Modelling and Analysis of Communicating Systems

Jan Friso Groote and Mohammad Reza Mousavi
Preface

Robin Milner observed in 1973 that the primary task of computers is to interact with their environment. But the theory of programs and programming at that time ignored this [131, 132]. To remedy this, he set out working on a theory of interaction, leading to his seminal books [133, 135] in which he developed CCS, the Calculus of Communicating Systems. At the same time two other main process calculi were developed, namely ACP (Algebra of Communicating Processes, [25]) and CSP (Communicating Sequential Processes, [100, 101]).

Interesting as they were, these process algebras were too bare to be used for the description of actual systems, mainly because they lacked a proper integration of data. In order to solve this, process-algebraic specification languages have been designed (most notably LOTOS [106] and PSF [127]) which contained both data and processes. A problem with these languages was that they were too complex to act as a basic carrier for the development of behavioural analysis techniques.

We designed an intermediate language, namely mCRL2 (and its direct predecessor µCRL [84, 75]) as a stripped-down process specification language or an extended process algebra. It contains exactly those ingredients needed to describe the behaviour of systems precisely in all its aspects, and its (relative) simplicity allows to concentrate on proof and analysis techniques for process behaviour.

Throughout the years many of these analysis techniques have been developed. These results include the Recursive Specification Principle, invariants, \(\tau\)-confluence, cones and foci, the modal mu-calculus with time and data, abstract interpretation and coordinate transformations, parameterised boolean equation systems, and proof by patterns, to name a few. These results, when combined together, constitute a mathematical framework suitable to launch an ‘attack’ on several phenomena in the realm of process behaviour that are not properly understood. They also form an effective framework to formulate and prove the correctness of complex and intricate protocols.

Up till now, all these results were lingering around in the literature. We combined them in this book, added exercises and examples to make the developed material suitable for self study and for teaching. The book has been used in the past years as the basis for several graduate-level courses. These include the course on “System Validation” in the Embedded Systems masters program at Eindhoven University of Technology and Delft University of Technology in the Netherlands.

Acknowledgements

The first version of this book appeared as a handbook chapter [86]. This chapter formed the basis of a reader [60] used for courses at several universities (published as [59]). These earlier publications were based on the modelling language \(\mu\)CRL (micro Common Representation Language, [84, 75]) essentially developed in 1991. In 2003 we decided that it was time for a successor to increase the usability of the \(\mu\)CRL, and we decided to baptise its successor mCRL2. The essential difference is that mCRL2 has richer datatypes, including standard data types and functions, contrary to \(\mu\)CRL which contained only a mechanism to define equational datatypes. This book is solely based
on mCRL2, and substantially extends [59].

The development of mCRL2 builds upon the development work on process algebras between 1970 and 1990. Especially the work on CCS (Calculus of Communicating Systems) by Robin Milner [133] and ACP (Algebra of Communicating Processes) by Jan Bergstra, Jan Willem Klop, Jos Baeten, Rob van Glabbeek and Frits Vaandrager [25, 18] forms an important basis. An essential step was the EC SPECS project, where a megalomane Common Representation Language had to be developed to encompass all behavioural description languages that existed at that time (LOTOS, CHILL, SDL, PSF) and that still had to be developed. As a reaction a micro Common Representation Language (µCRL) had been developed in which Alban Ponse was instrumental. Bert Lisser was the main figure behind the maintenance and development of the tools to support µCRL.

The following people have contributed to the development of mCRL2, its tools and its theory: Sjoerd Cranen, Tom Haenen, Frank van Ham, Jeroen Keiren, Aad Mathijssen, Bas Ploeger, Jaco van de Pol, Hannes Pretorius, Frank Stappers, Carst Tankink, Yaroslav Usenko, Muck van Weerdenburg, Wieger Wesselink, Tim Willemse, and Jeroen van der Wulp.

