Appendix:
Solutions to Exercises

HIS BOOK includes 193 exercises, concentrating on a variety of problems relevant

T to the study of rock mechanics. Many of the exercises are subdivided into several

sections, thus providing an indispensable resource for students and professionals

who wish to deepen their understanding of the subject. Solutions to these exercises are given

below. Some of the exercises require the construction of graphs, which are excluded here
so that students can demonstrate independently how their solutions were obtained.

The vast majority of the exercises, which are compiled here, are original and published for
the first time. However, a number of classical problems have been adopted from earlier
work. These exercises have been modified to conform with the notation and approach
followed in this book.

The sources from which exercises have been adopted are as follows: Geodynamics (1981,
Wiley) by GERALD SCHUBERT and DONALD TURCOTTE (exercises 3-11, 3-12, 6-10, and 10-
11 to 10-14); Stress and Strain (1976, Springer) by WINTHROP MEANS (exercises 5-14, 5-15,
10-3, 10-5, 10-7, 10-9, 12-9, and 15-5); The Techniques of Modern Structural Geology.
Volume 1: Strain Analysis (1983, Academic Press) by JOHN RAMSAY and MARTIN HUBER
(exercises 12-3, 12-13, 14-1, 14-2, 15-9, 15-10, 15-12, and 15-13); Principles of Structural
Geology (1985, Prentice-Hall) by JOHN SUPPE (exercises 5-11, 6-6, and 6-9); Structural
Geology (1973, 2nd ed., Wiley) by DONAL RAGAN (exercise 15-11); Geological Structures
and Moving Plates (1988, Blackie) by GRAHAM PARK (exercise 8-13); Stress and
Deformation (1996, Oxford University Press) by GERHARD OERTEL (exercise 10-16); The
Analysis of Strain in Folded Layers (1971, Tectonophysics, vol. 11, pp. 329-375) by BRUCE
HoBBS (exercise 12-12).
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Chapter one

1-1: a) Obviously, knowledge of rock mechan-
ics may be useful in engineering operations that
commonly involve construction on, and excava-
tion of, rock structures. It helps in assessing
the stability of the host rock at past, present,
and future construction sites.

b) A thorough understanding of rock behavior
is essential for strategic planning in the petro-
leum and mining industry, in construction
operations, and in locating subsurface reposito-
ries. The formation of geological structures or
rock deformation patterns, including the folds,
joints, and faults that are studied by structural
geologists and tectonicians, is, also, governed
by the principles of rock mechanics.

1-2: Knowledge of the physics of fluids (also
termed fluid mechanics or fluid dynamics) can
help in understanding and explaining the devel-
opment of ductile deformation patterns in
rocks, deformed by solid-state flow of their
constituent mineral crystals.

1-3: The crystals of microcrystalline paraffin in
candle wax and stearine lights can deform in a
ductile fashion if their temperature is close to
the melting point. The deformation occurs by
solid-state flow of the crystals, through a
process which is termed crystalline creep.
Chapter 7 explains how the rearrangement of
atoms in crystal lattices allows the creep of
crystals in solid-state.

1-4: The rejection of the continental drift
hypothesis at the 1928 Tulsa symposium is an
interesting event in the history of science. The
processes of crystalline flow had already been
studied and described for a range of synthetic
crystalline materials, such as metals and waxes.
Also, it had been suggested to occur in natural
minerals. However, this knowledge apparently
went unacknowledged in geoscience, and the
idea that huge continental plates could creep

over a substratum was considered inconceiv-
able. It, also, seems that Sir Harold Jeffreys
statement that "continents cannot move through
solid rock like ships in the ocean" made a
serious impact through his established reputa-
tion in contemporary geophysics. This view
was, therefore, apparently in accordance with
what little was known about crystalline flow in
the geoscientific community in 1928.

1-5: Rock salt can flow downhill in glacier-like
fashion (e.g., see cover illustration of a nama-
kier in the Zagros Mountains, Iran) by crystal-
line creep of the constituent salt crystals. Both
halite and ice crystals are exceptional mineral
compounds in that they can deform their crystal
lattice under gravitational loading at the Earth’s
surface, largely without brittle failure. The
ductile flow of glaciers may be accompanied by
the formation of cracks and crevasses near the
surface, where the physical conditions allow the
occurrence of brittle failure together with
ductile flow. In contrast, other principal rock-
forming minerals can deform in a ductile
fashion only when buried in the crust and
mantle to depths where the elevated tempera-
ture activates atomic rearrangements of crystal
lattices, if subjected to deformational stresses.

1-6: "Panta rei" or "everything flows," accord-
ing to Heraclitus (500 BC), only partly applies
to solid rock. Undoubtedly, Heraclitus made
his statement with little knowledge of rock
deformation processes. More likely, this state-
ment referred to the general motion that had
been observed in the four basic elements con-
sidered by the Greek: air moves in the atmos-
phere, water flows in the oceans, fire leaks
from volcanic eruptions, and soil washes away
in water streams. Another classic statement is
Deborah’s observation reported in the Old
Testament, "The mountains flowed before the
Lord... ." Past prophets and historians most
likely referred to volcanic eruptions when
alluding to rock flow. Only in the past fifty
years have we established a firm scientific basis
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for understanding the flow of solid rock under
a variety of physical conditions.

1-7: The effective viscosity of water is 0.001
Pa s (read: Pascal second). For comparison, the
mean viscosity inferred for the mantle is 10"
Pa s. Viscosity is, in fact, a measure of flow
retardation (see, also, chapter 8). The viscosity
values given here suggest that the Earth’s
mantle flows 10 times slower than water if
mantle rocks and water both were subjected to
the same forces. But water commonly flows at
maximum speeds at the order of m s ! and
mantle rocks at 10"* m s . Consequently, the
forces on mantle rocks can be estimated to be
about 10° times larger than the forces [mea-
sured in stress units of Pa (read: Pascal)]
commonly occurring in flowing water. Assum-
ing shear stresses in water are of the order of
1 Pa, shear stresses on creeping mantle rock
are of the order of 1 MPa.

Chapter two

2-1: The systems of physical quantities /MLT],
[FLT], [PLT], and [DLT] all are physically
equivalent. The unit of mass (kg) in the /MLT]
system is, also, included in the units of force
[F], pressure [P], and density /DJ. Each of the
above systems can be practical for measuring
units of the physical quantities involved, and
they are consistent with a series of measure-
ment techniques.

2-2: The introduction of a new physical quanti-
ty for which no apparatus or technique exists to
measure the units is highly speculative. If no
apparatus can measure its effect or scale, then
it is hard to prove that there is any new physi-
cal quantity involved at all.

2-3: Strain is an example of a quantity, mea-
sured in dimensionless units. Several measures
of strain are used, according to a variety of
definitions (for details, see section 11-1), but
they commonly compare an initial distance

between two material points before a deforma-
tion with the spatial separation of the same
points after the deformation. All strain units are
based on ratios of particular lengths, and,
therefore, the unit of length vanishes to give
way to a number, expressing the fractional
change in length rather than an absolute mea-
sure.

2-4: The SI unit equivalent of one acrefoot is
calculated as follows: 1 acre is equal to 4,046.9
m? and 1 foot corresponds to 0.3048 m. The
volume of one acrefoot is equivalent to 1,233.5

m’.

2-5: a) One mile is equivalent to 1,760 yards.

b) Non-metric units lack the convenience of use
that metric units offer.

