Chapter 1
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Flow
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CHAPTER 1. POWER SYSTEM ANALYSIS / POWER FLOW

1. Power flow calculation

1.1 WHAT IS POWER FLOW CALCULATION?

Power flow calculation is an iterative procedure for determination of the power flows (active and
reactive) throughout the entire network, using information available about

«+Nodal power injections (P,Q)

«+Voltages (magnitude U, angle )

++System topology (interconnection of components), including parameters (e.g. reactances)

—— Node voltages
Network topology and

network parameters > » Branch currents
Power flow » Branch powers
calculation > Power losses
Node information > » Generator reactive power

— Slack node power

Note: The terms power flow and load flow both stand for the same analysis technique, however it is
recommended to use the name power flow. P. Kundur: “Load does not flow, but power flows.”
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1.2 WHY DO WE NEED POWER FLOW CALCULATION?

Applications:

1. State estimation (power system analysis)
2. Feasibility of power dispatch

3. Contingency management, etc.
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1.3 THE YBUS MATRIX

Example 1

In the system shown below, determine the relationship between currents and voltages
by applying Kirchhoff current’s law. Node voltages measured w.r.t. node 0 (reference)
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1.3 THE YBUS MATRIX

Example 1 1 Yd 3
Currents at node 1: —
- - = - - = - - = — 1+
11=U1Ya+(U1_U2)Yb+( 1 3)Yd 7 7 Yh g Ya T
Currents at node 2: ! “ 0 }
_ _ _ _ _ |
0=(U2_U1)Yb+(U2_U3)Yc l
Currents at node 3:
13=(U3_U1)Yd+(U3_Uz)Yc
[ lf(Y_a+Y_,,+Y7) -v, -7, Tlru_J
In matrix form: : 0 :=| —Y_b (Y_b+YC) -7, |:U_2:
|_13J |_ _Yd _Yc (Y5+Yd)J|_ 3_|
1.3 THE YBUS MATRIX O
Example 1 1
_ _y 7 _
s y y y y y - I‘W ) %13
|—11—| I—(Ya+Yb+Yd) -Y, -Y, -I|—U1—| |
N - - - =~
|0 |=| _Yb (Yb+Yc) _Yc ||U2|
N el
3 |_ d c c dJ 3

Generalizing for any system, the network admittance matrix, Y, relates the
nodal voltages vector, U, to the nodal currents vector, I, such that:

I[N 1 = Ybus -U[N 1 N:total number of network buses (nodes)
X [NxN] X

There are two ways to build Y,
a) Manual Inspection.
b) Through the incidence Matrix.
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1.3 THE YBUS MATRIX

Manual Inspection
(Easy to apply in small networks)

Rule:

Diagonal Elements: Y, ; = Sum of all the admittances connected to node i.
Off-diagonal Elements: ¥; i = Negative of the admittance between node i and ;.

Example 2

M |FY“ -, 0 }rulw

II_ZI |_Y1.1 (YLI+YLZ+YL4) _YL4 _YLZ | IEZ:

:13: : 0 _YL4 (YL3+YLA) _YL3 : :U3I

|_14J L 0 _YLz _YL3 SYL2+YL1)J I.UAJ
4 4 4 444444244444 4 4 43

Ybus

1.3 THE YBUS MATRIX

Incidence Matrix: A,,

G 1 Y, 2

- /i
Y%; y

3 Y. 4

L3

(More convenient for automated generation of Y, in large networks)

B

Order onp:NB x N

Yp: primitive admittance matrix

N :number of branches

B

Y,

P+ ]Q3 I: _@
G,
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1.3 THE YBUS MATRIX

Incidence Matrix: A,,
(More convenient for automated generation of Y, in large networks)

Orderof A : N xN

T
Y. =(A,) Y A, — N :number of branches

B

N:total number of network buses (nodes)

Elements of Ay, ) S
Convention for current direction is important, e.g.

( o [If/-thbranch is not connected to node m
a, = 4' 1 If current in /-th branch is directed away from node m

J-th branch —1 If current in /-th branch is directed towards node m

1.3 THE YBUS MATRIX

Incidence Matrix: A,,
(More convenient for automated generation of Y, in large networks)

Example 3 G, 1 }7]_1 2 G,
o+ ®
Y.o-(A,) Y, :

(Y, A 3
| — | P+
Py 0T, 0 0|I0 1o —1: 3{Q3E ()
us_gAM? ' — : p— G
< 25 Lo o v, ollo o 1 -1l 3 r, +
NxN NxN | L3 _ || |
0 0 0 Y 0 -1 0
k14442444L§}\144424443)
Y, [NgxNy] Ay [NgxN]

