2)ww
@t2

= ¡2
Ã
~r©(1)w ¢ ~r@©

(1)
w

@t

!
+
@©(1)w
@t

Ã
@2©(1)w
@X2

3

+
1

g
¢ @

2

@t2

Ã
@©(1)w
@X3

!!
(9.29)

Equation 9.27 can be written simpli…ed by letting ©(2)w represent the sum of the last nine
components on the right-hand side of the equation, so that:

©(2) = ©(2)d +©(2)w (9.30)

This ©(2)w may be regarded as the second order equivalent of the …rst order undisturbed
incoming wave potential ©(1)w .
Substitution of equation 9.30 in the second order boundary condition 9.21 yields:

³
~r©(2)w + ~r©(2)d

´
¢ ~n = ¡

³
~X (1) ¢ ~r

´
¢ ~r©(1) ¢ ~n +

³
~V (1) ¡ ~r©(1)

´
¢ ~N (1) (9.31)

or for the di¤raction potential:

~r©(2)d ¢ ~n = ¡~r©(2)w ¢ ~n ¡
³
~X(1) ¢ ~r

´
¢~r©(1) ¢ ~n +

³
~V (1) ¡ ~r©(1)

´
¢ ~N (1) (9.32)

If the right-hand side of this equation is known, ©(2)d can be solved for the entire structure
using numerical methods.

In general, however, ©(2)w in equation 9.32 presents a problem due to the complexity
of the surface boundary condition expressed by equation 9.15.
[Faltinsen and Loken, 1978a] have found exact solutions of this problem for two-dimensional
cases, applicable to vessels in beam seas. [Newman, 1993] has developed numerical meth-
ods to solve for the second order potential for the three-dimensional case. [Pinkster, 1980]
suggest an approximation for ©(2)d which is applicable to three-dimensional problems.
In a later section of this chapter it will be shown that the second order potential ©(2)d
accounts only for a part of the second order wave forces.

Boundary Conditions at In…nity

A radiation condition for the potentials ©(1)w , ©(1)b and ©(2)d - which states that at a great
distance from the body the waves associated with these potentials move outwards - must
be satis…ed. This restriction imposes a uniqueness which would not otherwise be present.
Since the components of©(2)w are particular solutions to the free surface boundary condition
9.15 - which is de…ned over the complete free surface - a radiation condition need not be
imposed on this term.
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Symmetry Condition

The symmetry conditions, as discussed in chapter 5 and 7, are not taken into account here.
The structure can have any arbitrary under water form.

Pressure at a Point within the Fluid

If the velocity potential © is known, the ‡uid pressure at a point is determined using the
(non-linear) Bernoulli equation (see chapter 5):

p = ¡½gX3 ¡ ½@©
@t

¡ 1

2
½

³
~r©

´2
(9.33)

Assuming that this point is carrying out small - …rst order - wave frequency motions, ~X(1),
about a mean position, ~X(0), and applying a Taylor expansion to the pressure in its mean
position, yields:

p = p(0) + "p(1)+ "2p(2) (9.34)

where:

² Hydrostatic pressure:
p(0) = ¡½gX(0)

3 (9.35)

² First order pressure:

p(1) = ¡½gX(1)
3 ¡ ½@©

(1)

@t
(9.36)

² Second order pressure:

p(2) = ¡1
2
½

³
~r©(1)

´2
¡ ½@

2©(2)

@t2
¡ ½

µ
~X(1) ¢ ~r@©

(1)

@t

¶
(9.37)

The derivatives of the potentials in the above equations have to be evaluated at the mean
position of the point.
It has been assumed that the point is moving within the ‡uid domain. The same ex-
pression can be used to determine the pressure on a point on the hull of the body. This
means that derivatives of the potentials are taken at the mean position of the hull. This
position is actually alternately within and outside the actual ‡uid domain. This appears
to be permissible if the potential functions are su¢ciently ”smooth” at the boundaries; see
[Joseph, 1973]. This is assumed to be satis…ed in this case.

Direct Pressure Integration

Since in general one is concerned with the slow wave drift force induced motions of bodies in
the horizontal plane, the wave drift force should be determined in the G-(x; y; z) coordinate
system.
The ‡uid force exerted on the body, relative to the G-(x; y; z) system of axes - which is the
system with axes parallel to the axes of the earth-bound system, O-(X1; X2; X3) - follows
from:
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~F = ¡
ZZ

S

p ¢ ~N ¢ dS (9.38)

where S is the instantaneous wetted surface and ~N is the instantaneous normal vector to
the surface element dS relative to the G(x; y; z) system of axes. The normal vector, ~N , is
given by equation 9.8 and the pressure, p, by equation 9.34.
The instantaneous wetted surface, S , is split into two parts: a constant part, S0, up
to the static hull waterline and an oscillating part, s, the splash zone between the static
hull waterline and the wave pro…le along the body; see …gure 9.23.

Figure 9.23: Wetted Surface

Substitution of all this in 9.38 yields for the ‡uid force exerted on the body:

~F = ¡
ZZ

S0

¡
p(0)+ "p(1) + "2p(2)

¢ ¢
³
~n + " ~N (1)

´
¢ dS

¡
ZZ

s

¡
p(0) + "p(1) + "2p(2)

¢
¢
³
~n + " ~N (1)

´
¢ dS (9.39)

which can be written as follows:

~F = ~F (0)+ " ~F (1)+ "2 ~F (2)+ O("3) (9.40)

with:

~F (0) = ¡
ZZ

S0

¡
p(0) ¢ ~n

¢
¢ dS (9.41)

" ~F (1) = ¡
ZZ

S0

³
p(0) ¢ " ~N (1)

´
¢ dS ¡

ZZ

S0

¡
"p(1) ¢ ~n

¢
¢ dS

¡
ZZ

s

¡
p(0) ¢ ~n¢ ¢ dS (9.42)

"2 ~F (2) = ¡
ZZ

S0

³
"p(1) ¢ " ~N (1)

´
¢ dS ¡

ZZ

S0

¡
"2p(2) ¢ ~n

¢
¢ dS

¡
ZZ

s

³
p(0) ¢ " ~N (1)

´
¢ dS ¡

ZZ

s

¡
"p(1) ¢ ~n

¢
¢ dS (9.43)

Thus the ‡uid force is split here into three parts:
- a hydrostatic ‡uid force, ~F (0) ,
- a …rst order oscillatory ‡uid force, ~F (1),
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- a second order ‡uid force, ~F (2):

The hydrostatic ‡uid force, ~F (0), follows from integration of the hydrostatic pressure,
p(0), over the mean wetted surface, S0, as given in equation 9.41:

~F (0) = ¡
ZZ

S0

¡
p(0) ¢ ~n

¢
¢ dS

= ½g

ZZ

S0

³
X(0)
3 ¢ ~n

´
¢ dS

= (0; 0; ½gr) (9.44)

which yields only a vertical force contribution, F (0)3 , (no horizontal components):

F (0)3 = ½g

ZZ

S0

(X3 ¢ n3) ¢ dS

= ½gr (9.45)

in which r is here the volume of displacement.

The …rst order oscillatory ‡uid force, ~F (1), follows from equation 9.42:

~F (1) = ¡
ZZ

S0

³
p(0) ¢ ~N (1)

´
¢ dS ¡

ZZ

S0

¡
p(1) ¢ ~n

¢
¢ dS

¡
ZZ

s

¡
p(0) ¢ ~n

¢
¢ dS (9.46)

which includes three integral terms:

1. Products of the hydrostatic pressures, p(0), and the …rst order oscillatory components
of the normal vector, ~N (1), which give …rst order force contributions over the constant
part, S0, of the wetted surface:

~F (1)A = ¡
ZZ

S0

³
p(0) ¢ ~N (1)

´
¢ dS

= ½g

ZZ

S0

³
X (0)
3 ¢ ~N (1)

´
¢ dS (9.47)

which is - after using equation 9.9 (linear rotation-transformation) - equal to:

~F (1)A = ½g

ZZ

S0

³
X(0)
3 ¢

©
R(1) ¢ ~n

ª´
¢ dS

= R(1) ¢ (0; 0; ½gr) (9.48)

This force component is caused by the rotating body axes; roll and pitch motions
result in horizontal forces.

2. Products of the …rst order pressures, p(1), and the normal vector, ~n, which give also
…rst order force contributions over the constant part, S0, of the wetted surface:

~F (1)B = ¡
ZZ

S0

¡
p(1) ¢ ~n

¢
¢ dS (9.49)
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3. Products of the hydrostatic pressures, p(0), and the normal vector, ~n, which give (in
principle) …rst order force contributions because of its integration over the oscillatory
part, s, of the wetted surface.

~F (1)C = ¡
ZZ

s

¡
p(0) ¢ ~n

¢
¢ dS = 0 (9.50)

This term is zero because the hydrostatic pressure at the oscillating surface, p(0), is
zero because it has to be determined at X3 = 0.

Thus, the total …rst order ‡uid force follows from adding equations 9.48, 9.49 and 9.50:

~F (1) = R(1) ¢ (0; 0; ½gr)¡
ZZ

S0

¡
p(1) ¢ ~n

¢
¢ dS (9.51)

The second order ‡uid force, ~F (2) , follows from equation 9.43:

~F (2) = ¡
ZZ

S0

³
p(1) ¢ ~N (1)

´
¢ dS ¡

ZZ

S0

¡
p(2) ¢ ~n

¢
¢ dS

¡
ZZ

s

³
p(0) ¢ ~N (1)

´
¢ dS ¡

ZZ

s

¡
p(1) ¢ ~n

¢
¢ dS (9.52)

which includes four integral terms:

1. Products of the …rst order pressures, p(1), and the …rst order oscillatory components
of the normal vector, ~N (1), give second order force contributions over the constant
part, S0, of the wetted surface:

~F (2)A = ¡
ZZ

S0

³
p(1) ¢ ~N (1)

´
¢ dS (9.53)

When using equation 9.9 for ~N (1) and equation 9.51 for the …rst order ‡uid force, one
can write:

~F (2)A = ¡R(1) ¢
ZZ

S0

¡
p(1) ¢ ~n

¢
¢ dS

= R(1) ¢
n
~F (1) ¡R(1) ¢ (0; 0; ½gr)

o

= R(1) ¢
n
~F (1) ¡R(1) ¢ (0; 0;mg)

o
(9.54)

Equation 9.54 shows that a second order force along the earth-bound axes follows
from the rotation of the …rst order ‡uid force and the gravitational force acting on
the body; both relative to the body axes system. The last term deliver horizontal
forces caused by the roll and pitch motions.
According to Newton’s law, one may state that:

~F (1) ¡R(1) ¢ (0; 0; ½gr) = m¢
!
ÄX
(1)

G (9.55)
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from which it follows that:

~F (2)A = R(1) ¢
n
~F (1)+ R(1) ¢ (0; 0; ½gr)

o

= m ¢R(1)¢
!
ÄX
(1)

G (9.56)

2. Products of the second order pressures, p(2) , and the normal vector, ~n, also give
second order force contributions over the constant part, S0, of the wetted surface:

~F (2)B = ¡
ZZ

S0

¡
p(2) ¢ ~n¢ ¢ dS (9.57)

This part, ~F (2)B , involves a straightforward integration of the second order pressure
p(2) as given in equation 9.37 over the constant part, S0, of the wetted surface of the
body:

~F (2)B =

ZZ

S0

½
1

2
½
³
~r©(1)

´2
+ ½

@©(2)

@t
+ ½ ~X(1) ¢ ~r@©

(1)

@t

¾
¢ ~n ¢ dS (9.58)

3. Products of the hydrostatic pressures, p(0), and the …rst order oscillatory components
of the normal vector, ~N (1), give (in principle) second order force contributions because
of its integration over the oscillatory part, s, of the wetted surface.

~F (2)C = ¡
ZZ

s

³
p(0) ¢ ~N (1)

´
¢ dS (9.59)

Using equation 9.9 yields:

~F (2)C = ¡R(1) ¢
ZZ

s

¡
p(0) ¢ ~n¢ ¢ dS = 0 (9.60)

This term is zero because the hydrostatic pressure at the oscillating surface, p(0), is
zero because it has to be determined at X3 = 0.

4. Products of the …rst order pressures, p(1), and the normal vector, ~n, give second
order force contributions because of its integration over the oscillatory part, s, of the
wetted surface.

~F
(2)
D = ¡

ZZ

s

¡
p(1) ¢ ~n

¢
¢ dS (9.61)

This part, ~F (2)D , with an integration over the oscillating part, s, of the wetted surface,
is found by substituting the expression for the …rst order pressure p(1) as given in
equation 9.36 in here and writing the surface element dS as:

dS = dX3 ¢ dl (9.62)

in which dl is a di¤erential length along the water line.
Also taking into account that the dynamic part of the pressure in the ‡uid at the
waterline is:

¡½@©
(1)

@t
= ½g³(1) (9.63)
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this integral for ~F (2)D becomes:

~F (2)D = ¡
Z

wl

³(1)Z

X
(1)
3wl

½g
³
¡X3 + ³(1)

´
~n ¢ dX3 ¢ dl (9.64)

The relative wave height, ³(1)r , is de…ned by a superposition of the …rst order wave
elevation, ³(1), and the …rst order vertical motion of the hull at the water line, X(1)

3wl:

³(1)r = ³(1) ¡X (1)
3wl (9.65)

This results in:
~F
(2)
D = ¡

I

wl

1

2
½g

³
³(1)r

´2
¢ ~n ¢ dl (9.66)

Finally, the total second order ‡uid force is found from the separate contributions in
equations 9.56, 9.58, 9.60 and 9.66:

~F (2) = ~F (2)A + ~F (2)B + ~F (2)D

³
Remember: ~F (2)C = 0

´

= m ¢R(1)¢
!
ÄX
(1)

G

+

ZZ

S0

½
1

2
½

³
~r©(1)

´2
+ ½

@©(2)

@t
+ ½ ~X(1) ¢ ~r@©

(1)

@t

¾
¢ ~n ¢ dS

¡
I

wl

1

2
½g

³
³(1)r

´2
¢ ~n ¢ dl (9.67)

Notice that the added resistance of a ship in waves (also a second order phenomenon), as
obtained by [Boese, 1970] in chapter 8, consists of two of these second order contributions:

Raw = ~F (2)A + ~F (2)D according to [Boese, 1970] (9.68)

Both of these contributions are related to products of two …rst order terms, as used in
the linear theory in chapter 8. Of course, the contribution of ~F (2)B is missing in the linear
theory there; this term includes the second order pressures.

9.3.2 Second Order Wave Moments

The moment of the ‡uid forces about the axes of the G(X 0
1; X

0
2; X

0
3) system of coordinates

follows from:
~M = ¡

ZZ

S

p ¢
³
~X 0 £ ~N

´
¢ dS (9.69)

The derivation is analogous to that followed for the force and the …nal expression for the
second order wave moment is:
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~M (2) = I ¢R(1)¢
!
ÄX
(1)

G

+

ZZ

S0

½
1

2
½
³
~r©(1)

´2
+ ½

@©(2)

@t
+ ½ ¢ ~X(1) ¢ ~r@©

(1)

@t

¾
¢ (~x £ ~n) ¢ dS

¡
I

wl

1

2
½g

³
³(1)r

´2
¢ (~x£ ~n) ¢ dl (9.70)

in which I is the mass moment of inertia about the considered body axis of the structure.

9.3.3 Quadratic Transfer Functions

In this section it will be shown that equations 9.67 and 9.70 which are, in waves, func-
tions of time, may be used to compute quadratic transfer functions for the mean and
low frequency force and moment components. These in turn will allow determination
of the wave drift forces and moments in the frequency domain, and after taking double
Fourier transforms, allow prediction of the forces in the time domain, see [Dalzell, 1976]
and [Kim and Breslin, 1976].

The procedure to obtain the quadratic transfer functions of the forces will …rst be illus-
trated by taking the low frequency part of the longitudinal component of the last part of
equation 9.67 which refers to the force contribution due to the relative wave height:

F (2)1 = F (2)1 (t) = ¡
I

wl

1

2
½g

³
³(1)r (t; l)

´2
¢ n1 ¢ dl (9.71)

In irregular long-crested waves, the elevation - to …rst order of the incoming, undisturbed
waves - referred to the mean position of the centre of gravity of the ‡oating body may be
written as:

³(1)(t) =
NX

i=1

³(1)i ¢ cos (! it+ ~"i) (9.72)

The …rst order relative wave height at a point l on the waterline of the body may be written
as follows:

³(1)r (t; l) =
NX

i=1

³(1)i ¢ ³ (1)0ri
(l) ¢ cos(!it+ ~"i + "ri(l)) (9.73)

Substitution of 9.73 in equation 9.71 leads to:

F (2)1 (t) =
NX

i=1

NX

j=1

³(1)i ³
(1)
j Pij ¢ cos f(!i ¡ !j)t+ (~"i ¡ ~"j)g

+
NX

i=1

NX

j=1

³(1)i ³
(1)
j Qij ¢ sin f(!i ¡ !j)t+ (~"i ¡ ~"j)g (9.74)
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The high frequency terms (sum frequency terms) have been disregarded in this equation.
In equation 9.74 Pij and Qij are the components of the time independent quadratic transfer
function with:

Pij =

I

wl

1

4
½g³(1)

0
ri (l) ¢ ³(1)0rj (l) ¢ cos f"ri(l) ¡ "rj (l)g¢n1 ¢ dl (9.75)

Qij =

I

wl

1

4
½g³(1)

0
ri (l) ¢ ³(1)0rj (l) ¢ sinf"ri(l) ¡ "rj (l)g ¢ n1 ¢ dl (9.76)

Taking now the low frequency part of the square of the wave elevation given by equation
9.72 results in:

³
³(1)LF(t)

´2
=

NX

i=1

NX

j=1

1

2
³(1)i ³

(1)
j ¢ cos f(!i ¡ !j)t+ (~"i ¡ ~"j)g (9.77)

Comparison with equation 9.74 shows that Pij and Qij are transfer functions which give
that part of the wave drift force which is in-phase and out-of-phase respectively with the
low frequency part of the square of the incident waves.
It will be clear that similar developments can be made for other contributions to the wave
drift forces which are dependent on products of …rst order quantities.