2-6: a) The tectonic strain-rate obtained by
dividing plate velocity (ca. 10 cm y™) by the
orogenic width (ca. 500 km) is 0.6 x 10 * g1,

b) The amount of strain accumulated is roughly
obtained by the product of strain-rate and the
time available for the deformation. A strain-rate
of 0.6x10°"* s ' accumulates a maximum strain
of 600 over 4 billion years. It must be noted,
however, that an accurate estimate of the finite
strain requires the integration of strain incre-
ments over time. For linear strains, the finite
strain is computed by exp (ét) [see eq. (12-6)],
which gives a much larger finite strain than that
obtained by the product of time and strain-rate.

2-7: The quantities listed in this exercise belong
in the following categories: temperature, time,
and length are scalar quantities; velocity,
acceleration, and force are vector quantities;
and stress, strain, strain-rate, and vorticity are
tensor quantities.

2-8: Lateral changes in composition and texture
of rocks complicate the continuum assumption
as follows: The physical properties are likely to
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change across compositional boundaries. The
continuum assumption must take into account
the presence of these boundaries, which sepa-
rate two continua. If properties change gradu-
ally, then the physical properties can be de-
scribed by a spatial variable, accounting for the
lateral changes. A continuum assumption is still
possible, but the results of any physical model-
ing may differ from what transpires in the
natural example if the continuum model is
oversimplified. Most contemporary continuum
models of geological and geophysical processes
probably can be classified to include simplify-
ing assumptions that neglect many features
which affect deformations occurring in nature.
In spite of their limitations, such model simula-
tions still contribute to the improvement of our
knowledge of the factors that play a role in the
natural deformation of rock.

2-9: An unconsolidated, sedimentary rock, that
deforms while compacting, undergoes volume
change, loss of pore space, reduction of water
content, increase of frictional surface between
the grains, and, possibly, develops a mechani-
cal anisotropy by settling of the mineral grains
in a preferred orientation. These are time-
dependent changes, which may affect the physi-
cal properties of the mechanical continuum.
These changes can be accounted for, but the
governing equations become time-dependent
and require complex integration over time to
describe the physical changes that occur during
the deformation - a difficult task.

Chapter three

3-1: The surface gravities of the Moon (1.56 m
s?), Mars (3.72 m s?), and Mercury (3.62 m
s?) are, respectively, 0.16, 0.38, and 0.37
times that of Earth (9.78 m s?). Any construc-
tion works are subjected to body forces that are
proportional to the gravitational force. How-
ever, the load-bearing capacity of such con-
struction is determined by the strength of the
materials of which they are made. The strength

of these materials is a material property and is
independent of the gravity field. But similar
construction on the Moon, Mars, and Mercury
can bear 6, 2.6, and 2.7 times the critical mass
of a comparable Earth structure. Consequently,
if the same mass is to be supported by similar
construction on the different planetary bodies,
then the construction thickness on the Moon,
Mars, and Mercury can be 0.16, 0.38, and
0.37 times that of the reference construction on
Earth.

3-2: The force at the 1 m? bottom of a 1,000-
m-thick column of sandstone (p=2,500 kg m™)
is F=ma=Vpg=24.5 MN.

3-3: The solving of this exercise (on the gravity
sliding forces of a rock block) requires about
one hour for the average student. The time
spent provides worthwhile deepening of under-
standing.

a) The block moves over a horizontal surface,
provided that the horizontal force Fg=uFy
(with Fy=Vpg). Using the values provided in
the exercise, i.e., p=0.7, V=4 m®, p=2,700
kg m?®, and g=9.8 m s?, a horizontal shear
force, Fg, of 74,088 Newtons is the minimum
required to move the block of rock over the
horizontal surface.

b) If a single man of 100 kg mass can push his
own weight of 980 Newtons, then at least 76
such men are needed to push this block for-
ward. Incidentally, modern estimates of the
number of men involved in the construction of
the principal Egyptian pyramids amount to
10,000 men over a period of 25 years.

¢) The two goniometric functions of equations
(3-3a) and (3-3b) can be used to plot the varia-
tion of Fy and Fs. The vertical axis uses F,,, as
the unit, with Fy=F,, for «=90°. Other Fy
values follow from the cosine function, which
is zero for «=0°. Conversely, Fs=F,, for
a=0°, and other Fy values of the curve follow

APPENDIX: Solutions to Exercises



WEIJERMARS - Principles of Rock Mechanics

313

from the sine function, which is zero for a=
90°. The plot is symmetric about the vertical
line through the «=45° mark on the horizontal
scale.

d) The angle of internal friction, ¢, is equal to
tan"'u. For p=0.7, the angle of internal friction
is about 35°.

e) The acceleration, as, of the block in the
direction of glide for subcritical angles, «, is:
a5 = (Fs-Fj crigea)/m. Remember that Fy e = Fo
sin 35°=0.7F,, and F;=F_sin «. The acceler-
ation can now be expressed as: ag=(F,./m)
(sin e-sin 35°)=(sin a-sin 35°)g, for ¢<a
<90°. The acceleration of the block is at
maximum when it is nearly vertical. It is differ-
ent from the acceleration in free fall, g, be-
cause it is still slowed down by the friction
against the wall. In the case of « close to 90°,
the acceleration of the block is close to 0.3g,
but it will immediately become equal to g if the
sliding contact with the wall is lost.

f) The additional push force, F,, in the direc-
tion of glide for subcritical angles is as follows:
The minimum force required for movement to
occur is (Fo+Fg)/Fy=0.7. This condition is
fulfilled if F,=0.7Fy-Fs=F,, (0.7cos a-sin a),
for 0=a<¢. It is seen that for «=35°, F,=0;
that is, no additional force is required to cause
motion. However, for a=0°, the additional
force required to move the block is F,=0.7F,,,
which is equal to 74,088 Newtons as calculated
in exercise (3-3a).

3-4: The steep walls of the road cut of Figure
3-5 can be dangerous if joints in the walls
provide potential slide surfaces.

a) If the friction coefficient, p, is 0.5, then the
angle of internal friction is 27°. If joints occur
in the granitic wall of this hypothetical road cut
at dips of 27° or steeper, then the walls are
unstable and prone to sliding.

b) Pylons built on the shoulders of the road cut
increase the load on the walls. Although this
provides additional shear forces on any poten-
tial slide surface, the normal forces, also,
increase. Consequently, the angle of internal
friction will not be changed, and the stability is
unaffected by the presence of the pylons.
However, excessive loading of the shoulders of
the road cut by adding pylons may incur new
failure planes, and, thereby, it amplifies dan-
gerous instabilities.

¢) Pylons could better be placed on the floor of
the road cut on either side of the road itself.

3-5: a) & b) Blocks of similar mass, but differ-
ent shape, behave the same in gravity sliding,
because the coefficient of friction, p, remains
the same, as well as do all the other force
ratios required for the movement.

¢) The critical slope for movement is equal to
the angle of internal friction, that is, ¢=35°.

d) The angle of internal friction, ¢, is indepen-
dent of both the volume and mass involved in
the sliding. It is an intrinsic or internal material
constant.

3-6: a) The roof of the tunnel in Figure 3-6 is
unstable and caves in if the joints are continu-
ous. The right wall of the tunnel is, also,
unstable, because the joints dip at 45°, which
is larger than the angle of internal friction of
27°.

b) An arched roof reduces the area of potential
sliding but cannot stabilize this tunnel.

¢) Tunnels through igneous rock are commonly
more stable than in any other rock, because
there are fewer discrete surfaces of separation.
However, igneous rock can be expensive to cut
through. For comparison, the Channel Tunnel,
connecting Europe and the UK, could be cut in
a relatively short time by following a soft chalk
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bed with low silica content, thus minimizing
the wear on excavation tools.

