Enhancing NOM removal

Gao Li Jink Gude

27 April 2007

1

Delft University of Technology

List of the content

- 1. Last presentation
- 2. Possible solutions for NOM-removal
- 3. Applications of the solutions
- 4. The comparison
- 5. The next step

The presence of NOM in water:

- 1. Decreases the efficiency of treatment steps
- 2. Leads to formation of biofilms and the uptake of copper and lead in the distribution network.

Therefore Enhanced NOM removal is required.

Current situation

Current situation

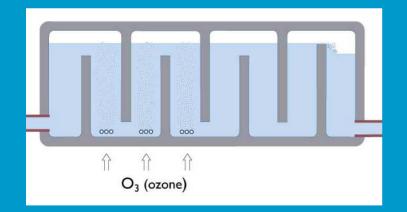
	Proce	ss scheme Pre-treatmen	t plant Loenderveen		
30 ¹ mln m ³	Coagulation: 2 basins Surface area per basin: 40 x 80 m	Lake Water Reservoir Residence time: about 100 days Surface area: 123 ha Volume: 6.0 Mm ³	Filters: Number: 24 filters Surface area: 48 m ² per filter Max. filter loading: 6 m/h	Transport and buffering: Main: Length: 10 km Diameter: 2 x 1000 mm Buffer reservoir: Surface area: 1.12 ha Volume: 40,000 m ³	
teture hilo	Rech president Rech president Water transport care	e) FrCi, jour charde) Cable - star resond	HO (spinole x add) + 2.0 Tex reserver 3.2 Killer lar		

TUDelft

Current situation

Parameter	Unit	Raw water Bethune Polder		Raw water Amsterdam Rhine Canal		After pre-treatment			After post-treatment				
	Averag				Averag		Averag			Averag			
		e	Min	Max	е	Min	Max	e	Min	Max	е	Min	Max
Temperature	oC	10.9	<0.5	20.5	13.9	2.5	25.2	11.9	2.3	22	12.3	2.3	22.1
pH	pН	7.36	7.17	7.72	7.93	7.49	8.19	7.62	7.45	7.79	8.06	7.84	8.44
Turbidity	FTE	35	20	85	14	3.2	37	0.2	0.12	0.27	0.12	< 0.1	0.32
UVA254	1/m	30	23.9	75.5	13	6.8	28.7	14.6	13.5	15.8	4.4	3.1	6.2
DOC	mg/I C	9.2	6	17	5	2.8	9.8	6	5.4	6.6	3.3	2.5	4.2
Colour	mg/l pt	34	22	142	17	8	37	10	7	15	2	<1	5
Oxygen	mg/l O2	3.2	<1	8.6	9.5	7	12.9	-	-	-	8	5	12.8
Suspended solids	mg/l	15	8.3	23	26	16	36	<1	<1	<1	<1	<1	<1
Conductivity	mS/m	53.2	37.5	58.4	60	49.7	65.7	53.2	51.5	54.6	50.8	48.5	52.2
Chloride	mg/l cl	44	29	49	75	54	97	75	69	79	79	71	85
HCO3	mg/I HCO3	291	270	309	181	160	204	204	196	213	176	170	186
Calcium	mg/l ca	88	81	95	72	64	79	80	78	83	49	47	53
Magnesium	mg/l mg	6.6	6.2	7.2	10.4	9.3	11.6	6.5	6.1	6.8	6.4	5.6	6.8

- 1. Oxidation of NOM with Ozone
- 2. Ion-exchange
- 3. Enhanced coagulation
- 4. Membrane filtration
- 5. Lime-Soda Softening Process Modifications for Enhanced NOM Removal