Approximation for Second Order Potential Contribution

As mentioned in a previous section, the contribution to the drift forces due to the second
order potential presents special problems due to the non-linear nature of the free-surface
condition and the complexity of the body boundary conditions. This section discusses a
method to approximate the e¤ect of the second order potential.
The approximation is based on the assumption that the major part of the low frequency
second order force due to the second order potential is the wave exciting force component
due to the contribution ©(2)ww of the undisturbed incoming waves to the second order poten-
tial. This assumes that the …rst order di¤raction and body motion potentials ©(1)d and ©(1)b
are small relative to the undisturbed wave potential ©(1)w . This means that the right-hand
side of the free surface boundary condition of equation 9.15 only involves terms associated
with the …rst order velocity potential ©(1)w of the undisturbed incoming waves. The second
order potential which satis…es this boundary condition and the boundary condition at the
sea bed as well as the equation of continuity has been given by [Bowers, 1975].
We now consider a regular wave group travelling in the positive X1-direction consisting of
two regular waves with frequencies !i and !j with ! i > !j.
The …rst order velocity potential associated with these waves is:

©(1)w = ¡
NX

i=1

³
(1)
i g cosh ki (X3 ¡ h)

! i cosh ki h
¢ sin(ki X1¡ ! i t+ ~"i) (9.78)

The low frequency component of the second order potential associated with these waves is
as follows:

©(2)ww = ¡
NX

i=1

NX

j=1

³(1)i ³
(1)
j ¢ Aij ¢ coshf(ki ¡ kj)(X3 ¡h)g

cosh(ki ¡ kj)h
¢
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¢ sinf(ki ¡ kj)X1 ¡ (!i ¡ !j)t+ (~"i ¡ ~"j)g (9.79)

in which Aij is a coe¢cient depending on !i and !j and on the water depth h:

Aij =
g

2
¢ Bij + Cij
(!i ¡!j)2 ¡ (ki ¡ kj)g ¢ tanh(ki ¡ kj)h

(9.80)

in which:

Bij =
k2i

!i cosh
2 ki h

¡ k2j
!j cosh

2 kj h
(9.81)

Cij =
2kikj ¢ (!i ¡ !j) ¢ (1 + tanh k h tanh kj h)

! i !j
(9.82)

The low frequency component of this second order potential represents a long wave which
is induced by the presence of the regular wave group. The phase of this long wave - relative
to the wave group - is such that it has a trough where the wave group attains its maximum
wave elevation and a crest where it attains its minimum elevation. This is shown in …gure
9.24.

Figure 9.24: Wave due to Second Order Potential in a Regular Wave Group

The potential associated with such a wave does not satisfy the boundary condition on the
body which for the simpli…ed case is assumed to be equivalent to the normal …rst order
boundary condition. This means that contributions due to products of …rst order quantities
are neglected in the right-hand-side of equation 9.32.
The second order di¤raction potential ©(2)d in equation 9.36 satis…es the equation of conti-
nuity, the boundary condition at the sea ‡oor, the radiation condition and the homogeneous
free surface condition:

g ¢ @©
@X3

+
@2©

@t2
= 0 (9.83)

This last relationship gives rise to the well known dispersion relationship:

!2 = kg ¢ tanhkh (9.84)

The incoming waves due to the low frequency second order potential have a wave number
equal to ki ¡ kj and a wave frequency equal to !i ¡ !j. These waves do not satisfy the
dispersion equation 9.84.
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If the incoming waves have a frequency of !i¡!j then the di¤racted waves have the same
frequency; the wave number will follow from the relationship:

(!i ¡ !j)2 = k g ¢ tanh k h (9.85)

In order to simplify the situation we allow the di¤racted waves to have the same wave
number ki ¡ kj as the incoming waves. This means that di¤erences will occur in the
di¤racted waves further away from the body. Close to the body the situation will be
similar since the boundary condition at the body still has to be satis…ed. The reason for
this assumption regarding the wave number of the di¤racted waves will be apparent from
the following.
The problem has been reduced to a situation where one has to determine the wave exciting
force on the body due to a wave which has a velocity potential given by equation 9.79.
The di¤racted waves have the same wave number as the incoming waves. This is solved
by considering the ordinary …rst order wave exciting force F (1) on the body in a regular
wave with wave number equal to ki ¡ kj in an ordinary gravity …eld. For such a case the
associated wave frequency ! will be in accordance with the dispersion relationship equation
9.84. The frequency of this wave can be made equal to the frequency !i¡!j of the second
order waves by selecting a di¤erent value for the acceleration of gravity:

gij =
(!i ¡ !j)2

(ki ¡ kj) ¢ tanh(ki ¡ kj)h
(9.86)

Since the wave exciting force is proportional to the acceleration of gravity, the initial force
F (1) in a wave with frequency !, which follow from equation 9.84, becomes a second order
wave force with frequency !i ¡ !j by simply applying the factor:

nij =
gij
g

(9.87)

to the initial force.
This does not complete the transformation however, since besides satisfying the require-
ment that wave number and wave frequency be equal, the amplitude of the potentials must
also be equal. After alteration of the acceleration of gravity, the transformed potential of
the …rst order wave is:

© = ¡ ³(1)a gij
(!i ¡ !j)

¢ coshf(ki ¡ kj)(X3 ¡ h)g
cosh(ki ¡ kj) h

¢ sin f(ki ¡ kj)X1 ¡ (!i ¡ !j)t+ (~"i ¡ ~"j)g
(9.88)

The amplitude of the second order potential is given in equation 9.79. Equality of the
amplitudes means that:

³(1)a gij
(!i ¡ !j)

= ³(1)i ³
(1)
j ¢ Aij (9.89)

This means that the …rst order wave amplitude must be selected so that:

³(1)a = ³(1)i ³(1)j ¢ Aij(!i ¡ !j)
gij

(9.90)

The …rst order force F (1) is determined for a value of unity for the wave amplitude ³a. Since
forces are proportional to the wave amplitude, equation 9.90 gives a second correction factor
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which has to be applied to the force F (1) in order to give the required second order force
F (2):

F (2)ij = nij ¢ ³
(1)
i ³(1)j ¢ Aij (! i ¡ !j)

gij
¢ F (1) (9.91)

which, taking into account equation 9.87, gives:

F (2)ij = fij ¢ F (1) (9.92)

where:

fij =
³(1)i ³

(1)
j ¢ Aij (!i ¡ !j)

g
(9.93)

Equation 9.92 transforms a …rst order wave force into a second order wave force. As can
be seen from this equation, the second order force becomes a function of two frequencies
!i and !j. This approximation for the second order force can also be expressed in terms
of contributions to the coe¢cients Pij and Qij.

Wave Drift Forces in Regular Wave Groups

From the previous sections it was seen that the total wave drift forces may thus be expressed
in terms of transfer functions which are a function of two frequencies.
The most elementary sea state which gives low frequency wave drift forces is one which
consists of two regular waves with amplitude, frequency and random phase of ³1; !1; "1 and
³2; !2; "2 respectively, with !1 > !2.

³(t) = ³1 ¢ cos (!1t + "1) + ³2 ¢ cos (!2t+ "2) (9.94)

The wave drift force in such a case is:

F (2)(t) = ³21:P11 + ³
2
2:P22

+³1³2(P12 + P21) ¢ cos f(!1 ¡ !2)t+ ("1 ¡ "2)g
+³1³2(Q12 ¡Q21) ¢ sinf(!1¡ !2)t+ ("1 ¡ "2)g (9.95)

The frequency of the low frequency part of the wave drift force is equal to the di¤erence
between the frequencies of the regular wave components. This is the frequency of the
regular wave group which is the result of superposition of two regular waves (see …gure
9.25). It is noted that the constant part of the wave drift force is the sum of the constant
parts due to each of the wave components. The amplitude of the quadratic transfer function
is:

jTijj=
q
P 2ij + Q

2
ij (9.96)

Since Pij andQij, etc. never occur in isolation, it can be so arranged that certain symmetry
relations are valid:

Pij = Pji (9.97)

Qij = ¡Qji (9.98)

jTijj = jTjij (9.99)
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Figure 9.25: Regular Wave Group

Frequency Domain Calculation of Mean and Low Frequency Drift Force

The mean drift force in irregular waves with spectral density S³³(!) is found by putting
!1 = !2 in equation 9.74:

F (2)1mean =
NX

i=1

³(1)
2

i ¢ Pii (9.100)

which, taking into account that:

³
(1)2

i = 2 ¢ S³ (!i) ¢ d! i (see chapter 5) (9.101)

results in:

F (2)1mean = 2

1Z

0

S³(!) ¢ P (!; !) ¢ d! (9.102)

where P (!; !) is known as the mean drift force coe¢cient in regular waves.
By using equation 9.74 with i = j, P (!; ! is also written as:

P (!; !) =
F1
³2a
(!) (9.103)

Similarly it can be shown that the spectral density of the low frequency part of the wave
drift force is:

SF(¹) = 8

1Z

0

S³ (!1) ¢ S³(!2) ¢ jT(!1; !2)j2 ¢ d! (9.104)

where !1¡ !2 = ¹ is the low frequency and j T(!1; !2) j is the amplitude of the quadratic
transfer function.
Equation 9.104 can also be written as:

SF(¹) = 8

1Z

0

S³ (! +¹) ¢ S³(!) ¢ jT(! + ¹; !)j2 ¢ d! (9.105)



9-34 CHAPTER 9. NON-LINEAR BEHAVIOR

9.3.4 Computed Results of Wave Drift Forces

The expression for the wave drift forces and moments given by equations 9.67 and 9.70 have
been evaluated at MARIN, using a three-dimensional singularity distribution computer
program, see [Pinkster, 1977] and [Pinkster, 1980]. The computations have been performed
for a number of the cases and the results have been compared with some analytical solutions
and results of model tests. All results are for zero forward speed.

Mean Drift Forces in Regular Waves

Figure 9.26 compares the computed horizontal drift force on a free ‡oating hemisphere to
an analytical result given by [Kudou, 1977].
Figure 9.27 compares the computed mean vertical drift force on a long free ‡oating sub-
merged cylinder in beam seas to two-dimensional analytical results given by [Ogilvie, 1963].
Figure 9.28 compares the computed mean horizontal drift force on a long free ‡oating
cylinder in beam seas to two-dimensional results given by [Faltinsen and Loken, 1979] based
on Maruo’s theory.
Figure 9.30 (see also [Pinkster, 1979] and [Pinkster, 1980]) compares the computed mean
drift force on a rectangular barge and a semi-submersible in head seas to results of mea-
surements carried out at MARIN. The vessels are shown in …gure 9.29. In general it can
be said that the computations compare favorably with analytical solutions and results of
model tests.

Figure 9.26: Mean Horizontal Wave Drift Forces on a Floating Sphere

Components of Mean Wave Drift Forces

This section gives results of calculations which reveals the importance of various contribu-
tions to the mean drift forces as given by equation 9.67; this yields after re-arranging the
terms in this equation in a sequence as given by [Pinkster, 1980]:
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Figure 9.27: Mean Vertical Wave Drift Forces on a Submerged Cylinder

Figure 9.28: Mean Horizontal Wave Drift Forces on a Cylinder
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Figure 9.29: Vessels used for Experiments

Figure 9.30: Mean Surge Drift Forces in Regular Head Waves
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~F (2) = ¡1
2
½g

I

wl

³
³(1)r

´2
¢ ~n ¢ dl

+
1

2
½

ZZ

S0

³
~r©(1)

´2
¢ ~n ¢ dS

+½

ZZ

S0

~X (1) ¢ ~r@©
(1)

@t
¢ ~n ¢ dS

+m ¢R(1) ¢ Ä~XG
(1)

+½

ZZ

S0

@©(2)

@t
¢ ~n ¢ dS (9.106)

Figure 9.31 gives the …ve components of the computed mean surge drift force on a rectan-
gular barge and a semi-submersible in head waves.

Figure 9.31: Components of Computed Mean Surge Drift Forces

The numerals in these …gures refer to the following components of the mean force:

I: Relative wave height contribution:

¡1
2
½g

I

wl

³
³(1)r

´2
¢ n1 ¢ dl

II: Pressure drop due to velocity squared:

1

2
½

ZZ

S0

³
~r©(1)

´2
¢n1 ¢ dS (9.107)
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III: Pressure due to product of gradient of …rst order pressure and …rst order motion:

½

ZZ

S0

³
~X(1) ¢ ~r©(1)

´
¢ n1 ¢ dS (9.108)

IV: Contribution due to product of pitch motion and heave inertia force:

m ¢ x(1)5 ¢ ÄX (1)
3G (9.109)

V: Contribution due to the second order potential ©(2), which is zero in regular waves:

½

ZZ

S0

@©(2)

@t
¢ ~n ¢ dS (9.110)

The results in …gure 9.31 show that in general contribution I due to the relative wave height
is dominant, while the three remaining terms II, III and IV tend only to reduce somewhat
the e¤ect of contribution I. For high frequencies (to the right in the …gures) terms III and
IV vanish since the body motions - on which these terms are dependent - reduce to zero
in short waves. This leaves only the terms I and II.
For the semi-submersible in …gure 9.31 it is apparent that it is the wave drift forces acting
on the columns which form the greater part of the total horizontal wave drift forces.
Figure 9.32 shows the computed contributions to the mean horizontal drift force on the
‡oating sphere. In this case only contributions I, II and III play a part. As the frequency
increases again only contributions I and II remain.
Figure 9.33 shows the computed contributions to the vertical force on the submerged
cylinder in beam seas. Since there is no waterline, only contributions II and III play a role.
For high frequencies only II remains.

9.3.5 Low Frequency Motions

In view of the analogy which exists between the low frequency waves, the drift forces and
the low frequency part of the square of the elevations of the incident waves as indicated
by equations 9.74 and 9.77, we will look at some aspects of the waves. This will give some
indications regarding the properties of the low frequency wave drift forces.
The irregular waves are assumed to behave as a random Gaussian process. Thus, the wave
elevation in a …xed point in irregular waves, may be written as follows:

³(t) =
NX

i=1

³i ¢ sin (!it + ~"i) (9.111)

where ~"i is a random phase angle.
In amplitude modulated form this becomes:

³(t) = A(t) ¢ sin (!0t+ "(t)) (9.112)

where:
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Figure 9.32: Components of Computed Mean Horizontal Drift Forces on a Sphere

Figure 9.33: Components of Computed Mean Vertical Drift Forces on a Submerged Cylin-
der
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A(t) = = wave envelope =

s
NP
i=1

NP
i=1

³i³j ¢ cos f(!i ¡ !j)t + (~"i ¡ ~"j)g

"(t) = slowly varying phase angle
!0 = some centrally chosen …xed wave frequency

The behavior of the wave envelope, A(t), contains information with respect to the grouping
of waves. Squaring the wave elevation, ³(t), and taking only the low frequency part gives:

³2lf (t) =
1

2

NX

i=1

NX

j=1

³i³j ¢ cos f(!i ¡ !j)t+ (~"i ¡ ~"j)g

=
1

2
A2(t) (9.113)

This shows that the low frequency part of the square of the wave elevation also contains
information on wave grouping.
From equation 9.113 it follows that:

A2(t) = 2³2lf(t) (9.114)

Based on the assumption that the wave elevations are normally distributed, it can be shown
that the spectral density, Sg(¹) of A2(t), is related to the normal wave spectrum, S³ (!),
in the following way:

Sg(¹) = 8

1Z

0

S³(!) ¢ S³(! + ¹) ¢ d! (9.115)

The distribution function of A2(t) is, for a narrow-banded spectrum:

f (A2) =
1

2m0
¢ e¡

A2

2m0 (9.116)

where:

m0 =

1Z

0

S³ (!) ¢ d! (9.117)

This is the Rayleigh distribution for wave heights used in chapter 5.
From the above, it follows that knowledge of S³ (!) and the assumption that the wave
elevation is normally distributed is su¢cient to calculate the spectral density and distri-
bution function of A2(t). From this relationship it follows that the spectral density and
distribution may also be calculated from the low frequency part of the square of the record
of the wave elevation measured in the basin. If the waves are completely random then the
spectral density and distribution obtained from and based on the normal (…rst) spectrum
of the waves should correspond with the spectral density and distribution of 2³2lf calculated
directly from the wave record.
The distribution function p(A2) and p(2³2lf) and the spectral density of the waves and of
A2 and 2³2lf are shown in …gure 9.34 and …gure 9.35 respectively for an irregular wave train
generated in a basin of MARIN.
From equation 9.114 it follows that the wave envelope is related to the low-pass …ltered
square of the wave elevation:

A(t) =
p
2 ¢ ³ lf(t) (9.118)
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Figure 9.34: Wave Spectra and Low-Frequency Part of the Square of a Wave Record

Figure 9.35: Distribution Function of Low-Frequency Part of the Square of a Wave Record
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In order to show that this operation does indeed represents the wave envelope, results are
plotted in …gure 9.36 showing the wave elevation ³(t) and the corresponding wave envelope
A(t) calculated in accordance with equation 9.118. Also shown in the same …gure is the
record of the wave elevation ³(t) divided by the envelope A(t).
According to equation 9.112:

sin (!0t+ "(t)) =
³(t)

A(t)
(9.119)

From this it is seen that the signal oscillates between +1 and ¡1 with varying frequency.
From …gure 9.36 it is seen that generally this agrees quite well with theory. The slowly
varying nature of the frequency can be seen quite clearly.
In the foregoing, both the behavior of the envelope A(t) and the square of the envelope
have been treated. More attention should, however, be given to the behavior of the square
of the envelope in view of the analogy between this quantity and the low frequency second
order wave drifting forces.

Figure 9.36: Irregular Waves and Wave Enveloppe

The similarity between the low frequency surge and sway drift forces on a tanker in bow
quartering waves and the low frequency part of the square of the incident waves is apparent
in …gure 9.37. These results were measured during model tests.
The distribution function of the low frequency surge drift force in irregular waves measured
on a tanker in head seas is given in …gure 9.38.
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Figure 9.37: Low-Frequency Surge and Sway Drift Forces on a Tanker and Low-Frequency
Part of Wave Height Squared

Figure 9.38: Distribution Function of the Low-Frequency surge Drift Forces on a Tanker
in Irregular Head Waves
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It is seen that this resembles an exponential distribution valid for the low frequency part
of the square of the wave height.
In the beginning of this chapter, results were given on the wave drift forces on a tanker
moored in shallow water. In such cases, the in‡uence of the second order potential ©(2)

on the wave drift forces become more pronounced. Results were also given on the low
frequency ”set-down” waves associated with the second order potential of the undisturbed
incoming waves.

