Softening

CT 5520

Drinkingwater Treatment 2

Floor van den Berg **Udo Ouwerkerk**

June 1, 2007

Delft University of Technology

Contents

- 2nd Phase, Softening:
 - PID
 - Process flow diagram
 - Hydraulic line
- 3th Phase, Scaling up:
 - PID
 - Process flow diagram
 - Hydraulic line
- Pellet reactor:
 - Storage / lay out
 - Chemicals
 - Dimensions
 - Construction

PID, 2nd Phase

Process scheme 2nd Phase

3th Fase, Scaling up

Pellet reactor

Contents 2nd Fase, Softening 3th I

3th Fase, Scaling up

Pellet reactor

3th Phase, Scaling up

PID, 3th Phase

Process scheme, 3th Phase

3th Fase, Scaling up

June 1, 2007

oaseo

June 1, 2007

oaseo

11

Contents 2nd Fase, Softening

3th Fase, Scaling up

Pellet reactor

Storage

- Seeding sand washer
 - small particles are washed out
 - caustic soda is added for disinfection
- Disinfection storage
 - no bacteriological contamination
- Chemical storage
 - NaOH is diluted to a 25% solution
- Seeding sand storage

2 tanks of 3m³ would be sufficient for 8 months in the 2nd fase and for 5.5 months

Pellet storage:

2nd phase: 102,63 kg/h 3th phase: 145,47 kg/h

June 1, 2007

12

Pellet Reactor

- Chemicals
 - •Amount of Chemicals 2nd Phase
 - •Amount of chemicals 3th Phase
- Dimensions
 - •Dimensions 2nd Phase
 - •Dimensions 3th Phase
- Construction

Contents 2nd Fase, Softening 3th Fase, Scaling up

Pellet reactor

Chemicals, 2nd / 3th Phase

- Ca²⁺ = 2.05 mmol/l, raw water
- Mg²⁺ = 0.45 mmol/l, raw water
- 1.55 mmol/l Ca²⁺ needs to be removed

```
Na(OH) + CO_2 \rightarrow HCO_3^- + Na^+
```

 $Na(OH) + Ca^{2+} + HCO_3^{-} \rightarrow CaCO3 (s) + Na^+ + H_2O$

1.55 mmol/l caustic soda is needed \rightarrow 2nd Phase max 41.05 kg/h NaOH

3th Phase max 58,19 kg/h NaOH

- •Na(OH), gives a fine water quality
- •Easy to dose

Contents 2nd Fase, Softening 3th Fase, Scaling up

Dimension Softening, 2nd **Phase**

- Min flow-max flow : 60 m/h 100 m/h
- Enough capacity needed when one reactor breaks down
- Partial flow for softening at Lekkerkerk: 4.0 M m³/year \rightarrow 456.62 m³/h

Min: 0.85 * 456.62 m3/h = 388.13 m³/h Max: 1.45 * 456.62 m3/h = 662.1 m³/h

 A_{total} =(662.1 m³/h) / (70 m/h) = 9.46 m² \rightarrow 3 reactors, $A_{reactor}$ =3.15 m²

- When Q_{min} = 388.13 m³/h \rightarrow 2 reactors with a velocity: 61.5 m/h
- When Q_{gem} = 456.62 m³/h → 2 reactors with a velocity: 72.3 m/h
 When 1 reactor breaks down → 2 reactors with a velocity: 105 m/h
- When 1 reactor breaks down → 2 reactors with a velocity: 105 m/h L_e= 7.26 m

Dimension Softening, 3th Phase

- Min flow-max flow : 60 m/h 100 m/h
- Enough capacity needed when one reactor breaks down
- Partial flow for softening at Lekkerkerk: 5.7 M m³/year → 647.3 m3/h Min: 0.85 * 647.3 m3/h = 550.2 m3/h Max: 1.45 * 647.3 m3/h = 938.5 m3/h →

1 extra pellet reactor of equal dimensions

 A_{total} =(938.8 m³/h) / (75 m/h) = 12.60 m² \rightarrow 4 reactors, $A_{reactor}$ =3.15 m²

- When Q_{min} = 550.2 m³/h \rightarrow 2 reactors with a velocity: 87.3 m/h
- When Q_{gem} = 647.3 m³/h \rightarrow 3 reactors with a velocity: 68.5 m/h
- When 1 reactor breaks down \rightarrow 2 reactors with a velocity: 99.3 m/h L_e = 6.86 m

Contents 2nd Fase, Softening

3th Fase, Scaling up

•

Pellet reactor

Construction, 2nd Phase

• $E_{total} = 1/3 * E_{1.0} + 2/3 * E_{0.3}$ $E_{1.0} = 1.0$ $E_{0.3} = 3.3$ $\rightarrow E_{total} = 2.53$

$$L_{e} = L_{0} * E_{total}$$

$$L_{e} = (2 \text{ m})*2.53 = 5.06 \text{ m}$$

$$L_{in} = 1.5 \text{ m}$$

$$L_{uit} = 2.60 \text{ m}$$

d_{uit} = 2.65 m d_{cil} = 2.00 m

Contents 2nd Fase, Softening 3th Fase, Scaling up

Pellet reactor

Construction, 3th Phase

• E_{total}=1/3*E_{1.0}+2/3*E_{0.3} E_{1.0}=1.1 E_{0.3}=3.5 \rightarrow E_{total}=2.7

•L_{total}=L_{in} + L_e + L_{uit}
L_e = L₀ * E_{total}
L_e = (2 m)*2.7= 5.40 m
L_{in}=1.5 m
L_{uit}=2.92 m

$$d_{uit} = 2.73 m$$

$$d_{uit} = 2.00 m$$

CII

Questions?

June 1, 2007

19