3-7: The force at the 1 m? bottom of a 1000-m-
thick column of sandstone was already calcu-
lated to be 24.5 MN (see exercise 3-2). The
corresponding stress is 24.5 MPa. In fact, for
estimates of the lithostatic pressure, it is conve-
nient to assume a pressure gradient of about 25
MPa per km depth.

3-8: This is a controversial exercise that may
stimulate a lively discussion on fluid pressure.
The fluid pressure at the base of a block is:

a) For the block of Figure 3-2, the fluid pres-
sure is 26.5 kPa.

b) For the tilted block of Figure 3-3, the fluid
pressure would be raised by (F,./cos «), due to
the increase of the vertical thickness of the load
upon tilting. The pressure is further enhanced
by a decrease of the effective area on which the
net force acts. Or is it?

3-9: The fluid pressures at locations A to D in
the artesian well system of Figure 3-11 are:
P,=0, Py=2.5 MPa, P.=2 MPa, and P,=1
MPa.

3-10: Bore mud exercise, referring to Figure 3-
13:

a) At the time the drill hole, A, reaches a depth
of 3 km, the fluid pressure of the bore mud
should balance with the lithostatic load at that
depth: 45 MPa. The mud density should be
1,500 kg m™. The bore hole must be cased in
the upper 2 kilometers. This is because the
fluid pressure would become too great for the
drill hole section shallower than 2 km when the
density of the bore mud is increased to 1,500
kg m? once the drill goes beyond 2 km depth.

b) The pressure of the mud column in the bore
hole must balance the pressure of the gas

reservoir (120 MPa) to prevent a blowout. The
mud density would have to be: p,q =120
MPa/gz=3,000 kg m>. Again, the upper
section of the drill hole needs to be cased to
prevent collapse of its walls at shallower
depths.

3-11: The elevation of the continents above the
ocean floor, in the isostasy model of Figure 3-
14a, is equal to the length h-b. The pressure at
continental depth, h, is p_gh. The pressure at
oceanic depth, b, is p,gb. If isostatic balance
exists, then the two pressures are identical, and
it follows that h/b=p,, /p.. or b=(p../p)h. The
elevation difference, h-b, can now be evaluated
as follows: h-b=h[1-(p../p,)]=6.7 km.

3-12: a) The pressure condition at the base of
the continent in the isostasy model of Figure 3-
14b is as follows: P.=P_+P_+P, or p_.ghcc=
pmg(h.-h -h,)+p.gh.+p,gh,. Evaluation for
h,, yields: hy,=[h. (om0 -Noc(PmPoc) 1/ (Om-Pu)-

b) The oceanic depth, h,, is: 6.6 km.

¢) The mean depth of the oceans would, after
slow re-establishment of isostatic equilibrium in
response to the rapid rise of global sea level,
increase by 290 m.

Chapter four

4-1: The pressure at a point with major and
minor principal stresses, o,=-150 MPa and
0,=-50 MPa, is equal to the absolute mean
stress: P=|(1/2)(0;+0;)| =100 MPa. The
scaled sections show a pressure circle of unit
radius superimposed on a stress ellipse with
semi-axial lengths of 0.5 and 1.5, respectively.

4-2: a) The pressures at the various depths
follow from the mean stress of the piezometer
measurements. Pressures are: 0 at 0 km depth,
100 MPa at 4 km depth, 150 MPa at 6 km
depth, and 175 MPa at 7 km depth. These
pressures are similar to that following from the
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lithostatic load, assuming a pressure gradient of
25 MPa per km depth.

b) The deviatoric stresses are identical for all
depths, as follows: 7,=-50 MPa, 7,=0, 7;=
+50 MPa.

¢) The scaled ellipse sections of the principal
planes of the deviatoric stress differ from those
of the total stress by the pressure, if appropri-
ately scaled.

d) The direction of o, must be vertical, because
oy is 0 at the surface. Consequently, the two
other principal stresses are in the horizontal
plane. The deviatoric stresses can be explained
by a tectonic stress field in the horizontal
plane.

4-3: This exercise addresses the basic differ-
ence between calculations with vector and
tensor quantities. Because force is a vector
quantity, the normal and shear forces, Fy and
Fs, can be obtained from the two vector com-
ponents of F,.,. These are, according to equa-
tions (3-3a & b): Fy=F,cosa and Fg=F,_sina.
Unlike force, stress is a tensor quantity and not
a vector quantity. The normal and the shear
stress cannot be obtained as simple vector com-
ponents of the principal stress. Assertions that
oy=0,c08 ¢ and og=0,sin ¢, with o measured
between o, and the plane of action, as encoun-
tered in several established geology textbooks
are simply wrong - be warned! The Mohr equa-
tions (4-5a & b) account for the tensor property
of stress and relate the normal and shear stress
to the major principal stress. For plane stress,
the Mohr equations reduce to: oy =0,cos 2¢ and
os=0,8in 2£ [eqs. (4-6a & b)], with £ defined
as in Figure 4-10b.

4-4: a) Gravity sliding of a sedimentary slope
occurs when the inclination of the slope, «, is
larger than the angle of internal friction, ¢.
This is the case when Fg=uFy or gg=pay.
However, if the effective normal stress is

reduced by a pore pressure, P, then the gliding
may occur even for subcritical angles, that is
for slope angles, o, that are smaller than ¢.
This condition arises if 053> (0y-P)u. When the
ground water table below an aquiclude (the
mud cover) rises, then the pore pressure builds
up inside the aquifer (the sand layer) as the
water table continues to rise above the aqui-
clude. Sooner or later, sliding occurs for any
slope, a, due to the reduction in the magnitude
of the effective normal stress (oy-P), while the
shear stress remains unaffected by the pore
pressure.

b) Liquefaction occurs when P> gy, so that
grains start to float past one another without
any friction between them, except for some
viscous retardation by the fluid suspension.

4-5: Hubbert & Rubey’s (1959) classical theory
of gravity sliding over a slope (Fig. 4-7) can be
easily derived by yourself in this exercise.

a) A slab of rock with a coefficient of internal
friction p of 0.85 is stable for os<poy, is
critical for og=poy, and is unstable for gg>
poy. The critical angle, a.=¢ or a,=tan'p, is
equal to 40° for p=0.85, provided the pore
pressure is 0.

b) The pore pressure at the base of a layer con-
tributes to destabilization as follows: Move-
ment, in the presence of a pore pressure,
occurs when: og=(on-P)u. The pore pressure
(here normalized by the normal stress for
convenience of calculation), P/oy, and the
critical slope, «., are related as follows:
P/oy=1-(tan «./p). This expression is valid
only for the critical case of movement. It can
be seen that, for o =tan'u, no extra pore
pressure is required to initiate sliding. In other
words, if P=0, then o,=¢. However, a . <¢
for P>0. When the pressure P increases, o,
decreases, with one extreme case occurring for
P=0y when a.=0°.
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The expression derived here can be easily
graphed for pairs of values [(P/oy), ], with
curves for a range of u values. It is worth
noting that, in many practical situations, P/oy
=\, that is, the coefficient of fluid pressure
(cf. section 3-7). The above equation then can
be rewritten as: p=tan a,/(1-\), which is the
condition under which sliding can occur.

¢) To initiate gravity sliding on a slope of 2°,
using p of 0.85 as given here, the required
normalized pressure is: P/oy=1-(tan 2°/0.85)=
0.96. In other words, to initiate gravity sliding
on the slope of 2°, P must be equal to or larger
than 0.96 times oy.

d) If the pore pressure remains zero, an addi-
tional tectonic shear stress, 7, can initiate glid-
ing for subcritical angles when: tan o, +7s/0y
=pn. However, for supercritical angles, o, =@,
sliding occurs even when 75=0.

e) The principal expressions derived in prob-
lems (b) and (d) can be combined into a single
expression: u<[tan «, +(7s/0y)]/[1-(P/oy)] or
1sloy = p[1-(P/oy)]-tan .. This expression can
easliy be graphed for values [(7s/7y),(P/oy)],
with curves for a range of critical angles, . It
is worth noting again that in many practical
cases P/oy is equal to A.