9.3.6 Simple Frequency Domain Method

A simple qualitative model is introduced in this section. It yields insight about the in‡uence
of mean and low frequency wave drift forces in irregular waves on the motions of a moored
vessel. This model, simple though it may seem, has proved to be a very useful tool to
explain and to predict low frequency motions of such vessels.
If a vessel is moored by means of a mooring system with linear restoring characteristics,
the low frequency surge or sway motions may be approximated by the following equation
of motion:

(m + a)Äx + b _x + cx = F (2)(t) (9.120)

where:

m+ a = virtual mass
b = damping coe¢cient
c = restoring coe¢cient
F (2)(t) = time dependent low frequency wave drift force

The mean displacement from the zero position due to the mean wave drift force is found
from:

Xmean =
F (2)mean
c

(9.121)

where F (2)mean is given by equation 9.102 and equation 9.103.
The root-mean-square of the low frequency part of the motion is found from:

m0x = ¾
2
x =

1Z

0

¯̄
¯̄ xa
Fa
(¹)

¯̄
¯̄
2

¢ Sf(¹) ¢ d¹ (9.122)

where:

Sf (¹) = spectral density of the wave drift force given by equation 9.105
jxa
Fa
(¹)j = frequency dependent motion amplitude response function

The motion amplitude response function follows from:
¯̄
¯̄ xa
Fa
(¹)

¯̄
¯̄ = 1q

fc¡ (m+ a)¹2g2 + b2¹2
(9.123)

see chapter 6.
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For slightly damped systems, which applies to many cases of moored vessels, the following
assumption may be made with respect to the spectral density of the low frequency drift
force:

Sf(¹) t Sf (¹e) (9.124)

where ¹e is the natural frequency of the moored vessel de…ned by:

¹e =

r
c

m+ a
(9.125)

This result implies that the major part of the motion response will be due to excitation
near the natural frequency. In that case, equation 9.122 may be approximated by:

¾2x = Sf(¹e) ¢
1Z

0

¯̄
¯̄ xa
Fa
(¹)

¯̄
¯̄
2

¢ d¹ (9.126)

If the natural frequency of the system is close to zero, the following approximation can also
be applied:

Sf(¹e) t Sf(0) (9.127)

From equation 9.105 it follows that:

Sf(0) = 8

1Z

0

S2³ (!) ¢ jT (!; !)j2 ¢ d! (9.128)

Since Q(!;!) = 0 (from equation 9.98) and taking into account equation 9.103 this be-
comes:

Sf (0) = 8

1Z

0

S2³ (!) ¢
¯̄
¯̄F
³2a
(!)

¯̄
¯̄
2

¢ d! (9.129)

In this case the mean-square of the low frequency part of the motions can be written as
follows:

¾2x = Sf(0)

1Z

0

¯̄
¯̄ xa
Fa
(¹)

¯̄
¯̄
2

¢ d¹ (9.130)

Taking into account equation 9.123 this becomes:

¾2x =
¼

2bc
¢ Sf(0) (9.131)

which reveals the remarkable fact that the virtual mass (m+a) of the vessels has no direct
bearing on the mean or the low frequency motion.
From equation 9.131, it is seen that besides the exciting force, the most important fac-
tors determining the motions appear to be the damping b and the sti¤ness c of the
mooring system. The trend suggested by equation 9.131 is also seen in results given by
[Remery and Hermans, 1972] on the in‡uence of the parameter c on the RMS value of the
low frequency surge motion of a barge moored in head seas.
The general characteristic of the mooring force as expressed by the mean-square of the
mooring force cx is found by multiplying equation 9.131 by c2:
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¾2mf =
¼c

2b
¢ Sf(0) (9.132)

This reveals that as the sti¤ness c of a mooring system increases, so does the RMS value
of the low frequency mooring force.
It must be remembered that equations 9.131 and 9.132 can only be used in an indicative
way. In many cases the mooring system will not be linear, or the number of degrees
of freedom of the moored vessel will be too great to allow such simpli…cations as made
here. We refer to [Oortmerssen, 1976b] and [Wichers, 1988] for more details concerning
simulation techniques for moored vessels.

9.4 Remarks

The theory relating to second order wave drift forces has been treated in this chapter.
Some results of computations have been compared with results derived analytically and by
means of model tests. These results apply to the mean drift forces in regular waves, which
can be used to estimate the mean and low frequency drift forces in irregular waves.
The low frequency part of the wave drift forces should theoretically, be determined by con-
sidering the drift forces in regular wave groups. In such cases the second order potential also
contributes to the force, see [Pinkster, 1980]. [Faltinsen and Loken, 1979] have indicated
that, for vessels ‡oating in beam seas, the sway drift forces calculated using only informa-
tion on the mean drift forces in regular waves gives results which are su¢ciently accurate
for engineering purposes. Results given by [Pinkster and Hooft, 1978] and [Pinkster, 1979]
on the low frequency drift forces on a barge and a semi-submersible in head waves gen-
erally con…rms the conclusion provided the frequency of interest is low. Frequencies of
interest for moored vessels are the natural frequencies of the horizontal motions induced
by the presence of the mooring system. In some cases the natural frequencies of vertical
motions can also be of interest from the point of view of vertical motions induced by the
low frequency wave drift forces.
It can be shown that, in at least one case, the mean wave drift forces in regular waves
cannot be used to estimate the low frequency drift forces in irregular waves. This case
concerns the low frequency sway drift force on a free ‡oating, submerged cylinder in beam
seas. According to [Ogilvie, 1963], the mean wave drift force in regular waves is zero for
all wave frequencies. This means that the low frequency wave drift force in irregular waves
estimated using only the mean wave drift force will be zero as well. Computations carried
out using the method given by [Pinkster, 1979] which determines the low frequency force in
regular wave groups show that this will not be true. The table below presents amplitudes
of low-frequency sway drift forces in regular wave groups on a submerged cylinder in beam
waves, with its center one diameter below the mean free surface:

F2ij
¼½gL³1³2

2kih
2kjh 2 4 6 8

2 0.00 0.08 0.09 0.08
4 0.00 0.06 0.07
6 0.00 0.05
8 0.00



Chapter 10

STATION KEEPING

10.1 Introduction

Precise positioning and long term motion control of ships and other ‡oating structures
are important in o¤shore operations. Mooring systems and thrusters are major tools for
maintaining a structure in position in current, wind and waves. The increasing application
of large o¤shore structures has put high demands upon the design of these positioning
arrangements. Important parameters in this respect are the large displacement of the
structure, deep and hostile waters and the required round-the-year workability.
The external loads on the structure have been discussed in earlier chapters. This chapter
treats some other important phenomena of station keeping problems of a ‡oating structure,
such as mooring systems, thruster performance and motion control.

10.2 Mooring Systems

Any mooring system is made of a number of lines (chain, wire or synthetic rope) with
their upper ends attached to di¤erent points of the ‡oating structure and their lower ends
anchored at the sea bed.
The cables are constructed from steel chain, rope or a combination of both. The ropes
are available in constructions from steel and natural or synthetic …bres. Multi-component
cable lines - cables composed of two or more lengths of di¤erent material - are used to get
a heavy chain at the sea bed and a lighter rope close to the water surface. This results in
an optimal combination of sti¤ness and total weight. The tension forces in the cables are
dependent on the cable weight, its elastic properties and the mooring system.

Typical and important types of mooring systems are:

² Catenary Line Mooring
This are the oldest and still most common mooring systems. It derives its restoring
force primarily by lifting and lowering the weight of the mooring line, at least in the
static sense. Generally, this yields a hard spring system with a force increasing more
than directly proportional to the displacement. In a spread mooring system as given
in …gure 10.1, several pre-tension anchor lines are arrayed around the structure to

0J.M.J. Journée and W.W. Massie, ”OFFSHORE HYDROMECHANICS”, First Edition, January 2001,
Delft University of Technology. For updates see web site: http://www.shipmotions.nl.
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hold it in the desired location. The normal case is that the anchors can be easily
moved, which implies that these anchors can not be loaded by too large vertical forces.
To ensure that the anchors are kept in position, it is necessary that a signi…cant part
of the anchor line lie on the sea bed.

² Taut Line Mooring
The mooring system has a pattern of taut, light-weight lines radiating outward. The
lines have a low net submerged weight, which means that the catenary action has
been eliminated. The system gets its restoring force as a function of horizontal
displacement primarily from elastic stretch of the line itself. Synthetic …bers are
most common for this type of mooring.

² Tension Leg Mooring
This special mooring system is used for tension leg platforms (TLP), as has been
shown in chapter 9. The buoyancy of this platform exceeds its weight and a net
downward force is supplied by the vertically tensioned mooring, secured by dead-
weight or anchor piles. These mooring lines provide essentially total restraint against
vertical movements of the platform in water depths of about 1 km or less. When the
‡oating object is horizontally displaced from its equilibrium position, the restoring
force on the object results from the horizontal component of the mooring leg tension.

The pre-tension in the cable is often established by the use of winches on the ‡oating
structure. The winches pull on the cables to establish the desired cable con…guration. As
the structure moves in response to unsteady environmental loads, the tension in the cable
changes due to varying cable geometry. Thus, the mooring cables have an e¤ective sti¤ness
which - combined with the motions of the structure - introduce forces depending on the
mooring cable characteristics.

O¤shore mooring systems are discussed in detail by [Massie, 1997]. The mooring forces
on the ‡oating structure are an input in the equations of motion of the structure in the
time domain. Two methods to obtain these forces on the structure - a static approach and
a simple dynamic approach - are given here. The positions of the anchor point and the
suspension point as well as the length of the cable line and its strain characteristics are
supposed to be known in these methods.
The hydromechanical interaction between waves and currents and the moving mooring or
towing line can lead to signi…cant forces. Sometimes they even exceed the net gravity force
on the line. This is discussed in detail in chapter 12. The axial resistance of a line in the
water is much lower than its transverse (cylinder drag) resistance. See chapter 4 for an
indication of this. Hydrodynamic interaction introduces hysteresis damping in a mooring
system.

10.2.1 De…nitions

Consider a cable with an un-stretched length L, at the lower end attached to an anchor
point, A, and at the upper end attached to a suspension point,B, on a ‡oating structure. In
an earth-bound right-handed coordinate system, S-(X1; X2; X3), with the origin somewhere
in the ‡uid (S is often taken in the still water plane) and the vertical axis positive upwards,
the anchor point, A, is given by (X1A; X2A; X3A) and the suspension point, B, of the cable
on the ‡oating structure is given by (xbB; ybB; zbB); see …gure 10.1.
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Figure 10.1: Cable Line in an Earth-Bound Axes System

The center of gravity,G, of the structure is given by (X1G; X2G; X3G). A steadily translating
coordinate system is given by G-(x1; x2; x3), with roll, pitch and yaw angles x4, x5 and x6
about these axes.
In the body-bound system of axes, G-(xb; yb; zb), the suspension point, B, of the cable on
the ‡oating structure is de…ned by (xbB; ybB; zbB).
In the earth-bound system of axes, the components of this suspension point, (X1B; X2B; X3B),
on the moving structure are found by:

X1B = X1G +xbB ¢ (+ cos x5 ¢ cos x6)
+ybB ¢ (¡ cos x4 ¢ sinx6 + sinx4 ¢ sinx5 ¢ cos x6)
+zbB ¢ (+sinx4 ¢ sin x6 +cos x4 ¢ sinx5 ¢ cos x6)

X2B = X2G +xbB ¢ (+ cos x5 ¢ sinx6)
+ybB ¢ (+ cosx4 ¢ cos x6+ sinx4 ¢ sinx5 ¢ sinx6)
+zbB ¢ (¡ sin x4 ¢ cos x6 +cos x4 ¢ sinx5 ¢ sin x6)

X3B = X3G +xbB ¢ (¡ sinx5)
+ybB ¢ (+ sin x4 ¢ cos x5)
+zbB ¢ (+cos x4 ¢ cos x5) (10.1)

or in a linearized form as used in previous chapters:

X1B = X1G + xbB ¡ ybB ¢ x6 + zbB ¢ x5
X2B = X2G + xbB ¢x6 + ybB + zbB ¢ x4
X3B = X3G ¡ xbB ¢ x5+ ybB ¢ x4 + zbB (10.2)
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10.2.2 Static Catenary Line

Consider now this cable with an un-stretched length L, at the lower end attached to an
anchor point, A, and at the upper end attached to a suspension point, B, in a vertical
plane through this cable line. A two-dimensional sketch of this catenary anchor line is
shown in …gure 10.2.

Figure 10.2: Cable Curve Symbols

For obtaining the equations of a static cable line, reference can be given to a number of
papers in this …eld; for instance [Massie, 1997] and [Korkut and Hebert, 1970].

Inelastic Cable Line

Suppose: the length of the cable, L, is known and the relative positions of two - in principle
arbitrary - points A and B on the cable are de…ned by the distances k and h. The anchor
point is de…ned in a new 2-D coordinate system (see …gure 10.2) by (xA; zA) and the
suspension point on the structure is de…ned by (xB; zB) with:

xB = xA+ k and zB = zA+ h (10.3)

The position of the origin of the axis system (x; z) relative to the cable line follows from
two unknown coe¢cients, C1 and C2, as will be explained in the following.
When de…ning:

u =
dz

dx
and c =

H0
w

(10.4)

in which w is the weight per unit length of the cable in water (see also …gure 10.2-a), it
can be found that:

ds =
p
1 + u2 ¢ dx
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du = d

µ
dz

dx

¶
= d (tanÁ) =

w ¢ ds
H0

=
ds

c

du =

p
1 + u2

c
¢ dx or: dx = c ¢ dup

1 + u2
(10.5)

With this, an integral equation will be obtained:
Z
dx = c ¢

Z
dup
1 + u2

(10.6)

Integration of this equation provides:

x = c ¢ ln
³
u+

p
1 + u2

´
+ C1 =

c

sinh u
+C1 (10.7)

or:
u = sinh

³x
c

¡ C1
´

(10.8)

Herein, the constant C1 will be zero because the origin in …gure 10.2 is chosen in such a
way that the derivative u = dz=dx is zero for x is zero, so:

u = sinh
³x
c

´
(10.9)

Then the equation of the cable curve can be written as:

z =

xZ

0

u ¢ dx = c ¢ cosh
³x
c

´
+ C2 (10.10)

The origin in …gure 10.2 is chosen in such a way that C2 = 0, thus:

z = c ¢ cosh
³x
c

´
(10.11)

This means that z = c for x = 0.
Also, the distance s can be obtained:

s =

xZ

0

p
1 + u2 ¢ dx =

xZ

0

r
1 + sinh2

³x
c

´
¢ dx (10.12)

or:
s = c ¢ sinh

³x
c

´
(10.13)

Combining equations 10.11 and 10.13 provides a simple relation between z and s:

z2 ¡ s2 = c2 (10.14)

from which after some algebra for the points A and B on the cable line follows:

p
L2¡ h2 = c

p
2 ¢ sinh

µ
k

2c

¶
(10.15)

The values k, h and L are known, so the value of c has to be found from this equation in
an iterative manner.
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But, after expanding the sinh-expression in series:

sinh

µ
k

2c

¶
=
k

2c
+
k3

48c3
+ :::::: (10.16)

and neglecting the higher order terms in here, the value of c can be found directly:

c =

vuut k3

24 ¢
³p

2 (L2 ¡ h2) ¡ k
´ (10.17)

The relative position of the anchor point, xA, can be found after some algebra by writing
down L + h with equations 10.13 and 10.11. A substitution of xM = xA + k=2 and
sinhfk=(2c)g from equation 10.15 in here provides xA. Then, zA follows from xA and
equation 10.11. The coordinates of the suspension point, xB and zB, follow from those of
the anchor point and equation 10.3.

xA = c ¢ ln
Ãs

L+ h

2 (L¡ h)

!
¡ k

2
xB = xA + k

zA = c ¢ cosh
³xA
c

´
zB = zA + h (10.18)

On a ‡at horizontal sea bed, the magnitude of xA should always be positive. If from
calculations follows that xA is negative, the cable is lying on the sea bed. In this case the
length of the free hanging part of the cable has to be determined by an iterative method
until xA = 0 has been reached. This point will become the new anchor point of the cable
line. Then, the distance between the old and the new anchor point plus the length of the
free hanging part of the cable is equal to the total length of the cable.

Finally, in any cross section of the cable, the forces are given by:

H = w ¢ c V = w ¢ s T = w ¢ z (10.19)

Then, the cable force components in the anchor point and the suspension point are:

HA = w ¢ c HB = HA

VA = w ¢ c ¢ sinh
³xA
c

´
VB = w ¢ c ¢ sinh

³xB
c

´

TA =
q
H2
A + V

2
A TB =

q
H2
B + V

2
B

ÁA = arctan
n
sinh

³xA
c

´o
ÁB = arctan

n
sinh

³xB
c

´o
(10.20)

Elastic Cable Line

In the previous, the elongation of the cable due to the tension force in the cable has not
been taken into account. For this, the cable characteristics have to be de…ned. These
characteristics are given here by the following relation between the tension force, T , in the
cable and the speci…c strain of the cable, ":

T < Tlin: T =
(EA)2

4 ¢Tlin
¢ "2

T > Tlin: T = ¡Tlin +EA ¢ " (10.21)

with:
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E = elasticity modulus of the cable
A = cross sectional area of the cable
" = ¢L=L = speci…c strain of the cable
Tlin = tension force in the cable at the boundary between

the linear and the non-linear elasticity

These force-strain characteristics are shown in …gure 10.3.

Figure 10.3: Cable Line Characteristics

Thus, Tlin = 0 provides the characteristics of a linear spring and a very large value of Tlin
results in a quadratic force-strain relation. With these cable characteristics, the e¤ect of
an elongation of the cable can be taken into account.
The actual length of the cable is given by:

L = L0+ ¢L0 (10.22)

in which L0 is the length of the not-loaded cable and ¢L0 is the elongation due to the
tension force in the cable.
First, the cable curve algorithms have to be solved for a cable length equal to the length
of the not-loaded cable, so: ¢L0 = 0. This results in a known distribution of the tension
forces T(s) in the cable. With the cable characteristics, the distribution of the strain of
the cable "(s) can be determined.
Then, the new total elongation follows from:

¢L0 =

LZ

0

"(s) ¢ ds (10.23)

This integration can be carried out numerically by dividing the cable length into n (for
instance n = 20) line elements. The integration provides a new length L of the cable and
the calculation procedure has to be repeated with this new length. A numerical procedure,
such as a ’Regula Falsi’ method, can be used to obtain a balance.
If a signi…cant part of the cable is lying on the horizontal sea bed, then a certain friction
of the cable over the sea bed can be taken into account.
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Figure 10.4 shows an example of results of static catenary line calculations for an anchored
platform. Figure 10.4-a shows the platform anchored by two anchor lines of chain at 100
m water depth. Figure 10.4-b shows the horizontal forces at the suspension points of
both anchor lines as a function of the horizontal displacement of the platform. Finally,
…gure 10.4-c shows the relation between the total horizontal force on the platform and
its horizontal displacement. This …gure shows clearly the non-linear relation between the
horizontal force on the platform and its horizontal displacement.