N ,:number of branches

N: total number of network buses (nodes)
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1.4 THE POWER FLOW EQUATIONS

Recalling
I[le] = Yb‘-‘S[NxN] - U [N~1] N: total number of network buses (nodes)
The elements (e.g. between nodes i and j) of Yy
Y,-, = YU_L OI_I = Y,-, (cos(Qil) + jsin (el_]_)) = Gi/ + jB,-,
I U
The voltage of the network nodes (e.g. at node i) : i l
1

U_i =U 28, =U, (cos(8,)+ jsin(3,))

Therefore, the current injected at node i can be obtained as:
Y U

in n

M -

n=1

I,=Y, U+Y,U,+..+Y U, =

1.4 THE POWER FLOW FLOW EQUATIONS

Yy = Y 26 = Yl,j(cos(eu)+ jsin (GU)) =G, + jB,
Considering = =U 28, =U (cos(,)+ jsin(5)))
Y U,

in

M =

=Y, U +Y U +...+Y, U_ =

i il
The active power injected into node i, is given by I i l !
_ i
’ Ii S, = Px +J Qi

~

n=1

1

S =P +j0 =U,
N N
Pi:ZUiUnYincos(Si_an_ein) Q1=ZUzUan/Sin(Sz_Sn_em)
n=1

n=1

N: total number of network buses (nodes)

17
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1.5 NETWORK NODE TYPES
P =Y UU,Y, cos(8, -8, -6,) 0, =Y UU,Y sin(8 -5 -0,)
For every node i, four quantities are defined:

1. Active Power: P, ;
2. Reactive Power: O,

3. Voltage phasor amplitude: U,

4. Voltage phasor angle: o, S

i

1

7,
|.
1

e

+ 7O,

Since

P =f (U.K ,UK,U/ 8K ,8,K,8,) 0 =f (UK ,UK.,U, 5., K,5,K,8,)
—> U, and §; are state variables: x = [§ U]T

Thus, for every node there are, in principle, two equations:

— One for the active power, P,, and one for the reactive power Q..

1.5 NETWORK NODE TYPES

However, without a reference node, there would be infinite solutions possible.

Reference = slack node = A node in which the voltage phasor amplitude
and angle are known (usually the node with the largest generator.)

Node Number of Known Unkown Number of equations per
Type nodes Variables Variables bus type
Slack tzllls =(rf§erence) | U and8,=0 P, and O, 0
PV bus (generation) N
. N PandU. | 6andO, g
(l =2..Ng+ 1) & 1 ana Y jand 0, (associated to P,)
PQ bus (load) 2(N—=Ng—1)

N—-Ng—1 P,and Q; | 6, and U

(i =Ng+2.. N) (associated to P; and Q,)

N:total number of network nodes

. T
= x=[6 U] = [5.K 8,0, LK U]
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G,

IN)

1.5 NETWORK NODE TYPES

> a
OX

1
|

Y
£

Example 4

S i

o~

In the 4 node network: 2

1. Slack node = node 1 P, + jO, ®
2. PV node - 1 active power equation (P,) ¢ I;ﬁ_l -
3. PQnode - 1 active and 1 reactive power equation (P;,Q;) 3 v, 4 G,
4. PV node - 1 active power equation (P,).
Node Number of Known Unkown Number of equations
Type nodes Variables Variables per bus type
Slack bus 1 U,and o, | P,and Q, 0
P,and U, | §,and O,
PV buses 2 P,and U, 8,and O, 2 (related to P, and P,)
PQ bus 4-2-1 Pyand O; | 8; and U; | 2 (related to P; and O5)

Total of 4 equations, and 4 state variables, x = [8, 8,8, U;]T

1.6 NEWTON-RAPHSON METHOD

» The power flow equations cannot be solved analytically due to the
complexity of the non linear equations.

» Newton—Raphson is an iterative method:

1: J(xHax" = h(x")
k+1 :xk 4 Axk
T

x=[6 U] = [SZ,K 8, U LK ,UNJ

> h is a vector which holds the mismatch power flow equations:

h = [AP(x) AQX)]"

» J is called the power flow Jacobian matrix. J = -H, where H is the
Jacobian of the power mismatches, i.e. HAx=-h(x)

19
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1.6 NEWTON-RAPHSON METHOD

Example 5: 2nd order polynomial

1. Suppose function y=h(x)

2. ydepends non-linearlyon x (€.9. y = 1 + 4x + x?2)

3. Thisis a 2nd order polynomial g0
4. Solving y=0 through abc formula: x; , = @ 20 +
5. Roots: x1=-0.268 & x2 =-3.73 0 Sk

6.0

o =) =}
<t N o o
| |

6.  Similar formulas exist for 3" and 4t order polynomials

7. Higher order polynomials cannot be solved analytically

— Numerical solution needed!