4-6: a) & b) The Mohr circle for calculating
the stress on arbitrary planes through a point
with principal stresses o,=150 MPa, 0,=100
MPa, and o0;=50 MPa can be constructed as
follows: Use either equations (4-5a & b) for
total stress or equations (4-6a & b) for devia-
toric stress. The deviatoric stresses are 7,=50
MPa, 7,=0, and 7;=-50 MPa. The pressure is
100 MPa, 7y=50c0s2&, and 7,=50sin2¢.

The Mohr circle for deviatoric stress is a circle
about the origin with a radius of 50 MPa. The
Mohr circle for total stress is drawn about
point (100 MPa, 0) on the horizontal gy-axis as
a circle of 50 MPa radius. For 26=90°, oy=

100 MPa and 05=50 MPa. For 2¢£ =60°, oy=
125 MPa and 03=43.3 MPa. The deviatoric
stress components on planes at 30° and 45° to
the 7,-direction can be found by plotting the
double angles, 26=60° and 90°, measured
counterclockwise away from the horizontal
axis. For 2£=90°, 7y=0 and 7=50 MPa. For
2£=60°, 7y=25 MPa and 7,=43.3 MPa.

4-7: The completion of this exercise is easy if
the principle of Mohr circles is understood.
Two perpendicular planes through the same
point have, at that point, respectively, stress
states (oy, 0g) as follows: (220,110) and (120,
-110) in MPa. The two points can be plotted
between the (oy,05)-axes of a Mohr circle. The
Mohr circle itself is not known at first. But,
because the two points are for planes 90° apart,
2£=180°. Consequently, the center of the
Mohr circle is found where the straight line (of
2£=180°), connecting the two data points, cuts
the oy-axis in the (oy,05)-plot. This straight line
cuts the oy-axis at +170 MPa, which is equal
to the pressure or mean stress: (o,+0;)/2=
170 MPa. The Mohr circle radius is equal to
half the distance between the two points or 130
MPa, that is: (0,-0;)/2=130 MPa. The princi-
pal stresses can now be evaluated as o,=300
MPa and 0;=40 MPa.

4-8: a) The pair of normal and shear stresses in
each of the two perpendicular planes plots as a
point on the Mohr circle. Because the planes
cross the same point, but are oriented 90°
apart, they always lie in a straight line through
the center of the Mohr circle (see, also, exer-
cise 4-7). Consequently, the shear stresses on
these so-called conjugate planes are always
equal in magnitude but of opposite sign.

b) The sum of the two normal stresses is,
physically, equal to twice the pressure at the
point where the two planes cross. If the line
connecting the pairs of (oy,05) for the two
planes is vertical, the sum of the normal stress
will be 2P (see Mohr circle, Fig. 4-8b). If this

APPENDIX: Solutions to Exercises



WEIJERMARS - Principles of Rock Mechanics

317

synthetic line is horizontal, the pairs of (oy,05)
on the oy-axis, also, add up to give a sum for
normal stress equal to 2P. All mutually perpen-
dicular planes of other orientations to a,, have,
also, normal stresses, the sum of which is
consistently equal to 2P.

4-9: After comparison of graphs of Fy and Fg
against o (see exercise 3-3c) and graphs of 7y
and 75 against a=2¢ (Fig. 4-9b), the questions
posed in this exercise can be answered as
follows:

a) The shear stress at a plane always is at
maximum for «=90°, which means that the
plane is at 45° to the major principal stress
axis, as follows from a=2¢ (cf. Fig. 4-11).
The shear force on a slope of a=0° is equal to
the weight of the slide mass, i.e., Fg=F,, (cf.
Fig. 3-3).

b) The normal stress at a plane is at maximum
for «=0°. The normal force is, also, at maxi-
mum for a=0°, that is, Fy=F,, (cf. Fig. 3-2).

¢) F,. and o, are parallel only for a=0°. F,,
and g, are 45° apart for «=90°. The full rela-
tionship is fixed by equation (4-8), using the
angles, o and &, as defined in Figure 4-11.

4-10: The stress trajectories in the Shiprock
area of Figure 4-14 were, at the time of intru-
sion, similar to those given in Figure 4-12b.
The dikes are intruded along o, trajectories,
which delineate vertical surfaces normal to o;.
The fact that the radial dikes of Shiprock are
connected at the surface to the central stock
implies that a few kilometers of overburden has
been removed by erosion since the injection of
the dikes. If the exposed dikes had been intrud-
ed at surface conditions, then the stress field of
Figure 4-12c¢ would apply, rather than that of
Figure 4-12b. However, the alternative stress
field of Figure 4-12¢ precludes a connection of
the central stock and the radial dikes in any
plan view at shallow depths.

4-11: a) The Richat dome (Fig. 4-15), if over-
lying a buoyant granitic pluton, must have been
stressed approximately as outlined by the stress
trajectories of Figures 4-12a to c.

b) Pegmatite dikes, originating from a granitic
infrastructure, would have intruded the supra-
structure layers of the dome. The fractures
would be controlled by the stress patterns,
illustrated in Figures 4-12a to ¢. The stress
trajectories that would apply to the Richat dome
at shallow erosion depths are given in Figure 4-
12c. Pegmatites would inject as cone sheets
within the central region but be intruded as
radial dikes outside the circular section of
neutral stress. The sketch of Figure 4-13 may
help to visualize the anticipated pegmatite
orientations.

4-12: a) The stress trajectories suggested by the
fracture pattern over the Clay Creek Dome,
Texas (Fig. 4-16a), are more or less radially
symmetric, similar to those of Figure 4-12c.

b) The stress trajectories suggested by the
fracture pattern of the Bell Isle Dome, Loui-
siana (Fig. 4-16b), are not strictly radially sym-
metric, but they are similar to those of Figure
4-17. (Figure 4-17 illustrates horizontal stresses
around a salt dome, subjected to a regional
stress field that is superimposed on the stresses
generated by the pressure of the salt dome
intrusion itself.)

¢) The overburden of the Bell Isle Dome proba-
bly became fractured as it rose during a region-
al compression with a NE-SW trend. However,
the Clay Creek Dome fractured its overburden
in the absence of any regional tectonic back-
ground stress.

4-13: The stress field around the salt dome of
Figure 4-17 is completely dominated by region-
al tectonic stresses, which are here much larger
than the stresses induced by the buoyant salt
dome itself. The salt plug represents a mechan-
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ical anomaly, which deflects the regional stress
trajectories, as indicated by the in-situ stress
measurements.

Chapter five

5-1: The qualitative graph of force against time
for the elasto-plastic unit with peak strength
(Fig. 5-1d) has the following characteristics:
The force increases linearly when the spring is
pulled toward the left, but it decreases abruptly
when the plug pops out. The friction of the
plastic unit may result in another linear increase
of the force until the plastic unit starts to slip
over the surface. The force then remains at a
constant value equal to the frictional resistance
of the frictional plastic unit. Two force maxima
occur in the plot, equivalent to the resistances
of the plug unit and the frictional plastic unit,
respectively. The relative magnitude of the two
maxima varies, commensurate with the relative
strengths of both mechanical units,

5-2: a) In Figure 5-5a, the strain remains
stationary at a plateau value during the loading,
but it recovers completely after removal of the
load (at time t,).

b) In Figure 5-5b, the stress will remain con-
stant if the strain-rate ceases after time t=t,,
and the strain remains fixed at its final value.