Figure 10.4: Horizontal Forces on a Platform as Function of its Horizontal Displacement

10.2.3 Dynamic E¤ects

In practical situations, the dynamic behavior of cable lines may contribute to the maximum
tension signi…cantly. Important parameters in this respect are the non-linear static load
excursion, the low-frequency (pre-)tension and the amplitude and frequency of the exciting
upper end oscillation. So far, the non-linear static load excursion has been accounted for
but the dynamic behavior of the cable line has been ignored.
The prime dynamic tension increase, originated from the normal drag forces related to
large global cable line motions at the middle sections. Long periods of slackness - even at
low frequencies of oscillation - can occur due to ’‡ying’ of the line under the in‡uence of
gravity and drag only. With increasing frequencies, the drag and the inertia equals the
gravity forces resulting in an ’elevated equilibrium’ of the line and the normal motions of the
upper section of the line yields lower tension values. Inertia e¤ects becomes of importance
at higher frequencies, especially for steel wires and multi-component lines. Also, currents
and waves will in‡uence the hydrodynamic drag on the mooring lines.

Lumped Mass Method

[Van den Boom, 1985] describes a technique which implies that the behavior of a continu-
ous line is modelled as a set of concentrated masses connected by massless springs. This
involves the lumping of all e¤ects of mass, external forces and internal reactions at a …-
nite number of points along the line. By applying the equations of dynamic equilibrium
(stress/strain) to each mass, a set of discrete equations of motion is derived. These equa-
tions may be solved in the time domain using …nite di¤erence techniques. Small e¤ects of
material damping, bending and torsional moments are ignored.
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Figure 10.5: Discretization and De…nitions for Lump Mass Method

Following the paper of [Van den Boom, 1985], the discretization of the mooring line can be
obtained by lumping all forces to a …nite number of nodes - so-called ’lumped masses’ - as
given in …gure 10.5-a. The …nite segments connecting the nodes are considered as massless
springs accounting for the tangential elasticity of the line. The line is assumed to be fully
‡exible in bending directions. The hydrodynamic forces are de…ned in a local system of
coordinates (tangential and normal direction) at each mass, as given in …gure 10.5-b.
In order to derive the equations of motion of the j-th lumped mass, Newton’s law is written
in global coordinates:

([Mj] + [mj (¿ )]) ¢
!
Äxj (¿) = ~Fj (¿) (10.24)

where [Mj] is the inertia matrix, [mj (¿)] is the hydrodynamic inertia matrix, ¿ is the time,
~xj (¿ ) is the displacement vector and ~Fj (¿) is the external force vector.
The hydrodynamic inertia matrix, [mj (¿ )] can be obtained from the normal and tangential
‡uid forces by directional transformations:

[mj (¿ )] = a
n
j ¢

£
¤nj (¿ )

¤
+ atj ¢

£
¤tj (¿ )

¤
(10.25)

where anj and atj represent the normal (superscript n) and tangential (superscript t) hydro-
dynamic mass:

anj = ½ ¢ CnM ¢ ¼
4

¢D2j ¢ lj

atj = ½ ¢ CtM ¢ ¼
4

¢D2j ¢ lj (10.26)

In here, CnM and CtM are the non-dimensional normal and tangential hydrodynamic mass
coe¢cients.£
¤nj

¤
and

£
¤tj

¤
are directional matrices given below for the two-dimensional case:

£
¤nj

¤
=

Ã
sin2 ~Áj ¡ sin~Áj cos~Áj

¡ sin~Áj cos ~Áj cos2~Áj

!
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£
¤tj

¤
=

Ã
cos2~Áj sin~Áj cos~Áj

sin~Áj cos ~Áj sin2 ~Áj

!

~Áj =
~Áj + ~Áj¡1

2
(10.27)

The nodal force vector, ~F , contains contributions from the segment tension, T , the drag
force, ~FD, buoyancy and weight, ~FW , and soil forces, ~FS:

~Fj (¿) = Tj (¿) ¢ ¡!
¢xj (¿ ) ¡ Tj¡1 (¿) ¢ ¡!

¢xj¡1 (¿) + ~FDj (¿) + ~FWj (¿) + ~FSj (¿ ) (10.28)

where
¡!
¢xj (¿ ) is the segment basis vector (~xj+1 ¡ ~xj) =lj, in which lj is the original segment

length.
The drag force, ~FD, (see chapter 4) may be derived from the normal and tangential force
components:

~FDj (¿ ) = [ (¿ )] ¢ ~fDj (¿ )

f nDj (¿ ) =
1

2
½ ¢ CnD ¢Dj ¢ lj ¢ unj (¿) ¢

¯̄
unj (¿ )

¯̄

f tDj (¿ ) =
1

2
½ ¢ C tD ¢Dj ¢ lj ¢ utj (¿ ) ¢

¯̄
utj (¿)

¯̄

~uj (¿ ) = [¡j (¿ )] ¢
³
cj¡

!
_xj (¿ )

´
(10.29)

where

~fDj = drag force in local coordinates
~uj = relative ‡uid velocity in local coordinates
cj = current vector in global coordinates
½ = ‡uid density
D = characteristic segment diameter
l = segment length
CD = non-linear (quadratic) 2-D damping (or drag) coe¢cient
CnD = normal drag coe¢cient
CtD = tangential drag coe¢cient

The directional matrices [j (¿)] and [¡j (¿ )] are used to transform the global drag forces
and velocities into local drag forces and velocities:

[j] = [¡j] =

Ã
¡ sin~Áj cos ~Áj
cos~Áj sin~Áj

!
(10.30)

CM is a 2-D non-dimensional hydrodynamic mass coe¢cient. The 2-D quadratic drag co-
e¢cient CD has been discussed in chapter 4. The hydrodynamic mass and drag coe¢cients
CM and CD - as they are used in the so-called Morison equations - will be discussed in
more detail in chapter 12.
[Van den Boom, 1985] has derived the ‡uid reactive force coe¢cients an, at, CnD and CtD
from forced oscillation tests and free hanging tension tests with model chain and wire
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sections. A volumetric diameter, de…ned by dc = 2
p

r=¼l (with r is segment volume and
l is segment length), proved to be an accurate parameter in the dimensionless hydrodynamic
coe¢cients. From the model tests it was concluded that frequency-independent coe¢cients
can be used for normal mooring chains and wires.
Dynamic sea bed reaction forces do not a¤ect the behavior of the line and can be modelled
as critical damped springs to prevent numerical instabilities. Tangential soil friction forces
may be of importance when the line part on the bottom is extremely long and transverse
soil reactive forces may be of importance for 3-D problems. Both soil e¤ects are neglected
here, thus the vertical force component, FS3j , equals:

FS3j = ¡bj ¢ _x3j ¡ cj ¢ x3j for: x3j < 0

FS3j = 0 for: x3j > 0 (10.31)

The time domain relations between nodal displacements, velocities and accelerations are
approximated by …nite di¤erence methods such as the Houbolt scheme which is described
by [Bathe and Wilson, 1976]:

!
_xj (¿ +¢¿ ) =

1

6¢¿
¢ f11~xj (¿ + ¢¿) ¡ 18~xj (¿) + 9~xj (¿ ¡¢¿ ) + 2~xj (¿ ¡ 2¢¿ )g

!
Äxj (¿ +¢¿ ) =

1

¢¿ 2
¢ f2~xj (¿ +¢¿ ) ¡ 5~xj (¿) + 4~xj (¿ ¡¢¿) ¡ ~xj (¿ ¡ 2¢¿ )g

or:

~xj (¿ + ¢¿) =
5

2
~xj (¿) ¡ 2~xj (¿ ¡¢¿ ) + 1

2
~xj (¿ ¡ 2¢¿ ) + 1

2
¢¿ 2

!
Äx j (¿ + ¢¿) (10.32)

The segment tension Tj (¿ + ¢¿ ) is derived from the node positions by a Newton-Raphson
iteration using the additional equation for the constitutive stress-strain relation:

~Ãj (¿ ) = l2j ¢
(

¡!
¢xj (¿) ¡

µ
1 +

Tj (¿ )

Ej ¢ Aj

¶2
)

(10.33)

~T k+1 (¿ +¢¿ ) = ~Tk (¿ +¢¿ )¡
£
¢Ãk (¿ )

¤¡1 ¢ ~Ãk (¿ ) (10.34)

where ~Ã =
¡
Ã1; :::; Ãj; :::; ÃN

¢
is segment length error vector, ~T k = (T1; :::; Tj; :::; TN) is

tentative segment tension vector at the k-th iteration and ¢Ã = @Ã=@T is the length error
derivative matrix obtained from equations 10.32 and 10.33.
For each time step the system of equation 10.34 should be solved until acceptable conver-
gence of T k (¿ + ¢¿) is obtained. The initial tentative tension can be taken equal to the
tension in the previous step. Each node j is connected to the adjacent nodes j ¡ 1 and
j + 1, hence equation 10.34 represents a three-diagonal (N £ 3) system. Such equations
may be e¢ciently solved by the so-called Thomas algorithm.
[Van den Boom, 1985] claims that - certainly for engineering applications - the Lumped
Mass Method (LMM) does provide e¢cient and accurate predictions of dynamic line mo-
tions and tensions.
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10.2.4 Experimental Results

[Kwan, 1990] checked results of calculations in the time domain - which include dynamic
e¤ects - against results of measurements. First, he carried out model tests. Then, - to elim-
inate potential questions about the scale e¤ects of model tests - a full scale measurement
was carried out in 1984 on a drill ship.. Some of his results are shown in …gure 10.6.

Figure 10.6: Comparison of Predicted and Measured Line Tensions

[Kwan, 1990] concluded that - in general - the predicted line tensions compare well with
the model test and full scale measurement results.

10.2.5 Suspension Point Loads

Now, the components of the cable forces in the suspension point, B, in the vertical plane
through the cable line are known; they can be derived in the earth-bound (X1;X2; X3)-
system of axes by:

TX1B = +TB ¢ cos ÁB ¢ cos®
TX2B = +TB ¢ cos ÁB ¢ sin®
TX3B = ¡TB ¢ sinÁB (10.35)

where TB, ÁB and ® are de…ned in …gure 10.1.
The angle of the cable forces in the horizontal plane in the (X1; X2; X3)-system of axes is
given by:

® = arctan

½
X3B ¡X3A
X1B ¡X1A

¾
with: 0 6 ® 6 2¼ (10.36)

Then, the forces and moments on the structure in the steadily translating axes system
G-(x1; x2; x3) are:

Fx1CAB LE = +TX1B ¢ cos x6 + TX2B ¢ sinx6
Fx2CAB LE = ¡TX1B ¢ sin x6 + TX2B ¢ cosx6
Fx3CAB LE = +TX3B
Fx4CAB LE

= +TX2B ¢ (X3B ¡X3G) + TX3B ¢ (X2B ¡X2G)
Fx5CAB LE = +TX1B ¢ (X3B ¡X3G) ¡ TX3B ¢ (X1B ¡X1G)
Fx6CAB LE = ¡TX3B ¢ (X2B ¡X2G) + TX2B ¢ (X1B ¡X1G) (10.37)
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10.3 Thrusters

Thrusters may be used - in combination with a mooring system or alone - to keep the
vessel in its desired position.

10.3.1 Characteristics

From open water propeller tests - see chapter 4 - with …xed pitch propellers (FPP) and
controllable pitch propellers (CPP), one can get a …rst estimate of the thruster charac-
teristics. An FPP prevails, from an energy e¢ciency point of view. An example of the
di¤erence in power consumption of an FPP versus a CPP is shown in …gure 10.7.

Figure 10.7: Power Consumption of FPP Versus CPP

In typical marine applications, there is always …rst the question of whether to use direct
drive by diesel engine or an electrical drive but in o¤shore DP applications the diesel drive
is rarely considered. For electrical drive, the three main solutions are:
- a constant speed AC motor drive (1- or 2-speed), which requires a CPP,
- a variable speed DC motor drive, which works with an FPP and
- a variable speed frequency converter and AC motor drive, with an FPP.
It derives from the CPP curve that there is a need to improve the e¢ciency of the thruster
performance at part loads from that of a single speed drive. The 2-speed drive already
looks much better - on paper - but due to its limited thrust developing capacity at the
lower speed, the higher speed tends to be used more for safety’s sake in practise. So that,
when the energy e¢ciency at typical DP load area is of prime importance, variable speed
(rpm) with an FPP is the ideal solution. This requirement has been mostly met by DC
drives so far.
To make an AC motor speed variable, the supply frequency to the motor must be varied,
hence the name of the frequency converter. There are basically three types of converters
(see …gure 10.8):
- the current source converter, which supplies current from the DC link in step form,
- the voltage source, which supplies stepped voltage and
- the pulse width modulated (PMW) type, which simulates the output waveform by sup-
plying a number of pulses of varying width.
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Figure 10.8: Frequency Converter Principles

Frequency converter drives are good solutions for industrial variable speed drives. Pipelay-
ing vessel ’Lorelay’ - operated since 1986 by Allseas Marine Contractors S.A. - was the …rst
DP o¤shore vessel fully designed around AC variable speed FPP propulsion and thruster
drives of PMW type. These drives may o¤er in many ways a solution which can improve
the performance of station keeping and the drive system reliability.

10.3.2 Loss of E¢ciency

A thruster in isolation will lose e¢ciency due to an interaction the hull and by the presence
of current and waves. Also thruster-thruster interaction can play a signi…cant role.

Coanda E¤ect

An important thruster-hull interaction e¤ect is the Coanda e¤ect. This phenomenon and
its e¤ect on the e¢ciency of the thruster is clearly explained by [Faltinsen, 1990] as follows.

Figure 10.9: Coanda E¤ect of a Stern Skeg Tunnel Thruster

The thruster slip stream will be attracted by the hull - as shown in …gure 10.9 - with loss
of thrust as a consequence. This propeller slip stream can be represented by a circular
jet, which acts like a line of sinks This means that water is entrained in the jet from
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Figure 10.10: Coanda E¤ect in a Propeller Slip Stream

outside the jet. If the boundary had not been there, the entrained velocity would have
been directed radially toward the center of the jet; the entrained velocity is only a function
of the radius. If a boundary is present, the velocity will be at a maximum between the
jet and the boundary. High velocity means low pressure. This means a pressure di¤erence
across the jet with a resultant force towards the boundary. This force will attract the jet
towards the wall. The attraction force has to be in balance with the centrifugal force of
the jet ‡ow and this balance determines the position of the jet relative to the wall. This
principle is shown in …gure 10.10.
For a thin jet - initially at a distance h from an in…nitely long parallel wall - it takes roughly
6h to hit the wall. This information can be used as a rough tool for avoiding the propeller
slip stream coming into contact with the hull.
However, one should realize that this approximation of the propeller slip stream by a thin
jet is a strong idealization. The jet must have a radius comparable to the propeller radius.
Close to the propeller the ‡ow is not jet-like. It actually takes a distance from the thruster
of about 6D (6 times the diameter of the propeller) before the propeller slip stream develops
into a fully turbulent jet-like ‡ow. The jet will spread as a function of the distance from
the thruster. If we consider a free jet - so a jet not in presence of a boundary - the points
in a jet where the velocity is half the maximum velocity will spread with an angle of about
5±. This spreading may cause the propeller slip stream to be in contact with the hull before
the above attraction e¤ect has fully developed. When the propeller stream clings to the
hull, it behaves like a wall jet. The wall jet may very well separate from the hull again.
This depends on the local radius of curvature of the hull. If a sharp corner is present the
propeller stream will separate and there will be no signi…cant thrust loss.
It is to di¢cult to estimate theoretically what the loss due to the Coanda e¤ect is. Ac-
cording to [Faltinsen, 1990], limited full scale experience from a supply ship indicates that
the Coanda e¤ect may cause a 30-40 % loss of thrust for a given power. In that case the
propeller stream followed the ship hull all the way up to the free surface. If the propeller
stream had been separated from some point on the hull surface, it is expected that this
would have caused a smaller loss.
For semi-submersibles, the Coanda e¤ect for a thruster on one pontoon, may cause the
propeller stream to hit another pontoon. The loss due to this can roughly be estimated by
considering the propeller stream to be an incident current on the other pontoon.
Another case for a semi-submersible would be if the thruster is aligned longitudinally along
the pontoon. Due to the long distance, the propeller slip stream is likely to be completely
attracted to the pontoon. The boundary ‡ow between the wall jet and the pontoon will
cause shear forces. According to [Faltinsen, 1990], this may amount to 10-15 % loss of
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power.
A practical solution to avoid the Coanda e¤ect can be found in tilting the thruster nozzle
over about 5 degrees in a downwards direction. Then, the propeller slip stream will not
be attracted by the hull in that amount and - in the case of a semi-submersible- hitting
the other pontoon by the propeller slip stream can be avoided. As a consequence of this,
a decrease of the loss of thrust for a given power can be expected.

Thruster-Thruster Interaction

For vessels where it is impossible to avoid placing the thrusters where the in‡ow and out‡ow
…elds may interfere, physical model tests are the only reliable way to de…ne the e¤ects.
[English and Wilde, 1976] describe a series of experiments wherein thruster interaction
e¤ects were derived from physical model tests.
In some cases, tilting the thruster nozzle over about 5 degrees in a downwards direction
can avoid or decrease thruster-truster interaction.

Current E¤ects

For tunnel thrusters, the thruster forces are a¤ected by the ‡ow of a current past the inlet
and outlet. The loss of thrust is caused by de‡ection of the jet stream and by interactions
between the jet stream and the hull which give rise to suction forces on the tunnel outlet
of the vessel.
[Chislett and Bjorheden, 1966] studied the in‡uence of forward speed of a 232 meter length
ship on the e¤ectiveness of a lateral-thrust device in turning the hull, which appeared to be
of considerable magnitude. They showed results of model experiments on the percentage
lost of side force and yaw moment of the thruster as a function of the velocity ratio: the
forward ship speed - thruster jet speed ratio.
The thruster jet speed, Vjet , has been evaluated by the conservation of momentum in the
‡uid:

Tjet = ½V
2
jet ¢ ¼

4
D2

jet or: Vjet =

s
Tjet

½ ¢ ¼4D2
jet

(10.38)

where the thrust, Tjet, is that measured at zero forward speed. With known diameter,
Djet, this equation provides the jet speed, Vjet. This jet exit velocity was assumed to be
independent of the forward ship speed; an assumption supported by additional torque
measurements.
The measured forces, Y , and moments, N , on the ship are made dimensionless the jet exit
velocity too:

Y 0 =
Y

½V 2jet ¢ ¼
4
D2jet

and N 0 =
N

½V 2jet ¢ ¼
4
D2

jet ¢ xT
(10.39)

where xT is the distance of the tunnel center from amidships.
Figure 10.11-a and 10.11-b and presents, for a number of propeller rates, these non-
dimensional loads on the ship as a function of the velocity ratio.
Figure 10.11-a provides the loss of e¢ciency of the thruster due to the forward ship speed.
At ship speeds less than about 3 knots, the lever arm of the moment, calculated from
N=Y , appeared to be similar to xT . At higher speeds this value increases, so the estimated
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Figure 10.11: E¤ect of Forward Ship Speed on Bow Thruster Performance

moment will be conservative when using the measured forces from …gure 10.11-a and xT
as the lever arm, see …gure 10.11-c.