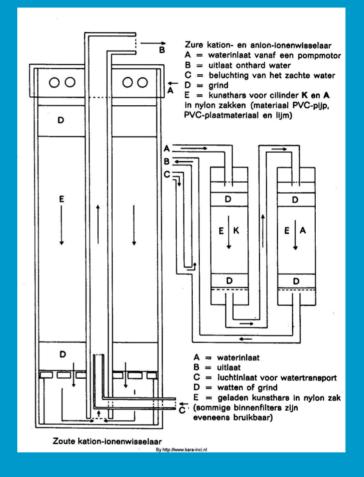

Oxidation of NOM with Ozone

Ozone reaction

$$O_3 ----> O_2 + O$$

 $DOC \rightarrow AOC$

easier biodegradable



Ion-exchange

Switching charged particles from the water to the ion exchange resins

NOM can be replaced by Na⁺

Enhanced coagulation

Optimizing the conditions in the coagulation step for maximum NOM removal

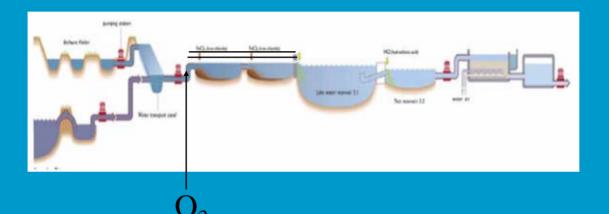
Jar tests for optimum pH raw water

Dosing other and/or more chemicals

Membrane filtration

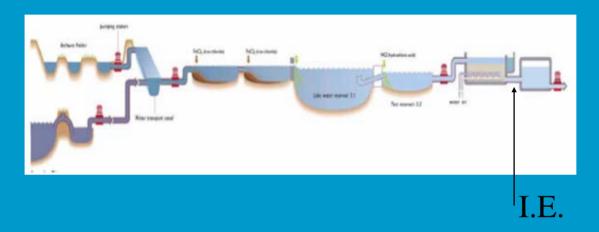
Water filtered through a membrane under high pressure

All NOM can be removed

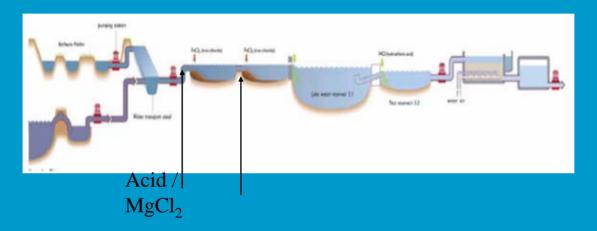

Lime-Soda Softening Process Modifications for Enhanced NOM Removal

By dosing high content Mg-lime, precipitation of Mg(OH)2-NOM complexes will occur.

Oxidation of NOM with Ozone



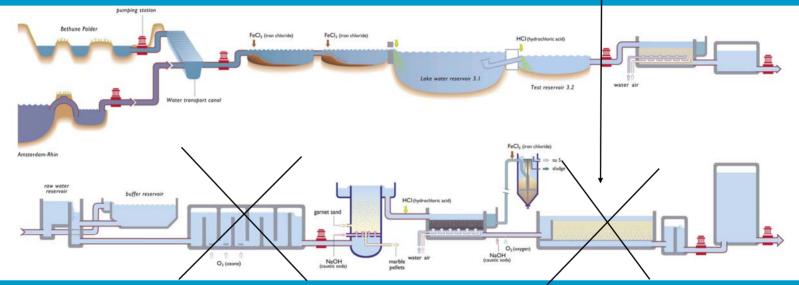
No hinder of algae because of roofing over the basin No by-products at normal dosages Operator are familiar with the use of Ozone


13

Ion-exchange

Less DOC in treated water leads to higher efficiency No chemical dosages needed, just DOC replaced with Na⁺ Mix of specific resins could remove specific NOM

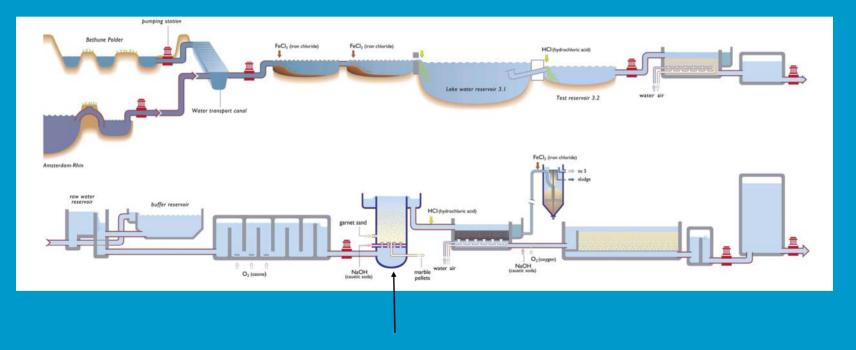
Enhanced coagulation



Low cost solution, just multiple dosing installations No hazardous chemicals dosed

Could be effective in combination with other solutions

Membrane filtration


Good water quality

Treatment units can be put off-line (Ozone and SSF)

Costly operation

Lime-Soda Softening Process Modifications for Enhanced NOM Removal

Lime-Soda Softening Process Modifications for Enhanced NOM Removal

Current problems in softening reactors would be solved New design of softening reactors/basins Creating lots of turbidity and waste sludge

4. The comparison

	Efficiency	Robustness	Implementat ion	Operationa l cost	Investment cost	Water quality	Total points
Ozone	4	5	4	3	3	4	23
I.E.	4	3	5	2	2	4	20
Enhanced Coa	2	5	5	5	5	2	24
Membrane	5	4	1	3	1	5	19
Softening MgCl ₂	3	3	2	3	2	3	16

Please give us your comments

Thank you

20