¢) The stress-time graph for a stress-relaxation
test in an ideal elastic material shows instanta-
neous establishment of a particular stress upon
the emplacement of the load. Subsequently, the
stress remains at a constant value, indicated by
a horizontal line [as in Figure 8-5, top right
diagram (p. 129)].

5-3: a) In a creep or constant load test, the
stress level is kept constant at all times. In fact,
this may require different load forces, unlike
what is suggested by the term "constant load"
test. A creep test on the mechanical unit of
Figure 5-6, applying a stress that exceeds the

plug strength, is of short duration, because the
plug will pop out instantaneously. The strain-
time graph shows instantaneous increase of
elastic strain at time zero (Fig. 5-5a), which
immediately drops back to strain-rate zero
when the plug pops out.

b) A constant strain-rate test on a Hookean
elastic requires controlled increase of the stress
in order to keep the strain-rate constant. If
applied to the plug-elastic unit of Figure 5-6,
the stress-time graph looks as shown in Figure
5-5b, but the stress drops instantaneously to
zero once the stress reaches the peak strength
of the plug unit.

5-4: The stress-time graph of a plastic unit in a
constant load test shows a stress constant over
time and is equal to the frictional resistance of
the plastic unit.

5-5: The stress-time plot for a constant strain-
rate test on the elasto-plastic unit with plug
peak strength, as illustrated in Figure 5-1d,
shows linear build-up of elastic stress in the
spring at the onset of the test. The stress drops
abruptly when the plug’s peak strength is
reached but immediately puts the frictional unit
into motion, because its frictional resistance
stress is only half of that required to pull out
the plug. Consequently, after the initial instan-
taneous drop in stress, the stress remains con-
stant at a level required to move the plastic unit
at a constant strain-rate.

5-6: The Poisson ratio is defined as »=-e,/e,.
Rock volume remains constant when e, +e,+e;
=0. The free lateral boundaries in the Poisson
test on a homogeneously straining, elastic rock
imply that the shortening, e,, must be compen-
sated for by proportional extensions in the
plane normal to e,. The condition of no volume
change is, therefore, fullfilled if e,=e;=-0.5e,.
Using the values of this constant volume case
in the definition of the Poisson ratio gives:
r=0.5.
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5-7: The Poisson ratio is defined only for small
or infinitesimal strains, where linear elasticity
is valid. The initial principal strain values of
the constant strain-rate test on the Berea sand-
stone sample are given in Table 5-2 and plotted
in the graph of Figure 5-8. The values of the
Poisson ratio during the initial and subsequent
load increments are: »,=0.87, »,=0.17, »;=
0.20, »,=0.24, »5=0.28, »,=0.33, »,=0.37,
v3=0.41, r,=0.48, and »,,=0.54. The initial
and final values are larger than 0.5 and may be
due, initially, to the settling of the sample and,
finally, to the onset of microcracking. Initial
average values of » are between 0.17 and 0.28,
which is within the range quoted for sandstone
in Table 5-1.

5-8: This is a tricky question. The bulk modu-
lus, «, is given for air at atmospheric pressure.
However, ideal gases obey the thermodynam-
ical equation of state: PV=nRT (P-pressure, V-
volume, n-moles, R-gas constant, T-absolute
temperature). Thus P=nRT/V and (6P/6V);=
nRT/V? or B:=V/(nRT)=1/P. Consequently,
(3 is inversely proportional to P. The conclusion
is that the bulk modulus for air is proportional
to P. The pressure rises when the air pump is
used, but so does the bulk modulus. The vol-
ume of the air in the pump decreases indeed
when the pressure increases, but it does so
according to P=nRT/V. Consequently, the
bulk modulus is of little use to monitor the
volume change of air in the pump.

5-9: a) The elastic elongation of foam rubber
with E=100 Pa, subjected to a tensional stress
of 1 kPa, is: e,=7,/E=1kPa/100Pa=10.

b) The principal stress in a foam rubber which
is extended 100%, that is, e;=1, is: 7,=Ee,=
100 Pa x 1=100 Pa.

5-10: Estimates of the Young modulus for
Berea sandstone, using E=7,/e, with the exper-
imental data of Figure 5-8 and Table 5-2, vary

between 14 and 18 GPa. This is within the
range quoted for sandstone in Table 5-1.

5-11: A cylinder with Young modulus E=100
GPa, that is uniaxially compressed by -10
MPa, will have a principal elongation of:
e,=7,/E=-10 MPa/100 GPa=-10". If the
cylinder was initially 25 cm long (L), it will
shorten so that the new axial length, L,, is:
L;=Ly+eL, [acc. to eq. (5-1)]. Substituting
the values provided, L,=(25-10%x25) cm=
24.9975 cm. The transverse expansions, e, and
e;, follow from the Poisson ratio: e;=-pe,=
0.25x10*. The new diameter is: Ly=L,+e,L,=
[10+4(0.25x10* x10)] cm=10.000025 cm.

5-12: The removal of an elastic angular shear
strain of y=2.5x10""* from the walls of the San
Andreas fault system, which has a shear modu-
lus, G, of 30 GPa, reduces the stress by:
7s=30 [GPa]x2.5x10"°=7.5 MPa.

5-13: According to equations (5-10) and (5-11),
the ratio of G/k is equal to: (3-6v)/(2+2v).
Substituting »=0.5 gives: G/k=0. Physically,
this means that materials of Poisson ratio 0.5
are much easier to shear than to compress,
because k> >G.

5-14: The vertical lithostatic stress associated
with elastic deformation of buried rock is: 7,=
-[(2-4»)/(3-3»)]pgz. The stress at 10 km depth,
using the values provided, is 7,=-118 MPa.
Relaxation of such elastic stresses upon rapid
exhumation may be large enough to cause joint
development in rocks.

5-15: a) The equations for the three principal
deviatoric stresses are, using equations (5-16a
& b): 7,=-11.76 x z (in km) [MPa] and 7,,=
-5.88 x z (in km) [MPa]. Both these express-
ions can be plotted as linear functions of depth.

b) If a tectonic compression of -100 MPa is
superimposed on the 7,-direction, as illustrated
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in Figure 5-135, then the total deviatoric stress
in the former 7,-direction becomes larger than
the vertical stress for rocks shallower than 5
km deep. The level of isotropic points occurs
where 7,=7,=7;=0.

5-16: The principal stresses on the buried
surface can be computed using equations (5-16a
& b): 7,=-54.5 MPa and 7,;=27.2 MPa.

5-17: The strain-time graph for a stress-relax-
ation test on a Kelvin-Voigt unit is similar to
that shown in Figure 5-16a, except for the
initial elastic strain, which cannot occur in the
Kelvin-Voigt unit. The correct graph shows the
building up of initial anelastic strain followed
by complete anelastic recovery of this anelastic
strain after some time upon the removal of
stress.

Chapter six

6-1: The contours in Figure 6-2b are curves of
constant maximum shear stress magnitude. The
maximum shear stress af each point in the
material is given by: 7gu.=(71-73)/2. The stress
contour values vary between 0 and 2 in Figure
6-2b (with contour interval 0.2), and the stress-
es are normalized by the vertical load stress.
The maximum shear stress occurs at the crack
tip, where the normalized shear stress peaks to
twice the magnitude of the principal stress that
is applied to the bulk of the material.

6-2: The single Hookean spring element of the
mechanical analog, portrayed in Figure 6-7,
represents the elastic mode of distortion (stage
B in Figure 6-6). The Kelvin-Voigt unit repre-
sents the anelastic behavior when the micro-
cracking occurs (stages C & D in Figure 6-6).
The plug unit represents the peak strength and
subsequent drop of stress with anelastic recov-
ery (stages E & F in Figure 6-6). The residual
strength is represented by the frictional plastic
unit.