[Faltinsen, 1990] used these thrust reduction results of [Chislett and Bjorheden, 1966] to
estimate the loss of e¢ciency of thrusters by currents. Together with the current velocity,
…gure 10.11-a provides the loss of e¢ciency of the thruster due to a current and the moment
can be found with the lever arm xT .
It has been found by [Edwards, 1985] that thrusters and particularly main propulsion units
in the vicinity of the after body can create markedly di¤erent reaction forces and moments
on vessels at oblique angles, particularly at high current speeds.

Figure 10.12: Starboard Main Propulsion Unit Yaw Moment E¢ciency
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This is illustrated in …gure 10.12, where the e¤ectiveness of a single main propulsion unit
in producing yaw moment is plotted versus heading with respect to current direction. An
e¤ectiveness of 1.0 indicates a measured reaction moment equivalent to the calculated
thrust times the moment arm, taking into account the observed advance ratio. It can be
seen that the measured reaction moment is many times the ideal value. In essence the
propeller operation has drastically changed the pressure distribution around the vessel,
aligned obliquely to the ‡ow from that with no propeller in operation. To a lower extent,
this may be seen for through-hull thrusters placed at the extremity of the vessel. The only
way to asses e¤ects such as this is with physical model tests.

Wave E¤ects

[Minsaas et al., 1986] have argued that a similar e¤ect to this must be present in waves.
They did experiments with a …ctitious bow thruster system in head waves. The ship sides
were simulated by vertical plates parallel to the incident regular waves. The whole system
was restrained from oscillating.
As treated in chapter 5, the wave velocity amplitude, Vp, at the propeller centre (z = ¡hp)
can be written as:

Vp = ³a! ¢ e¡khp (10.40)

By interpreting Vp as a current velocity they were able to predict trends in their experi-
mental results. If a ship is moving in waves the problem becomes more complicated. The
velocity across the propeller jet at the tunnel entrance is no longer Vp. This problem
requires further research.
The presence of waves causes - even for a thruster with a constant propeller pitch or
propeller speed setting - oscillating thrust and torque performances. Similar e¤ects appear
in the case of vertical and horizontal oscillations of the ship itself.

Free Surface E¤ects

When a thruster comes close to the free surface other problems appear. Depending on the
thruster loading this may cause air ventilation with a serious loss of propeller thrust and
torque.
Tests in still water were performed by [Minsaas et al., 1986], in order to study the e¤ects
of waves based on a quasi-steady assumption. As long as the thruster is not ventilating,
this is legitimate, since the wave-induced motions occur with a much lower frequency than
the propeller rotation. However, when the propeller is in a transient ventilating condition,
there is also a frequency connected with the development of the ventilated area on the
propeller blades. this wave-induced e¤ect can not be simulated by means of results in calm
water.
The tests in calm water were performed with di¤erent propeller axis submerges, hp, relative
to the free surface. By the quasi-steady assumption one can interpret hp as the submergence
of the instantaneous position of the wave surface, see …gure 10.13. By averaging the
propeller thrust and torque in time one can …nd the e¤ect of the wave induced motions of
the ship on the thruster characteristics.
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Figure 10.13: E¤ect of Waves on a Propeller, a Quasi-Steady Approximation

Figure 10.14: Lost of Thrust due to Bow Immersion in Calm Water

Typical model test results from calm water are shown in …gure 10.14 where thrust is
presented as a fraction of the thrust for a fully immersed propeller, ¯T =KTh=R=KT0 , and
for di¤erent number of revolutions, n.
It is observed that the number of revolutions has a marked in‡uence on the results. The
e¤ect of loss of e¤ective propeller area is important. When h=R < 1:0 the ratio of the
immersed disk area, A1, and the total disk area, A0, of the propeller is ¯0 = A1=A0. If
we assume that the thrust is proportional to A1, ¯0 gives the thrust reduction for small
n-values as illustrated in …gure 10.14. For large n-values we see that the thrust is very
low for the small h=R-values. This is due to propeller ventilation. Qualitatively it can
be explained as follows. Increased n means increased loading. This means large suction
pressures on the propeller. The lower pressure is, the more likely it is that ventilation
occurs. For h=R = 1:0-1:5 there is a very rapid variation in thrust. This is when ventilation
starts. The behavior of ¯ in waves is not quasi-steady when the propeller is in a transient
ventilating state. The maximum thrust is reached later in time than maximum immersion.
In most cases maximum thrust never reaches the same thrust value as when the propeller
was fully immersed in static conditions.
[Minsaas et al., 1986] have tried to apply their experimental results for a ducted propeller
and bow thruster in regular waves to thrust loss for di¤erent ships and sea states. An
example for a 250 meter long ship is presented in …gure 10.15.
The results will depend on propeller shaft submergence, h, propeller diameter, D, propeller
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Figure 10.15: Thrust Reduction in Head Waves

pitch, propeller revolution, n, and hull form. The results in …gure 10.15 show that even a
large ship experiences considerable thrust losses in rough seas.

10.4 Dynamic Positioning

The ’Eureka’ was the world’s …rst automatically controlled dynamically positioned vessel.
This semi-submersible was built by Shell Oil Company for exploration core drilling and
began operation in the spring of 1961. With one thruster power for each of its 400 tons of
displacement, it was very successful in taking cores up to 150 m in the sea ‡oor. Averaging
over two locations per day, it drilled as many as nine in a single day in water depths out
to 1200 m. Comparably sized anchored vessels at the time could get one location in two
to four days and were limited to only about 100 m of water.
Since this …rst operation of a dynamic position system, they have come a long way. Much
larger thrusters are stationing much larger vessels in much deeper water. Taut wire position
measurements has been given way to satellite positioning by Global Positioning Systems
(GPS). The old single-thread analog systems are gone and the digital computers are pro-
vided in dual and now triple redundancy. Failure rates have gone from several per month
and over 20 percent downtime in the …rst year to a present day Mean Time Between Failure
(MTBF) of about three years for the best systems.
Development of a successful dynamic positioning system requires a means of checking out
the performance of the entire system from the controls to the reaction of the vessel to
the environmental and thruster forces on the hull. A complete simulation will yield the
performance of the system by means of mathematical analysis before any hardware has
been acquired. Then by means of the detailed system simulator, one can vary parameters
on the control of the system, hardware characteristics, propeller design or even hull design
to obtain the desired performance in the changing environment and also in response to
sudden failure of a component of the system.
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10.4.1 Control Systems

The brain of the dynamically positioned system is the controller. Basically, it measures
the position of the vessel with respect to the intended position and directs power to the
various thrusters to correct any position error.
In its simplest form, the controller will call for thrust in the direct opposite to the position
error. Without some modulation of the thrust and provisioning of a ’dead band’, the
system would continually overshoot. Probably the simplest practical system consists of
thrust and moment commands proportional (P) to the amount of position and heading
error:

~T = f (X1; X2; X6) (P-controller) (10.41)

The axes system is given in …gure 10.16, with the origin, S , of the earth-bound axes system
in the still water surface. Notify the right-handed axes system here, with the vertical axis,
X3, positive downwards, as it is often used by manoeuvreing researchers.

Figure 10.16: Dynamic Positioning Axes System

Even this simple controller needs one more level of complexity. In the event the thruster
system is saturated, the controller must assign priority to heading control or position
control. Usually heading priority is called for since the proper heading will minimize the
relevant motions and thus the translational thrust requirements.
Using successive positioning error signals, one can determine the step-wise velocity of the
vessel. System performance is greatly improved by adding velocity terms, the derivative
(D) of the excursion, to the thrust equations:

~T = f
³
X1; X2; X6; _X1; _X2; _X6

´
(PD-controller) (10.42)

Finally in order to bring the vessel back to the zero position, the thrust must take into
account the time over which external forces have been acted. A term is added to; the
integral (I) of the excursion with time:

~T = f

µ
X1; X2; X6;

Z
(X1; X2; X6) dt; _X1; _X2; _X6

¶
(PID-controller)

The foregoing systems are all feed-back systems. A further re…nement in performance
can be achieved by adding a predictive or feed-forward component. This is particularly
vital where signi…cant time delays may be encountered. Examples of time delays are diesel-
generator set power build-up, or even starting an additional thruster. The feed-forward
elements may be wind velocity, Vw, and direction, ®w:
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(PID-controller with

~T = f

µ
X1; X2; X6;

Z
(X1; X2; X6) dt; _X1; _X2; _X6; Vw; ®w

¶
wind-feed-forward)

(10.43)

[Pinkster, 1978] suggested to extend the wind-feed-forward system with an intriguing wave-
feed-forward system. He carried out model experiments in bow-quartering irregular waves
(H1=3 = 4:9 m and T2 = 10:2 s) and a stern-quartering current (1 knot). The wave-feed-
forward system consisted of 8 ship-mounted wave probes. He showed that a wave-feed-
forward system is capable to reduce the low-frequency part of the sway motion by about
70 % and the surge motion by about 50 %. The DP simulation procedure can be extended
to include this factor, but the value of the simulation would depend primarily on the degree
to which the simulated wave data represents possible actual wave measurements. So far,
wave-feed-forward has not yet been incorporated in DP simulations.

The possibilities for evaluating the generalized function of eleven variables in equation
10.43 are limitless, hence the need for mathematical simulation.

10.4.2 Mathematical Model

For a dynamically positioned ‡oating structure, only the horizontal low-frequency motions
for surge (k = 1), sway (k = 2) and yaw (k = 6) are of interest. The thruster forces have
to balance the mean wave, current and wind loads. Further, Äxk, _xk and xk are the slowly
varying motions of the structure. It are the high-frequency motions of the waves that are
neglected or …ltered out, because it is generally impossible to have a system that can react
to these high-frequency wave forces.

A general form of the three nonlinear coupled (Euler) equations of motion in the horizontal
plane for surge, sway and yaw of a DP vessel - with an axes system as given in …gure 10.16
- is given by:

(½r + a11) ¢ Äx1 (t) + b11 ¢ _x1 (t) + bV1 ¢ _x1 (t) ¢ j _x1 (t)j ¡ (½r + a22) ¢ _x2 (t) ¢ _x6 (t) =
= FW1 (t) +F

C
1 (t) + F

WD
1 (t) +F R1 (t) + T1 (t)

(½r + a22) ¢ Äx2 (t) + b22 ¢ _x2 (t) + bV2 ¢ _x2 (t) ¢ j _x2 (t)j+ (½r + a11) ¢ _x1 (t) ¢ _x6 (t) =
= FW2 (t) +F

C
2 (t) + F

WD
2 (t) +F R2 (t) + T2 (t)

(I66 + a66) ¢ Äx6 (t) + b66 ¢ _x6 (t) + bV6 ¢ _x6 (t) ¢ j _x6 (t)j ¡ (a11 ¡ a22) ¢ _x1 (t) ¢ _x2 (t) =
= FW6 (t) +F

C
6 (t) + F

WD
6 (t) +F R6 (t) + T6 (t)

(10.44)

where ½r is the solid mass of the ship, I66 is the mass moment of inertia of the ship, akk
is the hydrodynamic mass or inertia, bkk is the hydrodynamic damping coe¢cient, bVk is
the quadratic viscous drag force or moment coe¢cient, FWk is the wind force or moment,
FCk is the current force or moment FWDk is the slow-drift wave excitation force or moment,
FRk (t) is the force or moment due to the riser and Tk is the thruster force or moment.
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Notice the appearance here of a sway-yaw velocity coupling term in the surge equation, a
surge-yaw velocity coupling term in the sway equation and a surge-sway velocity coupling
term in the yaw equation. These three mass terms follow from a proper derivation of
the nonlinear Euler equations of motion in the horizontal plane, which has been treated
plentiful in the literature on manoeuvering, guidance and control of ships; for instance
[Fossen, 1994].

The relative water velocity and direction - see …gure 10.16 - are:

VCR =

q
( _x1+ VC cos °C)

2 + ( _x2 + VC sin°C)
2

°CR = arctan

µ
_x2 + VC sin°C
_x1 + VC cos °C

¶
(10.45)

Then the current forces and moments can be obtained by:

FCk = R
0
k

¡
°CR

¢
¢ V 2CR for : k = 1; 2; 6 (10.46)

where R0k
¡
°CR

¢
is the resistance coe¢cient in the xk-direction due to the relative water

velocity in the °CR-direction.
The vessel velocities along the …xed (global) axes (X1; X2) are related to the velocities
along the local axes by the following transformation relations:

_X1 = _x1 cos x6 ¡ _x2 sinx6
_X2 = _x2 sinx6 + _x2 cos x6
_X6 = _x6 (10.47)

In addition, the excursions in surge sway and yaw are obtained from:

X1 =

Z
_X1 ¢ dt X2 =

Z
_X2 ¢ dt X6 =

Z
_X6 ¢ dt (10.48)

The …rst-order di¤erential equations governing thrust build-up with time of a DP system
with a PID-controller can be written in the form:

T1+ ¿ 1 ¢ dT1
dt

= ¡KP
1 ¢X1 ¡K I

1 ¢
tZ

0

X1 ¢ dt¡KD
1 ¢ _X1

T2+ ¿ 2 ¢ dT2
dt

= ¡KP
2 ¢X2 ¡K I

2 ¢
tZ

0

X2 ¢ dt¡KD
2 ¢ _X2

T6+ ¿ 6 ¢ dT6
dt

= ¡KP
6 ¢X6 ¡K I

6 ¢
tZ

0

X6 ¢ dt¡KD
6 ¢ _X6 (10.49)

where ¿k are time constants and the right hand term and KP
k , K I

kand KD
k are gain

constants of the PID-controller.
Sometimes, a low-pass …lter is used in the last term, KD

i ¢ _Xi, which avoids undesirable
e¤ects of high frequencies.
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10.4.3 Wind Feed-Forward

[McClure et al., 1990] give a practical example of the utility of a simulation with wind feed-
forward for the response of a 189 meter length ship to a sudden squall. Their equations of
motion are comparable to those given in 10.44. In each of their simulation runs, the ship
was in equilibrium in 29 knots wind, half a knot current and a sea with a signi…cant wave
height of 4.5 meter. The squall is of 600 seconds duration with wind velocities of about 35
to 60 knots, see …gure 10.17-a.

Figure 10.17: Squall Simulation with Head and Beam Wind

With the squall from directly ahead, the thrusters have su¢cient capacity and the system
behaves satisfactory. The bene…t of wind feed-forward is illustrated in …gure 10.17-b.
Without wind feed-forward, the vessel moves 20 meter o¤ station and overshoots 12 meter
before setting down. Feed-forward can never be 100 % e¤ective, so performance at 80 %
e¤ectiveness - which is a reasonable expectation - is also shown in this …gure.
When the squall is imposed from the beam direction, the thrusters are momentarily loaded
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to capacity and the system is ’saturated’. Figure 10.17-c illustrates the necessity of pro-
viding thrust in excess of the static balance. The curves shown represent in one case 3
thrusters available, 10,300 kWh, and in the other case 6 thrusters totalling 7725 kWh.
Either system has more than enough thrust to exceed the equilibrium loading. Both cases
include wind feed-forward at 80 % e¤ectiveness. Note that the time during which the
system is saturated is relatively brief, yet the system allows large drift and overshoot.

10.4.4 Gain Constants Estimate

For a DP system there has to be an allocation system that tells how the power should be
distributed among the individual thruster units. If the thrusters are a part of a DP system
with a PD-controller, an idealized simpli…cation of the total thruster forces - with time
constant ¿ ! 0 - can be written as:

Tk = ¡KP
k ¢Xk ¡KD

k ¢ _Xk for: k = 1; 2; 6 (10.50)

[Faltinsen, 1990] proposes a simple method to get a feeling for the magnitude of the gain
constants, KD

k and KP
k of the PD-controller of a dynamically positioned ship. An example

is given here for surge, of which the simpli…ed uncoupled equation of the slow-drift motion
is given by:

(m11 + a11) ¢ Äx1 + b11 ¢ _x1 = FSW1 + FW1 + T1 (10.51)

A substitution of equation 10.50 (with x1 = X1 and _x1 = _X1) in equation 10.51 provides
equation 10.52 for surge of the DP vessel:

(m11 + a11) ¢ Äx1 +
¡
b11 +K

D
1

¢
¢ _x1 +KP

1 ¢ x1 = F SW1 +FW1 (10.52)

where m11 is the mass of the ship, a11 is the hydrodynamic mass, b11 is the hydrodynamic
damping, F SW1 is the slow-drift wave excitation force and FW1 the gust force. The mean
values of F SW1 and FW1 are supposed to be zero.
The gain constant KP

1 will be chosen so that the natural period in surge of the slowly
oscillating ship is from 100-200 seconds. The damping coe¢cient, b11, has been neglected
by Faltinsen at this very low frequency and the gain constant KD

1 was set equal to about
60 % of the critical damping; so · = 0:60, see chapter 6. The …nal real values will be
decided after full scale sea tests with the DP system.
Thus, as a …rst estimate:

KP
1 = !20 ¢ (m11 + a11) where !0 =

150

2¼
, for instance

KD
1 = 1:20 ¢

q
(m11 + a11) ¢KP

1 (10.53)

With these equations, the variance of the slow-drift surge motion can be calculated in a
way as has been done in chapter 6 for motions with frequencies in the wave-frequency
range. Finally, the variance of the total thruster forces follow from equation 10.50.
For ships, the potential mass for surge can be approximated by 5-8 % of the ship’s solid
mass. The damping coe¢cient, b11, has assumed to be zero here. This assumption is true
for the potential damping but viscous e¤ects can have some in‡uence. In some papers, the
use of a surge damping coe¢cient of about 5 % of the critical damping of a soft spring
system is recommended.
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10.4.5 Motion Reference Filtering

Suppose a simple uncoupled equation of motion for sway of a DP vessel, given by:

(m22 + a22) ¢ Äx2 (t) + b22 ¢ _x2 (t) = FD2 (t) + T2 (t) (10.54)

where FD2 (t) is the total sway drift force and T2 (t) is the total sway thruster force.
The use of a PD-controller means that the thruster force contains a part which is propor-
tional (P) to the position error, x2 (t), and a part which is proportional to the derivative
(D) to time of this position error, the velocity _x2 (t). To obtain ’smooth’ input signals
x2 (t) and _x2 (t), the measured reference signal, x2 (t) - being obtained by systems such
as Loran, GPS, a taut wire system or an acoustic system - has to be …ltered; the wave
frequency motions and the high frequency disturbances are …ltered out. But, …ltering - for
instance by using a Kalman …lter - necessarily introduces a time lag, ¿ . Due to this time
lag, the thruster force is applied ’later’:

T2 (t) = ¡KP
2 ¢X (t ¡ ¿ ) ¡KD

2 ¢ _X2 (t¡ ¿) (10.55)

where ¿ is the time lag of the DP system between the …ltered motion signals and the
thruster reaction.
However, thruster forces are a¤ected by the presence of waves. This holds that - in spite
of …ltering out of wave frequent motions - via the actual thruster forces wave frequent
contributions will be introduced again in the system.
The displacement and velocity can be expanded in series:

X2 (t¡ ¿) = X2 (t)¡
@ fX2 (t)g

@t
¢ ¿ + ::::::

_X2 (t¡ ¿) = _X2 (t)¡
@

n
_X2 (t)

o

@t
¢ ¿ + :::::: (10.56)

These series can be simpli…ed by assuming ¿ to be small relative to the natural period of
the sway motion; thus a linearization is permitted:

X2 (t ¡ ¿) = X2 (t)¡ _X2 (t) ¢ ¿
_X2 (t ¡ ¿) = _X2 (t)¡ ÄX2 (t) ¢ ¿ (10.57)

so:
T2 (t) = +K

D
2 ¢ ÄX2 (t) ¢ ¿ +

©
¡KD

2 +K
P
2 ¢ ¿

ª
¢ _X2 (t) ¡KP

2 ¢X2 (t) (10.58)

With Äx2 = ÄX2, _x2 = _X2 and x2 = X2, the following expression is found from equation
10.54:
¡
m22+ a22 ¡KD

2 ¢ ¿
¢

¢ Äx2 (t) +
¡
b22 +K

D
2 ¡KP

2 ¢ ¿
¢

¢ _x2 (t) +KP
2 ¢ x2 (t) = FD2 (t) (10.59)

This equation shows that the e¤ect of a time lag in the DP system is to reduce the mass
term in the equation of motion and also to reduce the damping term.
Assuming that the total sway drift force, FD2 (t), can be characterized as a low frequency
’white noise’ process with mean value FD2 and the spectral density, Sf , the above equation
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of motion can be solved in the frequency domain, as has been discussed at the end of
chapter 9.
The results with respect to the variance of the sway velocity are as follows:

¾2x2 =
¼

2 ¢ (b22 +KD
2 ¡KP

2 ¢ ¿) ¢KP
2

¢ Sf (10.60)

¾2_x2 =
¼

2 ¢ (b22 +KD
2 ¡KP

2 ¢ ¿) ¢ (m22 + a22 ¡KD
2 ¢ ¿) ¢Sf (10.61)

Since the sway motion and the sway velocity are not-correlated processes, the variance of
the total thruster force is found to be as follows:

¾2F2T =
¡
KP
2 ¢ ¾x2

¢2
+

¡
KD
2 ¢ ¾ _x2

¢2 (10.62)

The mean thruster force follows from:

T2 = ¡FD2 (10.63)

Because ¿ is in the nominator of equations 10.60, 10.61 and 10.62, it is obvious that an
increased time lag, ¿, results in increased variances, ¾, of the motions together with also
increased required thruster forces. This means that attention has to be paid to a careful
choice and a proper use of the …ltering technique.

10.4.6 Role of Model Tests

The role of model tests in the design process of a DP control system for a vessel is well
described by [McClure et al., 1990]. Their view on this subject is summarized below.

Clearly, the availability of today’s computing power and sophisticated graphics engines
render the use of digital time domain, non-linear dynamic simulation programs the best
alternative for validating band optimizing the design of modern DP systems. These simula-
tion programs require reliable functional relationships between environmental parameters
such as current speed, wind speed, wave height and period - together with their directions
to the ships heading - and longitudinal force, side force and yaw moment. In addition
to these environmental ’forcing functions’ the performance of thrusters, rudders and main
propulsors in providing reaction forces and moments in opposition to the environmental
forces is required in terms of applied power, thruster orientation and proximity to other
propulsion devices.
Despite the advancement of numerical models for the prediction of hydro- and aerodynamic
forces on ‡oating structures, they still do not posses su¢cient precision for providing an
adequate function for use in the dynamic simulators, particularly as the requirements to
analyze the station keeping of permanent systems for deep water and hostile environments
emerge.
The role of physical model experiments in DP system design, validation and optimiza-
tion is analogous to their role in supporting maneuvering simulators for surface ships and
submarines. This role can be viewed in comparison with the full physical simulation of a
DP system at model scale in a similar way that the use of model tests and maneuvering
simulators are compared with free-running maneuvering experiments. Both of these ’full
physical simulations’ are expensive, require physical reproduction of the controller and all
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of its strategies and su¤er from hydrodynamic and time scale e¤ects. Large models are
required to minimize scale e¤ects on control appendage e¤ectiveness and a thorough ex-
amination of the sensitivity to overall response to subtle changes in control algorithms is
so time consuming as to be virtually impossible.
Nonetheless, some tests facilities have conducted experiments, where a ’complete’ physical
simulation of a DP system was undertaken. However, the opinion of [McClure et al., 1990]
is that such simulations are useful, only to validate numerical codes and are not a viable
design or optimization tool.

Nowadays, the e¢cient use of model tests to provide inputs required by numerical simula-
tors are mainly restricted to the following aspects:

² Wind Forces and Moments
The use of wind tunnel models to establish the longitudinal and lateral wind force
coe¢cients for mono-hulls and semi-submersibles we well-known. Scale e¤ects due
to Reynolds number disparity between model and full scale are mitigated somewhat
due to the blu¤ness of the elements of the above water portion of these vessels.
While there exists published data for some classes of vessels, [OCIMF, 1977], it is
advisable to conduct experiments to determine the aerodynamic coe¢cients when
the con…guration of the above water portion of the vessel departs signi…cantly from
that for which published data is available.

² Current Forces and Moments
If it were possible to always maintain a nearly zero heading with respect to the
current, such information would not be terribly important. However, the likelihood of
misalignment between the direction of sea, wind and current can be high in tidal seas
and estuaries and during squalls. So, in order to accurately analyze the response of a
dynamically positioned vessel, it is necessary to understand the relationship between
the coe¢cients of longitudinal and lateral forces and yaw moment and heading.
Again, it would be useful to use existing systematic series data to determine these
coe¢cients. Indeed, some data has been assembled for tankers by the Oil Company
International Marine Forum, [OCIMF, 1977]. However, this data is for a limited class
of hull forms. Changes in many hull form parameters such as length to draft ration
and fore and aft body …neness, as well as the distribution and size of appendages,
can change these coe¢cients.
The foregoing is no less true for column stabilized ‡oating platforms. Physical model
tests are the best tool today for quantifying these important inputs to the simulator.
Nonetheless, the scale of the model must be chosen carefully. It has been shown by
[Edwards, 1985] that Reynolds number (based upon beam) of approximately 500,000
are required to produce reliable results for the current force and moment coe¢cients.
This implied model scales on the order of 1:20 to 1:30.

² Wave Induced Forces and Moments
The forces exerted on a ‡oating body by waves at wave-frequency are ignored in
current DP system designs, because it is recognized that response times for the sys-
tems cannot approach that necessary to e¤ectively control position at wave-frequency
and because wave-frequency oscillations in the horizontal plane are not usually large
enough to limit operations. On the other hand, the steady component of wave in-
ducted longitudinal and lateral force and yaw moment must be reacted out by a the
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positioning system. The slowly varying component of these forces and moments must
be at least be attenuated.
Numerical models have been developed which provide estimates of the steady and
slowly varying components of the wave drift forces and moments. Nonetheless, to
con…rm these estimates for new designs, it is advisable to obtain a semi-empirical
relationship between the steady force and moment coe¢cients and wave period in
regular waves. Estimates of the slowly varying drift force and moment coe¢cients
can also be derived from experiments in regular wave ’beats’ and from irregular wave
tests using cross bi-spectral analysis techniques to derive quadratic transfer functions
for second order wave forces. These model tests can be conducted using relative small
and inexpensive models, on the order of 1:50, because viscous e¤ects are relatively
unimportant in physical simulation of wave drift.

² Thruster E¤ectiveness
The e¤ectiveness of thrusters in producing forces and moments to react out the
environmental forces and moments is necessary information for the simulator. It is
not adequate to consider the thruster in isolation, as done in a foregoing section,
because depending upon the proximity of thrusters, their in‡ow and out‡ow …elds
can interact, producing deviations in e¤ectiveness from that which would be expected
if the thrusters’ force and moment applied to the vessel were calculated taking in‡ow
velocity (free stream current), propeller angular speed and pitch into account and
using performance curves for the isolated thruster. For vessels where it is impossible
to avoid placing the thrusters where the in‡ow and out‡ow …elds may interfere,
physical model tests are the only reliable way to de…ne the e¤ects.
These experiments are carried out best with a large captive model. The model
is restrained in surge, sway and yaw. The model is towed at various speeds and
headings and various thruster operating conditions are prescribed. The resulting
residual forces and moments are measured. This data base is used in conjunction with
a similar data base obtained from towed tests without the thrusters and propulsors
operating to derive the e¤ectiveness and interaction polar plots for the thrusters and
propulsors.
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Chapter 11

OPERABILITY

Ship motions and sea loads can in‡uence the behavior and operability of the ship signi…-
cantly. The ship’s speed will be reduced due to an involuntary speed reduction and it can
be reduced voluntarily as well. Involuntary speed reduction is the result of added resis-
tance of the ship due to wind and waves and changes in the propeller e¢ciency due to the
waves and the loading of the propeller. Voluntary speed reduction means that the ship’s
master reduces the speed due to (green) water on deck or heavy slamming or to reduce
large accelerations. Environmental conditions can even lead to an involuntary change of
the ship’s course.
This chapter discusses ship operability in a variety of contexts, but …rst some necessary
theory on statistics is reviewed.

11.1 Statistics

11.1.1 Short Term Predictions

The basis for calculating a response - such as for instance the pressure at a speci…ed point
- is the transfer function of that response. As has been shown in chapter 6, the response
spectrum is calculated by multiplying transfer function, jHR³(!)j = Ra=³a(!), squared by
the incident wave spectrum, S³ (!):

SR³ = jHR³ (!)j2 ¢ S³(!) (11.1)

Assuming stationary Gaussian incoming waves and a narrow banded response spectrum,
the response amplitudes are Rayleigh distributed.
Then the Rayleigh short term probability density function of the response is given as:

¯̄
¯̄fST (Ra) =

Ra
m0R

¢ exp
½

¡ R2a
2m0R

¾¯̄
¯̄ (11.2)

in which m0R is de…ned as the area under the response spectrum.

0J.M.J. Journée and W.W. Massie, ”OFFSHORE HYDROMECHANICS”, First Edition, January 2001,
Delft University of Technology. For updates see web site: http://www.shipmotions.nl.
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11.1.2 Long Term Predictions

This short term probability density function, fST (Ra), has to be calculated for all wave
direction intervals, ¹i, and sea state intervals, de…ned by (Hj; Tk), in order to determine the
long term probability density function, fLT (Ra), which can be calculated as the weighted
sum of all short term results:

¯̄
¯̄
¯fLT (Ra) =

N¹X

i=1

NHX

j=1

NTX

k=1

fST (Ra)i;j;k ¢ fi ¢ fj;k
¯̄
¯̄
¯ (11.3)

in which:

N¹ = number of wave direction intervals, ¹i
NH = number of wave height intervals, Hj
NT = number of wave period intervals, Tk
fi = long term probability of wave direction interval ¹i
fj;k = long term probability of wave height and period interval (Hj; Tk)

within the wave direction interval ¹i

The long term sea state probabilities fi and fj;k can be obtained from wave scatter diagrams.
Diagrams for fj;k have been given in chapter 5 for the North Atlantic Ocean and the
northern North Sea for all wave directions together; then: N¹ = 1 and fi = fN¹ = 1.
The long term probability density function, fLT (x), can be integrated to obtain the long
term cumulative distribution function, FLT (Ra):

FLT(Ra) =

RaZ

0

fLT (x) ¢ dx (11.4)

When carrying this out numerically, it is advised to integrate in an opposite direction: from
the upper tail (high response amplitudes) to zero. This actually computes f1 ¡ FLT (Ra)g,
which can represent the upper tail part more accurately by minimizing numerical errors.
The zero-crossing period of the response in a certain sea state is given by the spectral
moments as T2R = 2¼

p
m0R=m2R and the mean period over a number of years can be

determined by weighting these periods - using the wave scatter diagram - over the wave
directions and sea states.
Then the number of observations or cycles, n, during Y years is thus calculated as:

nY years =
Y ¢ 365 ¢ 24 ¢ 60 ¢ 60

N¹P
i=1

NHP
j=1

NTP
k=1

fi ¢ fj;k ¢ T2R(i; j; k)
(11.5)

This analysis assumes that the observer is continuously exposed to this one wave climate
at that particular location.

11.1.3 Extreme Values

There is a relation between the distribution of the maxima or peaks in one sea state (short
term) and the distribution of the extremes in a number of equal sea states (long term).
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Figure 11.1: Probability Distributions of Maxima and Extremes in an Irregular Sea

Figure 11.1 shows this relation. The short term distribution of the maxima or peaks is the
left distribution in this …gure and the distribution of the extremes during a long period is
the right distribution. This will be discussed in more detail now.

In general the response of a ship to irregular waves is a random variable with an initial
probability density function, f (x), and an initial cumulative distribution function, F (x).
The extreme value of this irregular response is de…ned as the largest value expected to
occur in a certain number of observations or during a certain period of time.
Let a set of observed (absolute) crest and trough values (x1, x2, x3, ::::::, xn) of an irregular
response be a random sample of n observations. The elements of this random sample are
arranged in an ascending order of magnitude such that x1 < x2 < x3 < :::::: < xn;
thus the largest value - expected to occur in n observations - is named xn. This xn is a
random variable as well with its own extreme value probability density function, g (xn),
and extreme value cumulative distribution function, G (xn).
It is subject of considerable interest in statistics to …nd the asymptotic behavior of the
extreme value cumulative distribution function, G (xn), for a large sample size n. In other
words the question arises: ”Do these functions give us the opportunity to determine im-
portant phenomena such as the expected maximum response amplitude of a ship during
for instance its lifetime or the expected maximum wave height being encountered in for
instance a 50-years period, the so-called 50-years wave?” The answer is yes; the probabil-
ity functions f (x), F (x), g (xn) and G (xn) have mathematical relationships which enable
us to solve these problems, as will be shown here. The extreme values can be evaluated
precisely from the knowledge of the initial probability density function.
From the de…nition of the cumulative distribution function follows:

f (x) =
dF (x)

dx
and g (xn) =

dG (xn)

dxn
(11.6)
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As has been shown in chapter 5 for irregular waves, the probability that an arbitrary
response amplitude in irregular waves, Ra, does not exceed a value A is given by:

P fRa < Ag =
AZ

0

f (x) ¢ dx = F (A) (11.7)

Thus, the probability that one response amplitude in irregular waves does not exceed a
value xn is given by:

P fx < xng in 1 observation = F (xn) (11.8)

The probability that n response amplitudes in irregular waves does not exceed a value xn
follows from a multiplication of the individual probabilities - assuming independence of the
individual response amplitudes - by:

P fx < xng in n observations = (P fx < xng)n

= fF (xn)gn (11.9)

Thus, the extreme value cumulative distribution function, G (xn), in n observations can be
formulated as:

G (xn) = fF (xn)gn (11.10)

The extreme value probability density function, g (xn), in n observations is the derivative
of the function G (xn):

g (xn) =
dG (xn)

dxn

= n ¢ fF (xn)gn¡1 ¢ dF (xn)
dxn

= n ¢ fF (xn)gn¡1 ¢ f (xn) (11.11)

The probability density functions g (xn) for various n values are shown in …gure 11.2.
An explanatory sketch - illustrating the relationship between the probability density func-
tions f (x) and g (xn) - is shown in …gure 11.3.
Figure 11.3 also shows that - following the so-called modal value approach - the extreme
value is de…ned as the value having the highest probability of occurrence. At that point:

dg (xn)

dxn
= 0 (11.12)

so that:

df (xn)

dxn
¢ F (xn) + (n¡ 1) ¢ ff (xn)g2 = 0 (11.13)

Rewriting this equation and dividing it by 1 ¡F (xn) results in:

1

1 ¡ F (xn)
= ¡ n¡ 1

F (xn)
¢ f (xn)

1¡ F (xn)
¢ f (xn)
df (xn)
dxn

(11.14)
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Figure 11.2: Extreme Value Function g(xn) from Rayleigh Distribution for Variousn-Values

Applying the L’Hopital rule:

f (xn)

1 ¡ F (xn)
= ¡

df(xn)
dxn

f (xn)
for large xn (11.15)

results in:

1

1 ¡ F (xn)
=
n¡ 1
F (xn)

t n for large n and xn (11.16)

or:
df (xn)

dxn
t ¡1
n

and F (xn) t 1¡ 1

n
for large n and xn (11.17)

This last formula 11.17 states that the most probable extreme value expected to occur in n
observations, xn, can be evaluated from the initial cumulative distribution function, F (xn),
as the value for which the return period is equal to n or the probability of exceeding this
value is 1=n. The return period, here, is nothing more than reciprocal frequency. It should
not be interpreted directly in terms of an actual time interval between occurrences

Now the extreme wave or response amplitude with an expected average return period of -
for instance - 50 years can be determined. Also extreme signi…cant amplitudes - and the
most probable extreme amplitude within this response spectrum - can be determined.
For the sake of clearness and simplicity, the examples given here are for the waves only. By
using transfer functions, Ra=³a, with an amplitude of 1:0 all previous equations reduce to
equations for the probabilities of the irregular waves themselves. This is picked up again
later.
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Figure 11.3: Functions f (x) and g (xn) and Most Probable Extreme Value xn

Extreme Wave Amplitude

The wave scatter diagram for the Forties Field - an oil …eld in the Central North Sea - has
been used in this example. This diagram with 126; 007 observations of the signi…cant wave
height and the mean zero-crossing period during 21:5 years - so one observation every 11

2

hours - is given below.