1.6 NEWTON-RAPHSON METHOD
Example 5: 2nd order polynomial
1. Letthe actual root be x. »

2. Make afirst initial guess (e.g. xo = 4) 0
3. Calculate h(xq) =

4. Calculate the derivative of h(x,), % i
_ ___hxo) .
5. Thenx; = xq Th (o) dx
6. Continue until |h(x,) — h(xp-1)| < € B T

dh(x,)

Coverges rapidly, but needs to determine at every iteration

dx
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1.6 NEWTON-RAPHSON METHOD

The mismatch equations are nothing more than the power flow equations,
cleverly re-written, so that they become zero when the method converges:

N
APi(X): Pi_Pi(X): Pi_z UiUnYincos(ai_Sn_ein)
LYJ n=1
Specified for node i L Y J
Iteratively computed for node 7

N

AQ,‘(X) = Qi - Qi(x) = Qi - z UiUnYin sin(6i - 6;« - ein)
- iel

L J

Specified for node i Y
Iteratively computed for node 7

T

x=[8 U ]T = [8 ,,K L8, U, K U, } Updated throughout the iterations

+2
3

1.6 NEWTON-RAPHSON METHOD

The Jacobian Matrix J contains the partial derivatives of the equations
of the injected P and Q with respect to the state variables, that is

[ op, . 0P, aPp, .. 0P,
I a5, a8 oU, oU
Jll | ) )
I M M M M
[of, ~ of, ] | 0P, o P, oP, .. 0P
IEITRE | 09 ou | l 05, AR o0U ouU
J = L J= | |l -~ -
J21 Jzz | afq afq | IaQNgu aQNng aQNg+2 aQNg+2
los  ou | 9%, aby 1ol ., ou
|
Iy M M M
| 00, 00y 80 00
! 23, a5, ouU, ., ouU

J contains four submatrices, each one with a myriad of partial derivatives
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1.6 NEWTON-RAPHSON METHOD
So the following equation system is solved at every iteration:

Ir oP, .. 0P, oP, .. aP, 1|
R s, U, Uy
oM M Mo Mo |r A5y TI Ir ap TI
| |
| 0P, .. 0P, oP, .. P | | M | | M |
| | w L |
o3, 08, oU, ., Wi || asl L an
(*) *)

900z v 22 P TR ELAEN I LA
| a8, 08, oU, ., Uy | M || M
| [ || |

M M M () (£)
| I Lavs | LAy |
| 60, .. 00, 00, .. 00, | 1 — —
| |
| 9% 98 Uy . U\ | Corrections Mismatches
L )

T
Jacobian

1.6 NEWTON-RAPHSON METHOD

Example 6: Partial derivatives
Suppose a function with multiple variables:
f(x,y)=l+2x+x2y+3y

Partial derivative w.r.t. x: regard y terms as constants!

of (x,y)
0x

=2+ 2xy

Partial derivative w.r.t. y: regard x terms as constants!

of (x,v)
oy

2
=x +3
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1.6 NEWTON-RAPHSON METHOD

Calculation of the terms inside the Jacobian Matrix

> J,; block:
N
. oP,
Diagonal elements: — =Y UU,y, sin(6, +5, -35,)
s, o
) aP, _
Off-diagonal elements: P ~UU Y, sin(8, +38, -38))

J

1.6 NEWTON-RAPHSON METHOD

> J,, block: .

oP,
Diagonal elements: P 2U Y, cos(6,)+ 3 UY cos(6, +35 -3)
i n=1

. oP,
Off-diagonal elements: ——=U Y cos(6, +35,-3,)
ouU

» J,, block:
. 00,
Diagonal elements: ——=> UU Y, cos(6, +38 -3))
d

n=1
n#i

. 20,
Off-diagonal elements: ——=-UU Y cos(0, +3 -3,)
a8

J

23
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1.6 NEWTON-RAPHSON METHOD

» J,, block:

20, i

——=-2U Y, sin(0, )+ > U,Y, sin(6, +38 -8
U

i n=1
n#i

Diagonal elements:

S

00,
oU .

J

Off-diagonal elements: =-UY, sin(6,+3 -3)

1.7 ITERATIVE POWER FLOW CALCULATION

1. Build the network admittance matrix Y,
2. Make an initial estimation: x =0, x* = [3* v']

T

— 3. Calculate the mismatches: h(x")=[AP,(x‘) AQi(xk)]

[ max(|h(xk)|) < e?= stop.

4. Perform the stop test:

[max(|h(x‘)|) >e?= goto5.