6-3: Rock tests in triaxial deformation appa-
ratus can increase the confining pressure,
unlike that in uniaxial deformation rigs, where
the pressure remains atmospheric (at 1 atmo-
sphere or 0.1 MPa). At higher pressures, the
strain softening, that causes a secondary drop
in the differential stress in tests with low con-
fining pressures, does not occur at pressures
above 100 MPa (in the example of Figure 6-9).
This means that the plug in the arrangement of
Figure 6-7 can be removed in mechanical
analogs for the stress-strain behavior of rocks
in cold press tests at higher confining pressures
(cf. Fig. 6-9).

6-4: a) A depth scale can be plotted along the
horizontal pressure scale of Figure 6-10, divid-
ing pressure values by the mean pressure gradi-
ent of 25 MPa/km for crustal depths.

b) According to the generalized experimental
data of Figure 6-10, at 150 MPa pressure, or
about 6 km depth and beyond, anhydrite will
break at strains lower than those required to
break sandstone. This behavior is reversed at
shallower depths, where sandstone breaks at
strains lower than those required to break
anhydrite.

¢) During progressive strain, according to the
generalized experimental data of Figure 6-10,
sandstone breaks before limestone between
confining pressures of 65 and 170 MPa (2.5 to
7 km deep). But limestone breaks before sand-
stone at depths that are shallower than 2.5 km
and deeper than 7 km. However, it must be
noted that ductile creep is likely to occur be-
yond 7 km depth, precluding any brittle fault-
ing, because the elevated temperatures activate
crystalline creep processes (see chapter 7).

6-5: The intermediate and minor principal
stresses, 0, and o3, are equal in uniaxial defor-
mation tests. This generally, also, applies to
triaxial tests, where g, and o; are still equal and
utilized only to impose a confining pressure
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larger than the ambient atmospheric pressure
that occurs in uniaxial deformation tests. The
critical surface of circular shear failure of
Figure 6-12a can occur when the rock speci-
men is perfectly homogeneous and when o, is
equal to o; throughout the sample. However, in
practice, minor perturbations of these condi-
tions lead to specimen failure with conjugate
shear surfaces that are planar, as illustrated in
Figures 6-11b and 6-12b (rather than circular
as in Fig. 6-12a).

6-6: a) The coefficient of thermal expansion for
basaltic lava is: a=8V/(V6T)=2.5x10° °C".
Lowering of the temperature from 1000° C to
25° C will cause a shortening of: 8V/V=
adT=-2.5x10°x975=-2.44x10* or -0.25%.
The three principal lengths will all shrink by
0.08 %. Over a length of 100 meters, this
means a shortening of 8 cm has to be accom-
modated. Traction on the floor of the flow
prevents such shortening from occurring
through homogeneous horizontal slip, and that
is why discrete columnar joints develop.

b) The jointing is principally due to the thermal
stresses, which are classified as body forces,
but which would not occur without the traction
at the base of the lava sheet. Those traction
stresses are classified as surface forces.

6-7: The location of tension and shear joints
can be found by using the model of Figure 6-
12b to trace the joints at key positions in Fig-
ure 6-17b, away from the neutral surfaces.

6-8: The peak strength for pyroxene, inferred
from Figure 6-9, is 220 MPa (or o0,-0;) for a
confining pressure, P, of 20 MPa. The radii of
each of the Mohr circles are: 280 MPa (for
P=40 MPa), 315 MPa (for P=60 MPa), 340
MPa (for P=80 MPa), 340 MPa (for P=80
MPa), 380 MPa (for P=140 MPa), and 410
MPa (for P=180 MPa). These values give a
well-defined Mohr-Coulcmb plot. The Mohr-
Coulomb envelope is approximately linear.

6-9: a) The equation for the Mohr-Coulomb
envelope is: 03=229 [MPa]+1.40\[MPa].

b) The effective pressure for Westerly granite
at 5 km depth is given by: P.z=MApgz, with A
denoting the coefficient of fluid pressure: (1)
for hydrostatic state, A=0.42, and P,=52
MPa; (2) for A=0.8, P=100 MPa; (3) for
lithostatic pressure, A=1, and P,,=125 MPa.

c¢) The pressure is plotted along the horizontal
oy-axis of the Mohr diagram. For each pres-
sure, only one circle that is exactly tangential
to the Mohr envelope can be found. The single
intersection point of the Mohr envelope and the
circle is connected by a straight line (for 2¢) to
the center of the circle. The angle 2£ can now
be measured. The critical horizontal stress, o,,
can be read where the Mohr circle intersects
the oy axis.

d) The angles, &, between ¢, and the normal to
the fault surfaces become smaller and smaller
for larger effective pressure (cf. Fig. 6-20).
Consequently, the dips of the faults, given by
(90°-£), increase with increasing pressure. The
failure planes show reverse fault movement,
but they may be termed thrusts if (90°-£)
becomes sufficiently small.

6-10: Amonton’s law is as follows: og=poy.
The rock mass of Figure 6-23 slides when
os=poy. It can be demonstrated that (os/ay)
=tan «, with « as the slope of the slide mass.
Consequently, the mass is stable when tan
a<p, and the critical angle of a=¢ occurs
when « is equal to the angle of internal fric-
tion, tan”' pu (cf. section 3-3).

6-11: a) The requested Byerlee failure envelope
is already drawn in Figure 6-21b.

b) The center of your Mohr circles must lie
along the horizontal oy-axis. Different centers
correspond to different magnitudes of the
confining pressure.
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c¢) At higher confining pressures, the angle be-
tween the failure planes and o, increases, as
illustrated separately in Figure 6-20.

d) The deviatoric and total, normal stresses
differ by the pressure, P. The increase of the
deviatoric stress with pressure suggests that
energy, required to move the fault plane at
higher pressure, is higher. However, this rela-
tionship is not so simple, as becomes clearer
when expressing the relationship between
pressure and og and oy.

6-12: The plot of Figure 6-25 scales the differ-
ential stress required to initiate movement on
reverse, normal, and strike-slip faults. If re-
verse faulting occurs (under compression), then
the stress difference cannot exceed the values
outlined by line a. If normal faulting occurs
(under tension), then the stress difference
cannot exceed the values outlined by line b. If
strike-slip faulting occurs, then the stress
difference cannot exceed the values outlined by
line ¢. An increased pore pressure may activate
fault movement at much lower stresses than
required in dry rocks, as follows by comparing
the differential stress scales for A=0 and A=
0.9, indicated along the horizontal strength
scale of Figure 6-25. (For more pressure ef-
fects, see, also, Figs. 6-26a to ¢ and 6-27a &
b.)

6-13: The strength profile for the brittle section
of the crust, with variations in fluid pressure,
as specified in Figure 6-27b, can be quickly
drawn onto the graph of Figure 6-27a. Each
time the coefficient of fluid pressure changes,
the actual strength for that particular depth is
indicated by the strength envelope for the
corresponding fluid pressure. This means
instantaneous drops in the crustal strength
occur when the fluid pressure increases. Con-
versely, the crustal strength increases when the
fluid pressure decreases.

Chapter seven

7-1: Some videotapes, suitable for studying
crystalline creep, are listed in the references on
p. 123 to 124. They can be viewed, described,
and discussed, with or without supervision of
your course instructor.