Wave Scatter Diagram of Forties Field

Tota l 549 11284 32993 39460 26353 11109 3293 789 149 25 3 126007

12 .75

12 .25 1 1

11 .75

11 .25 2 1 3

10 .75 2 5 2 9

10 .25 1 3 7 5 16

9 .75 1 9 11 6 27

9 .25 4 30 16 6 56

8 .75 16 40 16 72

8 .25 2 29 61 8 1 101

7 .75 2 104 84 2 192

7 .25 8 175 72 3 258

6 .75 1 71 313 74 4 463

6 .25 3 222 401 47 2 1 676

5 .75 1 7 621 431 42 2 1104

5 .25 2 114 1228 321 29 5 1699

4 .75 3 681 1885 243 19 2831

4 .25 3 26 2530 1885 237 35 3 4719

3 .75 2 407 4892 1371 221 35 9 6937

3 .25 14 2827 5604 1019 205 41 8 9718

2 .75 3 233 7972 4588 901 184 33 1 13915

2 .25 7 2771 11367 3336 766 129 28 9 18143

1 .75 315 9872 8688 2133 446 80 21 6 1 21562

1 .25 14 3522 12850 5628 1626 351 79 38 7 2 1 24118

0 .75 376 6785 6765 2299 732 277 95 29 10 1 1 17370

0 .25 159 652 483 240 106 54 24 17 12 1747

H1=3 (m ) Tota l

T2 (s) 2 .5 3 .5 4 .5 5 .5 6 .5 7.5 8 .5 9.5 10 .5 11 .5 12.5 13 .5
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The resulting cumulative probability distribution functions can be plotted on Weibull pa-
per; see …gure 11.4.

Figure 11.4: Weibull Distribution of Extreme Wave Amplitudes

Long term probability density functions, fLT (³a), as given in equation 11.3, can be ob-
tained by using the wave scatter diagram of the considered sea area. These functions are
integrated, using equation 11.4, to obtain the long term cumulative distribution function,
FLT (³a), - marked by CDF in …gure 11.4. So this long term CDF -curve is fully calculated
here.
The number of wave cycles during 50 years, n50 years, can be obtained by putting Y = 50
in equation 11.5 and using the wave scatter diagram. Equation 11.17 provides the value of
the cumulative probability distribution function: F (³a) = 1¡ 1=n50 years. This F (³a) and
the CDF -curve in …gure 11.4 provide the extreme wave amplitude with an expected
return period of 50 years; in this example: ³a = 12:90 meter or wave height is 25:80
meter.

Signi…cant Wave Height of an Extreme Sea State

From the wave scatter diagram the probabilities for the signi…cant wave height are known,
F

¡
H1=3

¢
; these can be obtained from the most right column. Byplotting these probabilities

for the signi…cant wave height on Weibull paper - see the Weibull distribution in chapter
5 - the extreme sea state once every 50 years can be determined. Since the total number
of observations is 126; 007 over 21:5 years the total number of observations in 50 years is
N = 126007 ¢ 50 = 12:5. Thus F

¡
H1=3

¢
50 years = 1 ¡ 1=N . Because the plotted data of the

scatter diagram is often not accurate for the higher sea states - the connecting (dotted)
line is curved and twisted - a …t has to be carried out. In …gure 11.5, the 3-parameter
Weibull plot is …tted on all data (dotted line = data).
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F
¡
H1=3

¢
= 1 ¡ exp

(
¡

µ
H1=3 ¡ a

c

¶b
)

(Weibull) (11.18)

Figure 11.5: Probability Distribution of Signi…cant Wave Heights

This plot gives a straight curve for higher sea states and is then used to determine the
extreme signi…cant wave height. From the …gure follows that the extreme signi…cant
wave height with a return period of 50 years is 11:80 meter.
Obviously, the type of …tting is important. How to weigh the importance of the tail? In
this case, paying more attention to the upper tail would lead to a …t with a higher extreme
signi…cant wave height than a simple extrapolation of the data curve.

Extreme Wave Amplitude in an Extreme Sea State

Consider now this extreme sea state with a return period of 50 years - lasting 3 hours,
as generally done in o¤shore calculations. Using the formulation for the most probable
maximum, F (³a) = 1¡1=N , the extreme wave amplitude in this sea state can be calculated
from the Rayleigh distribution:

P
©
³a > ³a max (50 years storm)

ª
= exp

(
¡
³2a max (50 years storm)

2 ¢m0³

)
=
1

N
(11.19)

or:

³a max (50 years storm) =
q
2 ¢m0³ ¢ ln (N) (11.20)

The number of cycles, N , can be determined by using a wave period T2 = 12:0 seconds.
This is the average (central) period belonging to the extreme signi…cant wave height of
11:80 meter, as obtained from the wave scatter diagram.



11.2. OPERATING LIMITS OF SHIPS 11-9

The spectral area, m0³, is determined by:

H1=3 = 4 ¢ p
m0³ or m0³ =

1

4
¢H 2

1=3 (11.21)

in which H1=3 is the signi…cant wave height of the extreme sea state with an expected
return period of 50 years (11:80 meter in this example).
The resulting extreme wave amplitude in the extreme sea state is then 10:90 meter,
which is about 1:85 times the signi…cant wave amplitude.
This extreme amplitude is lower than the extreme wave amplitude with an expected return
period of 50 years (12:90 meter in this example). It is left to the reader to explain why.

11.2 Operating Limits of Ships

For various types of vessels, some typical phenomena and general operability limiting cri-
teria are given in this section.

11.2.1 Personnel Safety

Some general operability limiting criteria for ships, partially taken from [Faltinsen, 1990],
are given below.

General Operability Limiting Criteria for Ships

(NORDFORSK, 1987)

Description Merchant ships Naval Fast small
vessels craft

RMS of vertical acceleration at F.P.P. 0.275 g (L · 100 m) 0.275 g 0.65 g
0.050 g (L ¸ 330 m)

RMS of vertical acceleration at bridge 0.15 g 0.20 g 0.275 g
RMS of lateral acceleration at bridge 0.12 g 0.10 g 0.10 g
RMS of roll 6.0 deg 4.0 deg 4.0 deg
Probability on slamming 0.03 (L · 100 m) 0.03 0.03

0.01 (L ¸ 300 m)
Probability on deck wetness 0.05 0.05 0.05

For intermediate lengths in the criteria for the vertical acceleration forward and the criteria
for slamming, a linear interpolation can be used.
The limiting criteria for fast small craft are only indicative of trends. A fast craft is de…ned
as a vessel under about 35 meters in length with a speed in excess of 30 knots. A reason why
the vertical acceleration level for fast small craft is set higher than for merchant ships and
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naval vessels, is that personnel can tolerate higher vertical acceleration when the frequency
of oscillation is high.

Criteria for accelerations and roll for various types of work and for passenger comfort are
given in the following table.

Criteria for Accelerations and Roll

(NORDFORSK, 1987)

Description RMS vertical RMS lateral RMS roll
acceleration acceleration

Light manual work 0.20 g 0.10 g 6.0 deg
Heavy manual work 0.15 g 0.07 g 4.0 deg
Intellectual work 0.10 g 0.05 g 3.0 deg
Transit passengers 0.05 g 0.04 g 2.5 deg
Cruise liner 0.02 g 0.03 g 2.0 deg

11.2.2 Shipping Water

The relative motions between the ship and the water surface are generally largest at the
ends of the ship. In high waves the motions may be so large that the forefoot and propeller
are exposed and the deck submerged. This occurs most frequently at high speed in head
waves, although it is not unknown in other conditions. The e¤ective dynamic freeboard
will di¤er from the results obtained from the geometric freeboard at zero forward speed in
still water and the calculated vertical relative motions of a sailing ship in waves.
When sailing in still water, sinkage, trim and the ship’s wave system will e¤ect the local
geometric freeboard. A static swell up should be taken into account.
An empirical formula - based on model experiments - for the static swell up at the forward
perpendicular is given by [Tasaki, 1963]:

fe = f ¡ ³B with: ³B = 0:75B ¢ L
LE

¢ F 2n (11.22)

with:

fe = e¤ective freeboard at the forward perpendicular
f = geometric freeboard at the forward perpendicular
³B = bow wave
L = length of the ship
B = breadth of the ship
LE = length of entrance of the waterline
Fn = Froude number
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Figure 11.6: Distribution of Static Swell-Up

A very moderate approximation of the disturbance of the still water surface by the bow
wave over the ship length can be obtained with:

³x = ³B ¢ cos
µ
2¼ ¢ » ¡ 1

0:78¡ 7:2Fn

¶
¢ e0:35(»¡1)

¡(0:0050 + 0:0025Fn) ¢ Lpp cos
µ
¼
»

2

¶
(11.23)

with Fn is the Froude number, Lpp is the length between perpendiculars and » = 2x=Lpp,
where x = ¡Lpp=2 is the aft perpendicular and x = +Lpp=2 is the forward perpendicular,
so: ¡1:0 · » · +1:0.
An example of the results of the use of formulas 11.22 and 11.23 for a containervessel is
given in …gure 11.6.

The amplitude of the vertical relative motion, sa, of an oscillating ship in undisturbed
waves can be calculated from the heave, pitch and wave motions. However, an oscillating
ship will produce waves itself and this in‡uences the amplitude of the relative motion.
A dynamic swell up, ¢³a, should be taken into account so that the actual amplitude of
the relative motions becomes:

s¤a = sa +¢³a (11.24)

Then, shipping green water is de…ned by:

s¤a > fe at the bow (11.25)

The spectral density of the vertical relative motion at the forward perpendicular is given
by:

Ss¤(!) =

µ
s¤a
³a

¶2

¢ S³ (!) (11.26)
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and the moments are given by:

mns¤ =

1Z

0

Ss¤ (!) ¢ !ne ¢ d! with: n = 0; 1; 2; ::: (11.27)

Using the Rayleigh distribution, the short term probability of shipping green water in a
given storm condition is: ¯̄

¯̄P fs¤a > feg = exp
µ ¡f2e
2m0s¤

¶¯̄
¯̄ (11.28)

The number of times per hour that green water will be shipped in a certain sea state follows
from the short term probability on shipping green water and the number of oscillations per
hour: ¯̄

¯̄Nshipping/hour =
3600

T2s¤
¢ P fs¤a > feg

¯̄
¯̄ (11.29)

in which T2s¤ = 2¼
p
m0s¤=m2s¤ is the average zero-crossing period.

11.2.3 Slamming

Slamming is a two-node vibration of the ship caused by suddenly pushing the ship by
the waves. This occurs when the bow of the ship comes completely out of the water and
then ”crashes down” with an impact against the next wave. Slamming in‡uences the local
pressures on the hull plating and a local damage can be the result. The impulse nature
of the impact also causes internal vibrations which can contribute to structural fatigue in
the ship. Slamming does not necessarily in‡uence the overall vertical displacements of the
ship signi…cantly. Slamming forces can be very large, but they act on the ship during a
very short time.
A complete prediction of slamming phenomena is a very complex task, which is beyond
the scope of any existing theory. Slamming impact pressures are a¤ected by the local hull
section shape, the relative velocity between ship and wave at impact, the relative angle
between the keel and the water surface, the local ‡exibility of the ship’s bottom plating
and the overall ‡exibility of the ship’s structure.

Ochi Criterium

[Ochi, 1964] has translated slamming phenomena into requirements for the vertical relative
motions of the ship; he de…ned slamming by:
- an emergence of the bow of the ship at 10 per cent of the length aft of the forward

perpendiculars and
- at the instant of impact the exceedance of a certain critical vertical relative velocity,

without forward speed e¤ect, between the wave surface and the bow of the ship.

Ochi de…nes the vertical relative displacement and velocity of the water particles with
respect to the keel point of the ship by:

s = ³xb ¡ z + xb ¢ µ
_s = _³xb ¡ _z + xb ¢ _µ (11.30)
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with:

³xb = ³a ¢ cos(!et¡ kxb cos¹)
_³xb = ¡!e³a ¢ sin(!et¡ kxb cos¹) (11.31)

which means that a forward speed e¤ect is not included in his de…nition of the vertical
relative velocity.
The spectral moments of the vertical relative displacements and velocities are de…ned
by m0s and m0 _s. Emergence of the bow of the ship happens when the vertical relative
displacement amplitude, sa, at 0:90 ¢ L is larger than the ship’s draft, d, at this location.
The probability of emergence of the bow follows from:

P fsa > dg = exp
µ ¡d2
2m0s

¶
(11.32)

Ochi’s second requirement states that the vertical relative velocity exceeds a threshold
value. He used - based on model and full scale experiments with frigates - 12 feet per
second as a threshold value for a ship with a length of 520 feet.
Froude scaling of this threshold value results in:

_scr = 0:093 ¢
p
g ¢ L (11.33)

The probability of exceeding this threshold value is:

P f _sa > _scrg = exp
µ ¡ _s2cr
2m0_s

¶
(11.34)

Both occurrences - emergence of the bow and exceeding the threshold velocity - are sta-
tistically independent. In case of slamming both occurrences have to appear at the same
time.
Thus the probability on a slam is the product of the two independent probabilities:

jP fslammingg = P fsa > dg ¢ P f _sa > _scrgj (11.35)

or, using the Rayleigh distribution for each of these:

¯̄
¯̄P fslammingg = exp

µ ¡d2
2m0s

+
¡ _s2cr
2m0_s

¶¯̄
¯̄ (11.36)

Conolly Criterium

[Conolly, 1974] has translated slamming phenomena into requirements for the peak impact
pressure of the ship; he de…ned slamming by:
- an emergence of the bow of the ship and
- an exceedance of a certain critical value, pcr, by the peak impact pressure, p, at this

location.
The peak impact pressure, p, is de…ned by:

p = Cp ¢ 1
2
½ _s2 (11.37)
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Figure 11.7: Peak Impact Pressure Coe¢cients

in which _s is the vertical relative velocity between the ship and the wave.
The pressure coe¢cient Cp has been taken from experimental slamming drop tests data
with wedges and cones, as given in the literature. Some of these data, as presented by
[Lloyd, 1989] as a function of the deadrise ¯, are illustrated in …gure 11.7.
The deadrise is the angle of the inclination at the keel of the contour of a cross section.
This angle does not remain constant outside the center line. An equivalent deadrise ¯ is
de…ned here by an engineers solution: the deadrise of an equivalent wedge. The contour of
the cross section inside 10 percentile of the half breadth B=2 of the ship has been used to
de…ne an equivalent wedge with a half breadth: b = 0:10 ¢B=2. The accessory draft t of
the wedge follows from the section contour. This draft can be larger than 10 percentile of
the amidships draft d in the fore body of the ship. If so, the section contour below 0:10 ¢ d
has to be used to de…ne an equivalent wedge: t = 0:10 ¢ d. When this draft, t, is larger
than the local draft, d, then the local draft has to be used. The accessory half breadth, b,
of the wedge follows from the section contour.
Then the sectional area, As, below local draft, t, has to be calculated and the equivalent
deadrise angle ¯ (see …gure 11.8) follows from:

¯ = arctan
³a
b

´
0 · ¯ · 1

2
¼

a =
2(b ¢ t¡ As)

b
(11.38)

Critical peak impact pressures, pcr, can be taken from [Conolly, 1974]. He gives measured
impact pressures over 30 per cent of the ship length from forward for a ship with a length
of 112 meters. From this, a boundary of pcr between slamming and no slamming can be
assumed. This boundary is presented in …gure 11.9.
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Figure 11.8: Deadrise of an Equivalent Wedge

Figure 11.9: Measured Impact Pressures and Lower Limits



11-16 CHAPTER 11. OPERABILITY

These values have to be scaled by Froude’s law to the actual ship size. Bow emergence and
exceedance of this limit is supposed to cause slamming. This approach can be translated
into local hull-shape-dependent threshold values, _scr, of the vertical relative velocity as
well:

_scr =

s
2pcr
½Cp

(11.39)

The vertical relative velocity - including a forward speed e¤ect - of the water particles with
respect to the keel point of the ship is de…ned by:

_s =
D

Dt

¡
³xb ¡ _z + xb ¢ µ

¢

= _³xb ¡ _z + xb ¢ µ ¡V ¢ µ (11.40)

with:

³xb = ³a cos(!et¡ kxb cos¹)
_³xb = ¡!³a sin(!et¡ kxb cos¹) (11.41)

Then:

P fslammingg = exp
µ¡D2s
2m0s

+
¡ _s2cr
2m0_s

¶
(11.42)

Note that - because the forward speed e¤ect is included here - the spectral moment of the
velocities does not follow directly from the spectral density of the relative displacement as
used by Ochi.
The average period of the relative displacement is found by:

T2s = 2¼

r
m0s
m2s

= 2¼

r
m0s

m0_s

(11.43)

Then the number of times per hour that a slam will occur follows from:

Nslams/hour =
3600

T2s
¢ P fslammingg (11.44)

11.2.4 Sustained Sea Speed

In the last half century ship’s o¢cers can obtain routing advice from weather routing o¢ces
on shore, often connected with meteorological institutes. With a known or expected rough
weather pattern on the ocean, an optimum ship’s route with respect to minimum travelling
time, minimum fuel consumption or minimum risk of damage can be found.
Wind and wave forecasting is a meteorological problem.
The prediction of the ship’s reaction to wind and waves - in particular the ship’s speed
- is based on predictions and/or routing experience with the ship under consideration or
with similar ships. The so-called sustained sea speed depends on the ship’s resistance, the
characteristics of propeller and engine and the behavior of the ship in waves. In determining
the sustained sea speed two factors are considered: the natural speed reduction due to
added resistance - mainly caused by wind and waves - and the voluntary speed reduction
by the ships captain, in order to avoid severe motions or their consequences such as damage
to ship and cargo or crew and passenger seasickness.
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Ship’s Resistance

The total resistance of a ship in a seaway can divided in several parts and contributions;
the most important of which follow below:

² Still Water Resistance
Until now it is not possible to make pure theoretical calculations of the ship’s resis-
tance in still water. To estimate the required power in a design stage, use must be
made of model experiments carried out in a towing tank. These experimental results
are extrapolated to full scale by techniques based on physical laws and experience, as
has been treated in chapter 4. Numerous empirical methods can be found to estimate
the still water resistance, based on model experiments and trial data. Best known is
the method of [Holtrop, 1984], which has the advantage that the results are presented
in empirical formulas suitable for computer use.

² Wind Resistance
The wind resistance for ships with high superstructures or with a lot of cargo on deck
- such as container ships - can be considerable. A reliable method for estimating the
wind resistance of ships was published by [Isherwood, 1973]; see chapter 4.
The following relation between the absolute wind speed Vw and the signi…cant wave
heightH1=3 - obtained from ITTC recommendations - can be used for a quick analysis:

Vw = 10 ¢H1=32=3 (11.45)

in which the wind velocity, Vw, is in knots and the signi…cant wave height, H1=3, is
in meters.

² Added Resistance due to Waves
The relative motions of a ship with respect to the water surface cause an added
resistance. This has been shown in chapter 8, where two methods are given:
- the radiated energy method of [Gerritsma and Beukelman, 1972], suitable for head

to beam waves and
- the integrated pressure method of [Boese, 1970], suitable for all wave directions.

