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 ABSTRACT: To determine the global dimensions of the support structure of an offshore wind turbine the 
hydrodynamic forces and moments need to be calculated in a fast and straightforward manner. To this end Airy Linear 
Wave Theory and the Morison Equation can be used. The calculation in combination with the single diameter cylinder 
of the part of the monotower in the water can be solved analytically. The solution can be plotted in look-up graphs to 
significantly speed up the design process without losing touch with the physics. 
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1 INTRODUCTION 
 
Successful application of offshore wind energy requires 
the effective integration of two complex engineering 
fields, i.e. wind energy and offshore engineering. As we 
are on the threshold of an expected boom of large offshore 
parks, it is essential that parties on both sides create 
adequate understanding of each other's technical area. 
Situations in which a turbine manufacturer simply 
requests an offshore company to design and install a 
support structure for him on which he can put his mills or, 
conversely, in which an offshore company comes up with 
a support structure design and then requests a turbine 
manufacturer to provide him with a turbine to put on top, 
must definitely be avoided. The wind energy converter 
and the support structure form an integrated technical 
system that must be developed in mutual interdependency 
and close co-operation. This paper provides a contribution 
to this integration process by explaining the 
hydrodynamic loading on monotower support structures in 
simple terms and by presenting results that are easy to use 
in design practice. 
 
The additional challenge that an offshore wind turbine 
presents over design and operation of a land-based 
installation is the offshore environment. For design 
purposes, this manifests itself in the several meters of 
water surrounding its foot. When moving from the 
shallow, sheltered waters of the first offshore parks in the 
Baltic and the IJsselmeer into the exposed and appreciably 
deeper waters of the North Sea, a monotower on a 
monopile foundation is expected to offer the most 
favourable support structure concept. 
 
2 DESIGN PROCESS 
 
The first step in the design process of a support structure 
of an offshore wind turbine is the determination of its 
global dimensions. The process can be divided into two 
interconnected parts. First the quasi-static response of the 
structure to extreme load cases with or without Dynamic 
Amplification Factor (DAF) is determined. The structure 
must be strong enough to withstand the biggest loads that 
are likely to occur. Second, a dynamic analysis must 
demonstrate that the tower's natural frequency does not 
coincide with the frequencies associated with rotor 
rotation and blade passing, nor with high energy wave 
excitation, to prevent resonant behaviour and 

accompanying fatigue damage. Figure 1 shows the 
flowchart of the preliminary design process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Flowchart of the preliminary tower design 
 
The strength check of a monotower, in the box with a dotted 
line in figure 1, is shown in more detail in figure 2. For a 
number of extreme load cases the wind and wave loads on 
the structure are determined and combined with the gravity 
loads. For an offshore wind turbine these extremes may not 
necessarily occur in the severest storm, they can also be 
associated with events during maximum energy production: 
the aerodynamic loads are much larger when the rotor is 
rotating than when it stands still. 
 
The hydrodynamic forces are subject to large changes with 
every new design step. The diameter D greatly influences 
the magnitude of these forces. An initial value has to be 
chosen to start the optimisation. 
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Figure 2. Detailed view on the tower strength check 
 
The determination of the wave loads can be done using a 
variety of wave theories. For preliminary design it is best 
to use a simple and straightforward method: the Airy 
Linear Wave Theory. Based on wave height (H), period 
(T) and depth (d), this theory will return wave particle 
velocities ( u ) and accelerations ( u& ), which can be used 
in the Morison Equation to be translated into forces (F) 
and moments (M) on the structure. The details of this 
calculation step are shown in figure 3. 

Figure 3. Steps to determine the hydrodynamic force 
and moment 
 
3 AIRY WAVE THEORY AND THE MORISON 
EQUATION 
 
The Airy Linear Wave Theory is the most widely used 
and straightforward way of calculating water particle 
velocities due to waves. The water particles are thought to 
describe closed orbits that are circular for deep water 
waves and elliptical for waves in intermediate water 
depths. The radius of the circle and the axes of the ellipse 
(long axis horizontal, short axis vertical) both decrease 
with depth below the free surface; see figure 4. As the 
linearised free surface boundary condition is applied at the 
mean still water level, the theory is not capable of 
predicting kinematics up to the wave crest. 