7-2: a) "Strain memory" is a term referring to
the ability of strain markers, such as crystal
grains, to pick up the finite strain of a deforma-
tion. The strain memory of truly passive mark-
ers is perfect, because such markers record and
preserve all the strain that has occurred. How-
ever, other strain markers, such as crystal
grains, are not passively recording the strain;
they are active strain markers. They do not
record the bulk strain of the total rock volume,
because they interact with neighboring grains.
Figures 7-3a to c effectively illustrate that the
strain memory of mineral grains in a deformed
rock or tectonite varies and generally is less
than perfect.

b) Static recrystallization can remove any
preferred orientation of a crystal fabric (e.g.,
quartz). After static recrystallization, mineral
crystals no longer preserve any sign of defor-
mation, but the outside boundaries of the rock
volume generally retain the deformation pat-
terns attained during dynamic recrystallization.
Static recrystallization does not remove the
strain of the bulk rock; that is, the deformation
attained by dynamic recrystallization is defi-
nitely inelastic.

7-3: The rate of grain-shape fabric formation
during dynamic crystallization is counteracted
by a rate of static recrystallization. The latter
rate is likely to be independent of the former,
because static recrystallization occurs even
when the rate of dynamic recrystallization
vanishes. At lower rates of dynamic recrystal-
lization, the intensity of the developing grain-
shape fabric is likely to be reduced by the
effect of static recrystallization. The process of
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static recrystallization is least effective at
higher rates of dynamic recrystallization, and it
is most effective when the dynamic deformation
ceases.

7-4: Pressure solution seams commonly are
oriented normal to the direction of lithostatic
loading (cf. Figs. 7-7a & b). This can be
understood better by studying the deviatoric
stress patterns in granular aggregates, acting as
rock analogs (cf. Fig. 4-3). The stress at the
grain contacts, where the overlying grains
impinge, is large. Obviously, the grain contacts
are locations where pressure solution is most
effective.

7-5: The effective viscosity of minerals in
Coble creep is proportional to the third power
of the grain size. In Nabarro-Herring creep, the
viscosity is proportional to the second power of
the grain size. Grain size reduction during
dynamic recrystallization, therefore, reduces
the effective viscosity of the rock and may lead
to concentration of the flow in regions with
lowered effective viscosity.

7-6: When the principal compressive stress is
parallel to the glide plane of micas, plastic
bending is achieved by the movement of edge
dislocations along the glide planes (cf. Fig. 7-
16a to c¢). The plastic bending results in a
gradual distortion of the crystal lattice, which
is responsible for the undulous extinction,
observed along the arc of the folded minerals
(cf. Figs. 7-17 and 7-18), as viewed with an
optical polarizing light microscope.

7-7: a) This process is illustrated in Figures 7-
16a to c.

b) Subgrains form at locations where the crystal
lattices locally mismatch, due to the piling up
of dislocations and impurities. If the mismatch
in the crystallographic orientations becomes

larger than about 7°, the subgrain boundary
will have sufficiently mismatched as to be
regarded as a new crystal boundary (Fig. 7-
16d). In this fashion, initial grain boundaries
may become lobate and may bifurcate and
migrate to form new subgrains, some of which
develop into new individual grains with distinct
grain boundaries.

7-8: The log stress/log strain-rate graphs for
Yule marble, using the steady-state flow data of
Figures 7-21a to ¢, plot with slopes less than
unity (that is, n> 1, according to n=cot «, as
defined in Fig. 7-23). This indicates that dislo-
cation creep is the dominant mechanism of
deformation at the strain-rates used in hot press
tests.

7-9: a) According to the data of Figure 7-25, if
the grain size of quartz reduces from 1 mm to
0.01 mm at a constant strain-rate of 10™* s,
then the dominant deformation mechanism
changes from dislocation creep to Coble creep.
In Coble creep, the viscosity is proportional to
the third power of the grain size. Within the re-
gime of Coble creep, the grain size dropped
from approximately 0.1 mm to 0.01 mm (using
Fig. 7-25). If the grain size reduces to 0.1
times the initial value, then the stress in those
grains (in Coble creep) drops three orders of
magnitude. According to Figure 7-25, the
stress was still about 1 MPa when the grain
size reduced from 1 mm to 0.1 mm in the
dislocation creep regime. However, the stress
must drop to 0.001 MPa when the grain size
reduces one order of magnitude further, to 0.01
mm, in the Coble creep regime.

b) According to Figure 7-25, if the stress is
maintained at 1 MPa, the grain-size reduction,
described in exercise 7-9a, will result in a
strain-rate softening, because the strain-rate
increases two orders of magnitude from 10 to
102 572,
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Chapter eight

8-1: a) The units of the dynamic shear visco-
sity, 0, follow from the definition: n= 7(u/d)
[Pa m s'm™], and they are equivalent to Pa s
[Pascal second].

b) The effective viscosity is a scalar quantity,
provided it is isotropic in the material point(s)
concerned.

8-2: a) The units of the kinematic viscosity, »,
follow from its definition as: »=n/p [Pa s kg
m®]. Using Table 2-1, section B: 1 Pa s kg’
m’=1kgm "' s?kg' m*=1 m? s

b) The kinematic viscosity is a scalar quantity,
provided it is isotropic in the material point(s)
concerned.

8-3: The rheology of some of the materials
listed in Table 8-1 can be tested qualitatively by
a stirring movement in air, water, olive oil,
honey, and silicone gum. For qualitative com-
parison, the viscosity of chewing gum com-
monly ranges between 10° and 10* Pa s.

8-4: Comparison of the three graphs in Figure
8-5 for each mechanical analog reveals that
creep tests provide time/strain-rate graphs that
are distinctive for each type of mechanical
behavior. In contrast, constant strain-rate and
stress-relaxation tests provide graphs that are
not necessarily unique for a particular type of
mechanical behavior.

8-5: In order to determine the n-value of the
power-law body in Figure 8-8, pairs of vis-
cosity readings and strain-rate need to be
plotted in a log-stress/log strain-rate diagram.
Obtain a flow curve, such as illustrated in
Figure 8-7. The points plotted can be matched
to segments of straight lines. The cotangent of
the slope of these line segments is equal to
their n-value. The data of Figure 8-8, when
transferred to Figure 8-7, yield an n of 10.

8-6: The general trend of the effective viscosity
graph for granite must be similar to that of
other rocks, as illustrated in Figure 8-11.

8-7: a) All materials that have n-values between
unity and infinity are strain-rate softening. A
theoretical strain-rate hardening material would
have n-values smaller than unity. However, the
author is unaware of the existence of any such
material in the real world. [see, also, the con-
cluding remark under (b).]

b) Strain-rate hardening materials deform faster
when lower deviatoric stresses are applied, and
their strain-rates are slower when higher devia-
toric stresses are applied. This means such
materials, if existing, would be the ultimate
solution to the quest to find sources of unlimit-
ed energy.

8-8: a) The oblique lines in the plot of Figure
8-10 are isoviscosity contours. The effective
viscosity is defined as n.4=7./v. [cf. eq. (8-7)].

b) The effective viscosity of 243 K ice, flowing
at 10" s is (10* Pa/10"" s1) or 10" Pa s,
using values from Figure 8-10.

¢) The effective viscosity of 243 K ice, flowing
at 107 s, is (10° Pa/107 s™) or 10" Pa s, using
values of Figure 8-10. The lowering of the
viscosity at increased strain-rates [compare (b)
and (c)] is termed a strain-rate softening behav-
ior.

8-9: The flow curves for rocks listed in Table
8-2 are similar in appearance to those of Figure
8-11. They can be calculated using equation (8-
8b), substituting the parameter values given in
Table 8-2. Remember that the deviatoric stress,
71, 18 equal to: 7,=(0,-03)/2.