5. Construct the Jacobian Matrix: 3° = 5(x")
6. Calculate the corrections from: ax* = [as" AU*]T =J3x")"hx")

7. Add the corrections to the initial estimation:

. . . [§k+l _ ﬁk-{—Aﬁk
New iteration £ +1: x =x +Ax =
lUA+I _ UA +AUJ<

€ is a pre-specified tolerance (e.g. 0.0001)
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1.8 DECOUPLED POWER FLOW (DPF)

For real electrical systems, inverting the Jacobian matrix at every iteration of the
power flow calculation process increases the computational burden.

Solution: use the Jacobian matrix calculated at step k = 0, in all steps of the power flow
calculation. Approach usually termed as dishonest Newton method

=3 =1(x")
Advantage: Lower computational burden.

Disadvantage: More iterations are needed to reach the final results (longer convergence).

1.8 DECOUPLED POWER FLOW (DPF)

Simplifications were introduced by Stott and Alsac in 1974:

1. Resistance of the overhead lines much smaller than the reactance (X >> R)

1 1 i~

Y =-——= j—=Y e’
ij

! JX X

i ij
2. Small differences between the voltage angles i.e. (5, —8;) = 0
sin(3,-8,)~8,-8,

cos(d, - 5/,) ~ 1
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1.8 DECOUPLED POWER FLOW (DPF)

Consequences:

»J,andJ, =0

CHAPTER 1. POWER SYSTEM ANALYSIS / POWER FLOW

» Decoupling of the active power and the reactive power channels:

J(xHax =nix"

fa) o 1las" {AP.-("kﬂ'

| o Il el = .

L0 I Jlav ] |ag,(x")]
{Aak:(Jfl)”AP_(x*)

E »
(At - (09) a0, (x)

1.8 DECOUPLED POWER FLOW (DPF)

As long as the mismatch
equations are evaluated in the
exact manner, i.e. without the
simplifications, the DPF method
will provide accurate solutions,
but it will just need more
iterations to converge.

So the following equation system is solved at every iteration:

AP
. e
o t |—:Bzz L BZN F||—A62—| I UZ |
J,=8 ¥ [ |
—l: M L MM |=| M |
< B and B '"are taken i | |
from the imaginary I‘L v L BNNJI_A6NJ | APy |
partof Yy, N -8B T ‘ | Uy |
«» Row and column
; Ao, ;1
corresponding to the - | )
slack bus is omitted L BN,;*”'F':—AUN H': | U, ., |
i | |
1
L M i“ M |:| M |
1
L B :“L AU J : AQ :
L7
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1.8 DECOUPLED POWER FLOW (DPF)
1. Build the network admittance matrix Y,
2. Make an initial estimation: x* = [5" U‘]T

— 3. Calculate the active power mismatches: A, (v ‘5! /v’

4. Solve the voltage angle corrections: as* = (3°,) AP, (v'.s")
5. Update the voltage angles: 5" = 5* + As"

6. Use the updated voltage angles to Ao, (ufs! )/U .
calculate the reactive power mismatches

7. Solve the voltage magnitude corrections: au* = (47, )_' AQ, (ut8")
8. Update the voltage magnitudes: U*"' =u" + AU "

9. Perform the stop test: | max(h(x")]) < e2= stop.
|

[max('h(xk)|) >e?= goto3.

€ is a pre-specified tolerance (e.g. 0.0001)

1.9 “DC” POWER FLOW (DCPF)

»Based on the same hypothesis of the DPF, the non linear equations are
linearized to solve only the active power channel.

» Further speeds up the computation: only 1 matrix inversion needed.
»>Not an accurate solution.
N

APi(X)= Pi_Pi(x)= Pi_ZUiUnYincos(Si_Sn_ein)=

n=1

Original power
flow equations

T

Uu,=U, =1 [pu],Y_‘_/_=Y1,1_e 2,61—51_—) 0 DC power flow hypotheses

27
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1.9 “DC” POWER FLOW (DCPF)

Resulting DCPF equation:

N N
Pi = z UiUnYin COS(Si_Sn _ein)z _Z Yin Sin(Sn _5:')

n=1 n=1
n#l

N
= P Y Y, (5,-5,)
. Row and column corresponding

to the slack bus deleted
In Matrix form, it is possible to demonstrate that:

P=-B' -5 [P, [B,, By L||_52~|
PN R

il
= 5:(_B ) P LPNJ LBN2 BNNJLSNJ

1.10 SUITABILITY OF STUDIED POWER FLOW CALCULATION METHODS

Application Gauss-Seidel | Newton-Raphson | DPF | DCPF
Small networks X X

Large networks X X

N-1 analysis X X X
Market studies X