Figure 4. Particle orbits according to the Airy theory  

The horizontal water particle kinematics are described as 
follows [1], with the z-axis pointing upwards from the free 
water surface and position s horizontal; t is time. 
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Where ζ̂ = wave amplitude, k = wave number = 2π/λ, ω = 
wave frequency and λ = wavelength. The Morison Equation 
is an empirical formula to calculate the hydrodynamic 
forces on slender members with a drag and inertia 
coefficient (Cd, Cm) and water density ρ. It contains a drag 
force (fd) and an inertia force (fi) using the velocity and 
acceleration ( u and u& ) from the Airy theory.  
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Figure 5 shows the representation of a slender member 
under hydrodynamic loads.  
 

Figure 5. Slender member with hydrodynamic loads 
 
The sum of drag and inertia load is the total hydrodynamic 
load on the cylinder. Note that velocity and acceleration 
have a 90o phase difference, so inertia and drag loads will 
also be out of phase. This means that in general the 
maximum force is not equal to either maximum drag or 
maximum inertia force. 
 
4 ANALYTICAL SOLUTION FOR WAVE LOADING 
 
The analytical solutions for the total hydrodynamic force 
(F) and the overturning moment (M) are obtained by 
integrating fi and fd from the seabed z=-d to the 
instantaneous water surface elevation ζ : 
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The resulting equations [2] can be simplified when the 
integration extends from the sea floor to the still water level 
z = 0. This simplification does not affect the inertia force, 
which reaches a maximum when the wave surface has a 
zero crossing, but it discards the additional wave drag load 
during the passage of the wave crest. Though this effect can 
be significant if drag load dominates, it will be shown in the 
next section that for the particular application considered 
here, the simplification is valid. 
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The magnitudes of the inertia and drag force and moment 
( ˆ ˆ ˆ ˆ, , ,I D I DF F M M ) are then (using the dispersion 

relation: 2 tanh( )gk kdω = ⋅  with g the gravitational 
acceleration): 
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5 WAVE LOAD ON A SINGLE CYLINDER 
 
5.1 The art of reduction 
An overview of the critical factors for preliminary design 
will aid the designer in making a good first estimate of the 
dimensions of the structure. The monotowers, as they 
have been and will be constructed in present day projects, 
are of substantial diameters and will be placed in 
relatively shallow coastal regions, which make a reduction 
of the full scope of the wave force calculation problem 
possible.  
 
5.2 Intermediate water depth and large diameter towers 
The offshore wind turbines under investigation will be 
installed in intermediate water depths not very far from 
the coast. Water depth is defined in relation to the wave 
length λ and translated into the product kd: 
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Examples of North Sea support structures with maximum 
wave height, period and water depth are: 

 Hmax T λ d D 
 (m) (s) (m) (m) (m) 
Opti Owecs 12.8 9.5 113.3 20 3.5 
Blyth 8 7 50.7 8.5 3.5 
Horns Rev 8.1 12 129.4 13.5 4 

 
Compared to deep offshore waves, the waves in these 
coastal areas are relatively short and lower by comparison. 
This fact combined with a relatively large diameter will 
often point to dominance of the inertia loads. 
 
5.3 The load components 
The ratio of ˆ

DF to ˆ
IF is, introducing ˆ2H ζ= : 
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For intermediate water depth: 
• deep water limit: kd = π: 

tanh 1.0kd ≈        sinh 10kd ≈  
1
2A ≅       0.0157

(2)(100)
B π≅ =      0.52A B+ ≈  

• shallow water limit: kd = 0.1π: 
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Including drag and inertia coefficients CD =1.0 and CM = 2.0 
the ratio ˆ

DF to ˆ
IF becomes: 

ˆ
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In a similar fashion the ratio of drag to inertia moments can 
be shown to be: 
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The total wave force on the tower is 

2 2 2ˆ ˆ ˆ ˆ ˆ ˆ1 ( / )tot I D I D IF F F F F F≈ + = +  and similarly the 
total wave induced overturning moment is 

2 2 2ˆ ˆ ˆ ˆ ˆ ˆ1 ( / )tot I D I D IM M M M M M≈ + = + . Thus, the 
ratios of total force and moment to the inertia component 
are: 
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This results in the following boundaries on total wave force 
and moment relative to the wave inertia force and moment: 