This book has been used as a reader for several courses among which are the courses ‘Requirements, Analysis, Design and Verification’ and ‘System Validation’ at Eindhoven University of Technology and Delft University of Technology. Many thanks go to Sjoerd Cranen, Veronica Gaspes, Jeroen Keiren, Michel Reniers and Erik de Vink for their careful proofreading. Valuable feedback also came from Michael Adriaansen, Muhammad Atif, Timur Bagautdinov, Ruud Bauhaus, Harsh Beohar, Debjyoti Bera, Dwight Berendshe, Anton Bilos, Michiel Bosveld, Gert-Jan van den Braak, Christoph Brandt, Bram Cappers, Mehmet Çubuk, Edin Dudojević, Michiel Fortuin, Joe Ganett, Herman Geuvers, Sven Goossens, Christiaan Hartman, Albert Hofkamp, Hossein Hojjat, Albert Hofkamp, Tom Hubregtsen, Bas Kloet, Diana Koenraadt, Geert Kwintenberg, Koen van Langen, Tony Larsson, Mattias Lee, Josh Mengerink, Paul Mulders, Gerardo Ochoa, Chidi Okwudire, Mathijs Opdam, Mahboobeh Parsapoor, Eva Ploum, Sander de Putter, André van Renssen, Marcel Roeloffszen, Koos Rooda, Anson van Rooij, Vikram Saralaya, Frank Stappers, Carst Tankink, Sander Verdonschot, Twan Vermeulen, Maks Verver, Amrita Vikas Sinha, Migiel de Vos, Tim Willemse, Jia Yan, Umar Waqas and many others.
Contents

1 Modelling

1 Introduction ... 13
 1.1 Motivation ... 13
 1.2 The mCRL2 approach 14
 1.3 An overview of the book 15
 1.4 Audience and suggested method of reading 16

2 Actions, behaviour, equivalence and abstraction

2 Actions ... 17
 2.1 Actions .. 17
 2.2 Labelled transition systems 18
 2.3 Equivalence of behaviours 21
 2.3.1 Trace equivalence 21
 2.3.2 ★Language and completed trace equivalence 23
 2.3.3 ★Failures equivalence 24
 2.3.4 Strong bisimulation equivalence 26
 2.3.5 The Van Glabbeek linear time – branching time spectrum ... 29
 2.4 Behavioural abstraction 32
 2.4.1 The internal action τ 32
 2.4.2 Weak trace equivalence 33
 2.4.3 (Rooted) Branching bisimulation 33
 2.4.4 ★(Rooted) Weak bisimulation 38
 2.5 Historical notes ... 40

3 Data types

3 Data types ... 43
 3.1 Data type definition mechanism 43
 3.2 Standard data types 49
 3.2.1 Booleans ... 50
 3.2.2 Numbers .. 51
 3.3 Function data types 54
 3.4 Structured data types 57
 3.5 Lists ... 59
 3.6 Sets and bags .. 60
 3.7 Where expressions and priorities 61
 3.8 Historical notes 61
4 Sequential processes

4.1 Actions ... 63
4.2 Multi-actions .. 64
4.3 Sequential and alternative composition 66
4.4 Deadlock ... 68
4.5 The conditional operator ... 69
4.6 The sum operator .. 70
4.7 Recursive processes .. 71
4.8 Axioms for the internal action 74
4.9 Historical notes ... 75

5 Parallel processes

5.1 The parallel operator .. 77
5.2 Communication among parallel processes 80
5.3 The allow operator .. 82
5.4 Blocking and renaming ... 85
5.5 Hiding internal behaviour ... 86
5.6 ⋄ Alphabet axioms ... 87
5.7 Historical notes ... 90

6 The modal μ-calculus

6.1 Hennessy-Milner logic ... 92
6.2 Regular formulas ... 93
6.3 Fixed point modalities .. 96
6.4 Modal formulas and labelled transition systems 100
6.5 Modal formulas with data .. 103
6.6 Equations .. 105
6.7 Historical notes ... 106

7 Modelling of system behaviour

7.1 Alternating bit protocol ... 111
7.2 Sliding window protocol ... 114
7.3 A patient support platform .. 119
7.4 Historical notes ... 127

