New pre-treatment Andijk Pumping station Andijk (PWN)

Drinking Water Treatment 2 | CT5520

Wouter Bakker and Harmen van der Laan

Sanitary Engineering, Faculty Civil Engineering

Delft University of Technology

Content

- Capacity
- Optimization MIEX
- Ultrafiltration
- PID
- Use of chemicals
- Design Drawings

Capacity

Total design capacity: three streets of 2000 m3/h as the UV/H202 is designed

But, PWN can choose:

two streets UF and/or MIEX especially UF is really good not the whole street has to be taken out of order in case of maintanance

Why 3 streets ?

- Same strategy as for the UV/H202 : 3 streets
- Multi barrier approach, in case of problems
- There is capacity left for a larger future demand

Optimization MIEX

- Contactor:

- During mixing the blades of the mixer destroy the resin particles.
- Since the resin particles are positively charged and the membrane is negatively charged, the resin particles will settle at the membrane surface.
- The resin particles on the membrane surface are very difficult to remove.

- Possible solutions:

- A water jet that "shoots" the water tangently into the contactor. Because of the high velocity the resin will mix with the water.
- Make an optimum design for the mixing blades.
- By using air jets, to "shoot" the air through the contactor and mix the resin with the water"

-The resin separator

-There has been some discussion on the design of the separator. Since it is necessary to have an on going resin flow, this design is the easiest to operate and built.

Ultrafiltration - coagulation

25 May 2007

Ultrafiltration - backwash

25 May 2007

Ultrafiltration - backwash

PID

- = water
- = backwash water
- = coagulant
- = used resin

Only the treatment till the UV/H202 in flow scheme

Process regeneration Resin

Use of chemicals for 4000 m³/h

Resin

0.24 m³ resin / day that is a loss of 0,02% resin

Regeneration salt (NaCl) 11.5 kg NaCl / day

 $KMnO_4$ 13.9 kg $KMnO_4$ / day based on the water quality

Backwash chemicals (Sodium hypochlorite NaOCI) 34,6 kg NaOCI / cycle (cycle = once every 4 to 7 days)

Drawings UF

Base idea: fit in the existing construction of RSF stripping the building, a new roof, same infrastructure

25 May 2007

layout

DESIGN ULTRAFILTRATION | NEW PRETREATMENT ANDIJK

Drawings MIEX

No extra building structure necessary. Contact and sedimentation tank 'stand-alone'

DESIGN MIEX | NEW PRETREATMENT ANDIJK

3 streets of 2000 m3/h each.

each independent street consists of two contacters and two seperators with a resin regeneration substreet.

TUDelft

Sanitary Engineering, Civil Engineering, University of Technology Delft