H/D ˆ ˆ/tot IF F  ˆ ˆ/tot IM M  
1 ˆ ˆ1.00 / 1.12tot IF F< <  ˆ ˆ1.00 / 1.12tot IM M< <  
2 ˆ ˆ1.01 / 1.43tot IF F< <  ˆ ˆ1.02 / 1.43tot IM M< <  
3 ˆ ˆ1.03 / 1.83tot IF F< <  ˆ ˆ1.04 / 1.83tot IM M< <  

 
This demonstrates that for monotower support structures of 
wind turbines the predominant extreme wave loading is due 
to inertia loading. In several cases the drag load may be 
ignored altogether for initial design purposes, while if this is 
considered too rough an approximation, the total load and 
moment can still be related to the inertia load by applying a 
multiplication factor. For lesser than extreme wave 
conditions the predominance of the inertia loading is only 
enhanced. This means that wave induced fatigue will be 
governed by linear inertial wave loading. 
 
6 GRAPHIC REPRESENTATION OF WAVE LOADS 
 
After this analytical contemplation the more ready-to-use 
version of the wave forces can be compiled. Graphs 
representing the inertia and the drag loads and moments, 
respectively, based on the wave period for different water 
depths from 5 to 30 m in 5 m intervals have been 
determined using equations (4). 
Both load and moment amplitudes are plotted in a 
normalised form by eliminating the influence of the cylinder 
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diameter and the wave amplitude, thus explicitly showing 
the influence of wave period (wave length) and water 
depth. The normalised loads and moments are of the 
following form: 
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The plots in figure 6 are made for hydrodynamic 
coefficients with values of Cm = 2.0 and Cd = 1.0, while 
the density of seawater is set to ρ = 1025 kg/m3. Due to 
the simple proportionality of loads and moments with the 
hydrodynamic coefficients, the loads for other values than 
2.0 and 1.0 are obtained by simple multiplication.  
 
7 APPLICATION OF GRAPHS 
 
The design of the support structure of an offshore wind 
turbine will start with the selection of a location. Wind 
and wave data have to be gathered from all available 
sources. Careful study of the data will return a number of 
design environmental conditions. For waves these 
conditions are usually represented by a wave height H and 
wave period T. By making an estimate of the tower 
diameter D the hydrodynamic force and accompanying 
moment can be determined from the graphs in figure 6 (or 
the underlying equations (4)) and combining the two 
components using equation (7).  
 
 
 
 
 

 
 

Because offshore wind parks usually cover a significant 
area, water depth may vary together with wave height and 
period (should the environmental data have delivered these 
details). Finding the maximum forces can be done very fast 
by means of a spreadsheet calculation. 
 
The advantage of the graphs is that the designer has a lot of 
direct feedback on the influence of changes in wave period 
and water depth. For example, it is directly seen that for a 
constant wave period the inertia force increases with water 
depth while the drag force decreases, thus reducing the 
influence of drag loading. For a constant water depth the 
inertia force decreases with wave period, but the drag force 
increases somewhat with a smaller gradient. This reflects 
the elongation of the elliptical orbits for longer waves, in 
which the horizontal velocity increases more rapidly than 
the horizontal acceleration ( / 1/ 1.0u u ω= >& as long as T > 
6.28s). The arms of both inertia and drag force naturally 
increase with water depth and decrease with wave period 
(wavelength), as shown in the moment graphs. 
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îF

D H

ˆ
ˆ

i

i

M
F d⋅

2

ˆ
dF

DH

ˆ
ˆ

d

d

M
F d⋅

d=30
25 20 

15 
10 

5 

d=30

25
20

15

10

5

d=30
25

20
15

10

5

d=5m 

25 
20 

15
10 

30 

3
kN
m

3
kN
m

d = infinite 

d = infinite 

d = infinite 

d = infinite 

Inertia Force Inertia Moment 

Drag Force Drag Moment 

Figure 6. Wave induced inertia and drag forces and moments as a function of wave period 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 2 4 6 8 10 12 14

T (s)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 2 4 6 8 10 12 14

T(s)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0 2 4 6 8 10 12 14

T (s)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0 2 4 6 8 10 12 14

T(s)