8 Timed process behaviour

8.1 Timed actions and time deadlocks 129
8.2 Timed transition systems ... 131
8.3 Timed process equivalences .. 133
 8.3.1 Timed (strong) bisimulation 133
 8.3.2 Timed branching bisimulation 135
 8.3.3 Timed trace and timed weak trace equivalence 138
8.4 Timed processes .. 139
8.5 Modal formulas with time .. 144
8.6 Historical notes ... 146
II Analysis

9 Basic manipulation of processes

- **9.1** Derivation rules for equations .. 149
- **9.2** Derivation rules for formulas .. 154
- **9.3** The sum operator ... 156
- **9.4** The sum elimination lemma ... 157
- **9.5** Induction for constructor sorts 158
- **9.6** Recursive specification principle 160
- **9.7** Koomen’s fair abstraction rule 164
- **9.8** Parallel expansion ... 166
 - **9.8.1** Basic parallel expansion ... 166
 - **9.8.2** Parallel expansion with data: two one-place buffers 167
 - **9.8.3** Parallel expansion with time 170
- **9.9** Historical notes ... 172

10 Linear process equations and linearisation

- **10.1** Linear process equations .. 175
 - **10.1.1** General linear process equations 175
 - **10.1.2** Clustered linear process equations 178
- **10.2** Linearisation ... 178
 - **10.2.1** Linearisation of sequential processes 179
 - **10.2.2** Parallelisation of linear processes 185
 - **10.2.3** Linearisation of \(n \) parallel processes 187
- **10.3** Proof rules for linear processes 189
 - **10.3.1** \(\tau \)-convergence ... 189
 - **10.3.2** The Convergent Linear Recursive Specification Principle (CL-RSP) .. 191
 - **10.3.3** CL-RSP with invariants ... 192
- **10.4** Historical notes ... 195

11 Confluence and \(\tau \)-prioritisation

- **11.1** \(\tau \)-confluence on labelled transition systems 198
- **11.2** \(\tau \)-prioritisation labelled transition systems 199
- **11.3** Confluence and linear processes 202
- **11.4** \(\tau \)-prioritisation for linear processes 204
 - **11.4.1** Using confluence for state space generation 205
- **11.5** Historical notes ... 206

12 Cones and foci

- **12.1** Cones and foci ... 207
- **12.2** Protocol verification using the cones and foci 212
 - **12.2.1** Two unbounded queues form a queue 212
 - **12.2.2** Milner’s scheduler .. 213
 - **12.2.3** The alternating bit protocol 214
- **12.3** Historical notes ... 218
13 Verification of distributed systems

13.1 Tree identify protocol
13.1.1 The correctness of the tree identify protocol

13.2 Sliding window protocol
13.2.1 Some rules for modulo calculation
13.2.2 Linearisation
13.2.3 Getting rid of modulo arithmetic
13.2.4 Proving non-modulo SWP equal to a FIFO queue
13.2.5 Correctness of the sliding window protocol

13.3 Distributed summing protocol
13.3.1 A description in mCRL2
13.3.2 Linearisation and invariants
13.3.3 State mapping, focus points and final lemma

13.4 Historical notes

14 Verification of modal formulas using PBESs

14.1 Boolean equation systems
14.1.1 Boolean equation systems and model checking
14.1.2 Gaussian elimination

14.2 Parameterised boolean equation systems

14.3 Translating modal formulas to PBESs

14.4 Techniques for solving PBESs
14.4.1 Transforming a PBES to a BES
14.4.2 Global solving techniques for PBESs
14.4.3 Local solving techniques for PBESs

14.5 Historical notes

III Semantics

15 Semantics

15.1 Semantics of data types
15.1.1 Signatures
15.1.2 Well-typed data expressions
15.1.3 Free variables and substitutions
15.1.4 Data specifications
15.1.5 Semantics of data types

15.2 Semantics of processes
15.2.1 Processes, action declarations and process equations
15.2.2 Semantical multi-actions
15.2.3 Substitution on processes
15.2.4 Operational semantics

15.3 Validity of modal μ-calculus formulas

15.4 Semantics of a PBES

15.5 Soundness and completeness

15.6 Historical Notes