These methods are based on the assumption of the linearity of the ship’s response;
thus the added resistance varies with the wave amplitude squared.

² Added Resistance due to Steering
In a seaway, the ship’s heading will be disturbed by wind and waves. The beam waves
cause sway and yaw motions. To maintain a heading in a sea with a beam wind,
rudder angles are necessary to counteract the wind and wave moment at any instant.
For instance, a Beaufort 9 sea caused by beam wind can require oscillating rudder
angles with an amplitude of 15 degrees or more. All of this results in an increase of
the ship’s resistance.
In these beam waves, the ship will sail with yaw motions caused by the sea and by
the correcting autopilot. These yaw motions cause centrifugal forces, of which the
longitudinal components introduce a resistance; see …gure 11.10. Assuming a …xed
position of the pivot point (…ctive rotation point of the ship) at 10% from the forward
perpendicular and an additional hydrodynamic mass for sway of 80 % of the ship’s
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Figure 11.10: Resistance due to Steering

solid mass, the mean added resistance during a harmonic yaw motion will be in the
order of:

RST = 0:030 ¢ rL _Ãa
2

(11.46)

with:

.

RST = steering resistance in kN
r = volume of displacement in m3

L = length of the ship in m
_Ãa = rate of turn amplitude in deg/min

This means for a 200 meter container vessel - with rate of turn amplitudes of 30
degrees per minute at the service speed in following waves - a resistance increase of
20 % of the still water value. The course deviations in this example are only about
2 degrees. This shows that the setting of the autopilot is important.
Sway motions also increase the total sailed distance and - as a result - a reduced
average speed along the given track.

² Added Resistance due to Fouling
Fouling of the ship’s hull can cause a considerable increase in the ship’s resistance.
The extent of fouling depends on the sailing routes and the time during which the
ship will sail in areas with large fouling e¤ects. As fouling is a biological process -
depending on the paint used - it is not easy to give accurate mean values for all ships,
seasons and areas. Moreover, the e¤ect of fouling depends on the docking period and
the time since the last docking of the ship.
Fouling will only a¤ect the friction part, Rf , of the ship’s resistance. Aertssen carried
out full scale experiments to investigate the problem of fouling. From his extensive
results of full scale measurements it appeared that - for a ship sailing on the Atlantic
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route - the e¤ect of fouling on the frictional resistance will be in the order of:

¢Rf
Rf

¢ 100% = 3:6 ¢ ya +
40 ¢ yd
1 + 2 ¢ yd

(11.47)

in which ya is the age of the ship in years and yd is the year since the last docking.
This means for instance, an increase of the frictional resistance by about 30 % for a
ship with an age of …ve years and a last docking one year previously.
However, the overall e¤ect on the total resistance is smaller and depends on speed
and ship type. With low speeds and full ship forms - e.g. tankers - the frictional re-
sistance is the major part of the total resistance, whereas the wave-making resistance
dominates in the case of high speed container ships. This means that the e¤ect of
fouling is much larger for tankers than for container ships.
An investigation by [Journée, 1976b] of log data of a 200,000 tdw tanker, sailing from
Europe to the Persian Gulf, showed an increase of the still water resistance for full
load and ballast condition as 26 to 29 % one year after the last docking and 47 to
52 % two years after the last docking. After the oil crisis in the early seventies these
ships reduced power by 50 %, resulting in a speed reduction for the clean hull from
16 to 13 knots. To maintain this speed two years after the last docking the power
of a fully loaded ship had to be increased from 50 to over 80 %. This behavior is
visualized in …gure 11.11 as an example to show that fouling is a factor which should
not be neglected in sustained sea speed calculations.

Figure 11.11: Increase of Required Propulsion Power due to Fouling

The sum of these contributions provides the total resistance of the ship under operational
conditions.



11-20 CHAPTER 11. OPERABILITY

Propulsion

The propeller behind a ship can be considered as an energy transformer: torque with engine
speed will be transformed into thrust with a speed of advance of the propeller, relative to
the mean velocity of the incoming water. At a constant engine setting there should be
an equilibrium between the engine speed and the ship’s speed in such a way that two
conditions are ful…lled: the torque required by the propeller must be in equilibrium with
the torque delivered by the engine and the thrust delivered by the propeller must be in
equilibrium with the total resistance of the ship in the self-propelled condition. This has
been treated in chapter 4.

² Propeller
The characteristics of an open water propeller in its normal operating range are usu-
ally expressed in its thrust coe¢cient, KT, and torque coe¢cient, KQ, as a function
of the speed (or advance) ratio, J :

KT =
T

½D4n2
KQ =

Q

½D5n2
J =

Ve
nD

(11.48)

with T is thrust, Q is torque, ½ is density of water, D is propeller diameter, n is
number of propeller revolutions per second and Ve is relative speed of advance.
These characteristics depend on the number of propeller blades, the pitch ratio and
the expanded blade area ratio and can be obtained by means of open water model
experiments. Results of such experiments with systematically varied propeller series
can be found in various publications.
One of the best known is the Wageningen B-propeller series of MARIN. Over 120
systematically varied propeller models have been tested and the results are given in
polynomials, together with a correction for scale e¤ect. These results are valid for
the open water condition.
For the ”behind the ship condition” the open water torque must be multiplied by the
relative rotative e¢ciency ´R:

´R =
Qopen water

Qbehind ship
(11.49)

which varies from about ´R = 1:04 for single screw ships to about ´R = 0:97 for twin
screw ships. This e¢ciency re‡ects the di¤erence in torque in the wake and in open
water at the same thrust.
The relative speed of the water, Ve, into the propeller disc is not equal to the forward
ship speed, V . A wake fraction, w, should be taken into account:

Ve = V ¢ (1 ¡ w) (11.50)

This wake fraction varies from 0.2 to 0.4 and can be obtained directly from model
experiments - taking into account the scale e¤ect - or from empirical formulas given
in the literature.
From model experiments it appears that the wake fraction is hardly a¤ected by an
increase of the propeller loading due to a resistance increase, caused by - for instance
- towing a barge, motions in waves, etc.
As discussed in chapter 4, the thrust of the propeller, T , is not equal to the ship’s
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resistance, R, found from resistance tests. A thrust deduction fraction, t, should be
taken into account:

R = T ¢ (1¡ t) (11.51)

The thrust deduction fraction in still water is usually about 60 to 80 % of the wake
fraction and can be obtained from model experiments or by empirical formulae.
This fraction however, will decrease with an increased loading of the propeller; in the
bollard condition - at zero forward ship speed - this fraction will be about 0.03 to
0.05. From model experiments it appears that, at a constant propeller rotation rate,
the thrust deduction fraction decreases - at an increasing loading of the propeller -
quadratically with the forward ship speed. It can drop down to a value of about 0.03
to 0.05 in the bollard condition (zero speed).
The in‡uence on the e¢ciency of oscillations of the propeller behind a ship in waves
can be neglected for practical purposes.

² Engine
The relation between the delivered torque of an engine and the engine speed at a
constant setting and an increased loading in a seaway is also important. In this
connection two di¤erent types of engines are distinguished: a turbine and a diesel
engine.

– Turbine
As a …rst approximation, it is often accepted that - for an increasing loading of
the engine at a constant engine setting - the delivered power remains constant;
this means a hyperbolic relation between the torque at the propeller and the
engine speed:

Q= c ¢ ´m ¢ Q0 ¢ n0
n

for a turbine (11.52)

in which c is the engine setting, ´m is the mechanical e¢ciency of the shaft bear-
ings and 2¼Q0n0 is the maximum continuous rating power with n0 in rev/sec.
More precisely however, there is a linear relation between torque and engine
speed:

Q = c ¢ ´m ¢Q0 ¢
µ
a ¡ (a ¡ 1) ¢ n

n0

¶
for a turbine (11.53)

in which the coe¢cient a depends on the type of the turbine (2 · a · 3).
If one takes into account that - at a constant setting - the turbine speed will not
be reduced by more than 15 %; the assumption of constant power is su¢ciently
accurate for practical purposes such as the calculation of the ship’s speed.

– Diesel Engine
For a diesel engine it is usually accepted that the torque remains constant for
an increasing loading of the engine at a constant engine setting:

Q = c ¢ ´m ¢Q0 for a diesel engine (11.54)

This yields that the coe¢cient a in equation 11.53 is equal to1.0.
In practice, there are some deviations from this assumption. At a constant en-
gine setting and an increasing loading of the engine the torque will …rst increase
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to a maximum value and will then decrease again. This can be approximated by
a linear relation between torque and engine speed, provided that the number of
revolutions per minute does not reduce more than about 15 %. Then the linear
relation in equation 11.53 can be used for a diesel engine, too, with for instance
a = 1:0¡ 1:5.
Often the engine speed will be kept constant. This means that the coe¢cient
a goes to in…nity and the engine setting c has no meaning anymore; n will be
equal to n0.

Speed Calculation

[Journée, 1976b] describes a method to calculate the ship’s speed in seaway at a given
engine setting. Comparisons with published full scale data have shown a reasonable agree-
ment between ’theory’ and results of full scale experiments.
The principle of the calculation method is shown in …gure 11.12. For a number of ship
speeds, the relation between the torque required by the propeller and the number of rev-
olutions per minute are calculated from the torque characteristics of the assumed B-series
propeller behind the ship and a wake fraction. The relation between the torque delivered
by the engine to the propeller and the number of revolutions per minute is known from
engine characteristics and shaft losses. These relations give an equilibrium relation for
speed and number of revolutions per minute, which - together with the thrust deduction
faction - results in a resistance that can be overcome by propeller and engine as a function
of the speed. This is the right hand part of …gure 11.12. The actual total resistance of
the ship in a seaway as a function of the speed is known by adding up its components; the
required equilibrium yields the ship’s speed.
If greater speed-accuracy is required, speed, propeller rate and power data, for instance
derived at the ship’s trial, can be used to adjust the resistance curve and the propeller
characteristics.
Figure 11.13 shows the sustained sea speed (or speed loss) of a ship in relation to its course
with respect to the waves in various sea states. The circular curves in this …gure are curves
of constant ship speeds in knots; the non-circular curves are the sustained sea speeds of
the ship, each at a constant sea state de…ned by a signi…cant wave height - ranging from
2 until 8 meters - only. Note that head waves are indicated here by 00; a convention often
used in ship navigation.
Often, a …xed relation between the signi…cant wave height and the mean wave period will
be used in these speed graphs. Figure 11.14-a gives the results of speed loss calculations in
head waves of a 200,000 tdw tanker at a range of wave heights and wave periods. It shows
a striking in‡uence of the wave period on the ship’s speed.

Voluntary Speed Reduction

When a ship enters a severe storm the ship’s captain can reduce speed or change course
in order to reduce motions. Phenomena that are important for the decision to reduce
speed are shipping of green water and slamming as discussed before, but also heavy vertical
accelerations forward and sometimes propeller racing (if it comes partially out of the water).
Accelerations forward - exceeding certain limits - can damage ship or cargo and are therefore
often a reason for voluntary speed reduction. This can be too simple; …gure 11.14-b shows
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Figure 11.12: Scheme of Forward Speed Calculation



11-24 CHAPTER 11. OPERABILITY

Figure 11.13: Speed Loss Graph with Sustained Sea Speeds

the considerable in‡uence of the forward ship speed on the vertical accelerations forward
for a container vessel.
Propeller racing is the rapid increase of the rate of turn due to a lack of loading, because
of propeller emergence; it is largely prevented nowadays by rpm-governors on the engine.
However, large thrust and torque ‡uctuations occur in waves, even at a constant number
of revolutions per minute. This is reason why propeller racing is sometimes de…ned as an
emergence of the propeller which causes a decrease of torque in excess of 25 %. However,
often a more simple de…nition is used which de…nes propeller racing as an emergence of
the propeller by more than one third of the propeller diameter.

Criteria for reducing speed can be found in various publications. They are commonly
expressed as probability limits for the accelerations forward and probability limits for the
occurrence of shipping water at the bow and slamming. In some cases, probability limits
for propeller racing are included too.
Well-known voluntary speed reduction criteria are those of [Ochi and Motter, 1974]. They
give probability limits below which no voluntary speed reduction should be expected. These
criteria distinguish between two typical loading conditions of the ship:

² Fully laden condition:

P
n
bowdeck wetness and/or Äza1=3(bow) ¸ 0:4 g

o
· 0:07 (11.55)

This probability criterium of Ochi and Motter can be rewritten as:

P fbowdeck wetness and/or Äza(bow) ¸ 0:46 gg · 0:07 (11.56)

or:

P fbowdeck wetnessg+ P fÄza(bow) ¸ 0:46 gg
¡P fbowdeck wetnessg ¢ P fÄza(bow) ¸ 0:46 gg · 0:07 (11.57)
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Figure 11.14: E¤ect of Wave Period on Sustained Sea Speed and on Accelerations Forward

² Light laden condition:

P
n
slamming and/or Äza1=3(bow) ¸ 0:4 g

o
· 0:03 (11.58)

This probability criterium of Ochi and Motter can be rewritten as:

P fslamming and/or Äza(bow) ¸ 0:53 gg · 0:03 (11.59)

or:

P fslammingg+ P fÄza(bow) ¸ 0:53 gg
¡P fslammingg ¢ P fÄza(bow) ¸ 0:53 gg · 0:03 (11.60)

Use has been made here of the following probability relation, valid for two statistically
independent events A and B:

P fA and/or Bg = P fAg +P fBg ¡ P fA and Bg
= P fAg +P fBg ¡ P fAg ¢ P fBg (11.61)

In these criteria, bowdeck wetness has to be determined at FPP (forward perpendicular),
slamming at 0:90 ¢ Lpp and the vertical accelerations of the bow at FPP.
Note that these criteria are rather moderate; in fact they should also depend on the type
of the ship and its cargo.

Figure 11.15 shows an example of the sustained sea speed as a function of the Beaufort
scale for Victory Class ships. In order to avoid severe motions, these ships have to reduce
power already in rough weather conditions de…ned by Beaufort 6, approximately.
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Figure 11.15: Speed Loss of Victory Class Ships

Applications

When designing a ship, much attention is paid to the still water resistance with respect
to hull form, expensive bulbous bows and propeller design. On the North Atlantic Ocean
however, a sea state of Beaufort 6 is exceeded 70 % of the time during the winter season
and 45 % during the summer season. Depending on the ship’s size, the added resistance -
caused by vertical ship motions - can be considerable. In head waves in this sea state, a
ship with a length of about 135 meters and a service speed of 16 knots in still water will
have an added resistance equal to its still water resistance at about 12 knots. Thus, it is
worthwhile to pay attention to this added resistance, caused by vertical ship motions in a
seaway.
Speed and power calculations of a ship in a seaway can be used to support the work of
routing o¢cers. Together with the meteorological information, accurate speed loss graphs
will help them to give well-founded routing advice to the ship’s captain. This is of impor-
tance from an economic point of view as well as from the ship’s safety point of view. Ship
motions can be calculated with a fair accuracy but the limits with respect to the volun-
tary speed reduction are less certain. Computations use moderate limits, derived from the
available literature. However, these limits can be adjusted at sea to correspond to those
permitted by the ship’s captain.
This kind of calculation can also be used in developing operational performance systems
on board of ships. The calculated speed, power, fuel consumption and motion data can
be used in these systems with respect to decisions for course deviations or speed reduc-
tions. Another application of these calculations can be found in economical studies of the
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operation of these ships with respect to travelling time, fuel consumption, etc. This brings
one to a very interesting economic calculation which should include such factors as safety
limits in relation to insurance costs, the total transit time for both the ship and its cargo
(think of the lost production from a jack-up drilling rig being moved on a heavy-transport
ship), fuel consumption and its costs and personnel costs.

11.3 Dredger Limitations

Dredging masters tend to be experienced-based rather than theoretical. Since they often
spend a signi…cant part of their career on one ship, they can circumvent the response com-
putations and thus express operational limits directly in terms of the conditions (wind,
waves and currents) which cause the limit conditions. Note that this experienced-based
direct approach can have signi…cant errors from an economic point of view (stopping op-
erations too soon or continuing too long). It is also di¢cult to use for special dredgers of
an extreme size or with a non-standard form.

11.3.1 Dredger Wave Limitations

With these limitations, the following are considered to be general operating limits - in
terms of signi…cant wave height - in short waves (sea) or longer waves (swell) for each of
the given dredging operations.

Maximum Maximum
Floating Object H1=3 (m) H1=3 (m)

in short waves in long waves

Small equipment discharging into barges 0.30 - 0.50 0.20 - 0.40
Large equipment discharging into barges 0.50 - 1.00 0.40 - 0.80
Small equipment with ‡oating pipeline 0.20 - 0.50 0.20 - 0.50
Large equipment with ‡oating pipeline 0.50 - 1.00 0.30 - 0.60
Self-propelled barges with suction pipe 0.60 - 1.00 0.40 - 0.80
Trailer with swell compensator 2.00 - 4.00 2.00 - 4.00

This is not the whole story however. Consider the case when a trailing suction dredge
(with swell compensator) is being used to pick up sand, bring it near shore, and discharge
it into a pipeline (at an exposed location), for instance to restore a beach. Even though
the ship may be able to dredge (pick up sand) in 2 to 4 meter waves, it will likely not
be appropriate to come into shallow water (where the discharge pipeline starts) or even
to use a small boat to assist in connecting to this line. The proper analysis of such a
dredging cycle must account for these di¤erences as well as the sequence and duration of
each component step. This can be a very interesting topic, but one which is beyond the
scope of this text.
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11.3.2 Dredger Current Limitations

If the anchors hold su¢ciently, it makes a considerable di¤erence as to whether the ship can
work with the current or whether it has to work at an angle to the current, as for instance a
cutter suction dredger. For a cutter suction dredger the situation is particularly dangerous
when the current is directed against the ladder side. The current direction in this …gure
approaches from the ladder side, which is convenient in that it helps supply material to
the suction mouth in the cutter. On the other hand, when the current is too strong or
the deviation angle gets too large the anchoring system on the ladder can fail. When this
happens, the dredge will swing around her spud pile which can result in a broken discharge
pipe, a broken (or bent) spud pile, a broken ladder when it hits the channel side or even a
capsized dredger, if the spud pile and/or the ladder do not fail.
Here, again, dredging masters are experience-based. For most of the larger cutter suction
dredgers the safe limit can be estimated at about 2 knots velocity of the current. For bucket
dredgers and stationary dredgers the limit is about 3 knots provided the anchorage and
freeboard of the ship are su¢cient. Self-propelled barges are preferable when working in
strong currents; this avoids the need for moorings between the dredge and transportation
barge.


