CT5520 – Drinking water treatment 2 Design project

Harderbroek (Vitens) Improving iron removal

Chiara Di Silvestro

Silvia Guerreschi

TABLE OF CONTENTS

• Introduction

• Process scheme

• Problem definition

• Possible causes and solutions for the problem

Introduction

- Harderbroek is situated in the province of Flevoland
- It is in operation since October 1997
- Vitens

PROCESS SCHEME

TREATMENTS

There are 10 wells with a capacity of 200m³

 ABSTRACTION — each. Groundwater is caught from 120/170 m below groundlevel through 4 pumps.

There are 4 cascades each one of 6 steps. The maximum capacity is of 450 m³. This aeration system is preferred because of the presence of big quantities if CO_2 and because of possible problems of clogging.

There are 8 filters each one with a flow capacity of 225 m³/h. It is done to remove suspended and colloidal particles. So with this mechanism we can remove the iron flocs.

■ RAPID SAND FILTRATION →

CASCADES

TOWER AERATION ———

There are 3 towers each one with a maximum capacity of 320 m³/h. It is necessary to restore the level of oxygen in the water.

RESERVOIRS

The treated water is stored in 1 reservoir of 2000m³ and 2 of 1500m³.

PROBLEM DEFINITION

- Decrease the iron concentration in the treated water
- Fe^{2+} or Fe^{3+}

MECHANISM OF REMOVAL

 $4Fe^{2+} + O_2 + 2H_2O + 8HCO_3 \longrightarrow 4Fe(OH)_3 + 8CO_2$

- Oxydation
- Formation of iron hydroxide flocks

		gezamenlijk ruwwater pompstation Harderbroek		
		gemiddeld	minimum	maximum
tempratuur	٥C	12,9	12,0	13,0
zuurstof	mg/l	0,705	<0,500	1,000
zuurgraad		7,47	7,42	7,50
EGV 20 °C	mS/m	16,4	16,2	16,6
waterstofcarbonaat	mg/l	84,9	83,4	87,5
chloride	mg/l	7,50	7,23	7,67
sulfaat	mg/l	8,44	8,28	8,74
natrium	mg/l	6,39	6,31	6,48
calcium	mg/l	25,8	25,5	25,9
magnesium	mg/l	2,07	2,06	2,11
totale hardheid	mmol/l	0,729	0,721	0,734
ammonium	mg/l	<0,040	<0,040	0,061
nitriet	mg/l	<0,0070	<0,0070	<0,0070
nitraat	mg/l	<0,50	<0,50	<0,50
ijzer	ug/l	1400	1360	1500
mangaan	ug/l	122,0	121,0	123,0

• The standard value of the concentration of iron in The Netherlands is 0,2mg/l.

• The recommended value is 0,05mg/l.

CAUSES

- Insufficient capacity of treatment of the plant
- The filter is not working good

POSSIBLE SOLUTIONS

- Increase aeration capacity
- Change the aeration system
- Add chemicals before rapid filtration

THANKS FOR YOUR ATTENTION