8-10: It is well-known that more competent or
"stiffer" layers in a multilayer sequence will
buckle upon layer-parallel shortening. At 200°
centigrade, Carrara marble has a much lower
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strength (or lower viscosity) than quartzite,
according to Figure 8-12. In conclusion, the
quartzite layers are likely to fold and they
largely control the rate of the buckling process.

8-11: a) Crustal strength in quartzitic crust with
a hydrostatic pore pressure is graphed in Figure
8-13b for two possible geothermal gradients (30
K/km and 15 K/km). According to the map of
Figure 8-14, location A has a geothermal
gradient of 15 K/km. The brittle-ductile transi-
tion in an ultra-deep borehole at A would not
occur until a depth of 15 km has been reached.
For location B, where the heat flow is larger
(30K/km), the brittle-ductile transition occurs at
about 8.5 km depth, according to the curves of
Figure 8-13b.

b) If the rocks are dry, rather than wet, then
the brittle-ductile transitions for holes A and B
occur at depths of 13 and 7 km, respectively,
according to the graph of Figure 8-13a.

8-12: The lithospheric strength profiles for a
Precambrian shield area with a 40 km deep
MOHO and that of the adjacent platform with
a 30 km deep MOHO are similar to that shown
in Figure 8-15. The detailed values for the
strengths of the crustal section of assumed
quartzitic composition follow from the plots of
Figures 8-13a to ¢. The crustal part of the
continental lithosphere below the colder shield
area is, obviously, much stiffer than that below
the hotter platform. The strength of the mantle
parts of the continental lithosphere are similar
for both areas. The platform margin deforms
much faster than the Precambrian interior,
simply because the total resistance of the plat-
form sequence to any internal deformation is
much lower than that of the Precambrian interi-
or, as follows by comparing their respective
lithospheric strength profiles.

8-13: The Flannan Fault is likely to be mostly
a ductile shear zone, rather than a brittle fault.
This is so because the synthethic strength

profile for that crustal section suggests that the
crust is mostly ductile. The Flannan Fault
extends without soling out, because there is no
obvious zone of weakness to sole into. The
Outer Isles Fault is, also, likely to be a ductile
shear zone at depth. It soles into the base of
layer 1, because a zone of low viscosity occurs
there. The other normal faults are soling out at
the base of layer 2, because another zone of
relatively low crustal viscosity occurs there, ac-
cording to the suggested strength profiles.
Although idealized strength profiles are highly
conjectural, they provide a possible explanation
for the crustal structure observed. However,
one important concern is that the age of the
faults is likely to be Cretaceous, and the mod-
ern heat flow data used in the synthetic strength
profiles may not be valid for the remote past,
when the faults were formed.

Chapter nine

9-1: a) MDCCLXI times CCCIV is equivalent
to 1761 times 304.

b) MDCIV minus LIX is equivalent to 1604
minus 59. The Roman notation and the Arabic
notation used here are both constituted by
metric numbers. However, most of us would
prefer the Arabic number notation, because we
are more familiar with it and it is more com-
pact. Nonetheless, the Roman notation utilizes
only seven different symbols (i.e., M, D, C, L,
X, V, and I), whereas the Arabic notation uses
ten different symbols (i.e., 1, 2, 3,4, 5, 6, 7,
8 .9, and 0). For comparison, binary numbers
are comprised of only two symbols (i.e., 0 and
1). Binary numbers are most practical for use
in computers, but they are, apparently, less
suitable for the perception of quantities by the
human brain.

9-2: The velocity field for the simple shear
deformation of Figure 9-4 is: v,=0dy/dz=
8[(y/2)z%)/dz=~yz. The velocity gradient is:
Y0z =0(yz)/0z=7.
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9-3: a) & b) The pure shear deformation of
Figure 9-5 has a velocity vector, v, of (&;x, 0,
€12).

The velocity-gradient tensor, Vv, according to
equation (9-7) is:

g 0 0

V=10 0 0

0 0 ¢&

The normal elements of the velocity gradient
tensor are equal to the three principal strain-
rates: é,, 0, and &;.

The divergence of the velocity, V.v, according
to equation (9-8), is: [d(&,x)/0x]+[0(é;2)/0z]) =
€,+¢&,. It is obvious that for pure shear defor-
mations €,=-€;, so that V.v=0. This means
that the deformation involves no volume
change.

The curl vector of the velocity, Vxv, according
to equation (9-9), is: (0,0,0). The elements of
the vorticity vector vanish, which indicates that
the deformation is irrorational. The velocity
gradient or deformation rate, Vv, for irrota-
tional deformations with Vxv=(0,0,0) is equal
to the strain-rate tensor (see, also, exercise 9-
7c).

9-4: a) The deviatoric stress tensor for the
simple shear of exercise (9-2), using the differ-
ential equation (9-11), is: 7;=n(1/2) [(dv,/dx;)+
(dv;/0x;)]=n/2 times the following tensor:

2dv,/ax, (v, /0%,) +(dvs/a%;) (8v,/0x5)+(0v4/dx,)
(Ava/B%,) + (v /d%,) 20v,/3x, (8va/3%5) +(Av4/8%,)
(3v4/0x,) + (v /9x5)  (Bvs/dx%,) +(Bv4H/8X5) 20va/dxs

Substitution of v,=vz, v,=0, and v,=0 yields:

0 0 92
7= 0 0 0
w2 0 0

b) The magnitude of the stress tensor for a
thrust movement with angular shear strain-rate

of y=10" s and dynamic shear viscosity of
n=10% Pa s is:

0 0 50
=10 0 0 [MPa]
50 0 0

9-5: The stream function of a pure shear flow
with a velocity field, given by v,=¢x, v,=0,
v,=€;z, can be determined by integration,
according to expression (9-12):

‘f’="; vxdz+£ v,dx+c=¢,xz+c¢

The boundary condition is that y=0 for (x,z)=
(0,0), so that ¢=0. The stream function for
pure shear flow, y=¢,xz, is discussed further
in chapter 13 (cf., exercise 13-2).

9-6: a) Deformation tensor (a,b,c,d)= (1,0,1,1)
represents a unit simple shear deformation
(y=1) with shear along the Y-axis.

b) Deformation tensor (a,b,c,d)=(1,0,0,1) is a
self-copy tensor, which effectuates neither
deformation nor translation.

¢) Deformation tensor (a,b,c,d)=(1,1,0,1) is a
unit simple shear (y=1) with shear along the
X-axis.

9-7: a) The strain-rate tensor for the pure shear
deformation of exercise 9-3 follows from
differentiating the velocity components, v,=
€,;x, v,=0, and v,=¢;z, according to expres-
sion (9-16b):

& 0 0
D;=[0 0 0
0 &,

It is worth noting that the tensor elements, é,,
and é;;, are expressed in terms of the principal
strains, €, and &;.

b) The expression for the vorticity tensor [cf.
eq. (9-16a)] is:
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0 (1/2)[(8v/3x2)-(Bvo/ax )] (1/2)[(8v,/8%5)-(av4/8x%,)]
(I2)[BvAIX)-(@vi/ax)] O (1/2)[(Bva/dxs)-(8v5/3%,)]
(L2)[(vs/ax)-(0v /axs)]  (L/2)[(Fvs/3xy)-(0v4/0%5)] 0

For pure shear, v,=¢,x and v;=¢,z, so that all
elements in the vorticity tensor vanish.

¢) The sum of the strain-rate and vorticity
tensors is equal to the velocity gradient tensor.
For the special case of pure shear deformation
considered here, all elements of the vorticity
tensor are zero [according to equation (9-16a)].
Consequently, the strain-rate tensor is equal to
the velocity gradient tensor. This relationship is
valid for all irrotational or coaxial deformations
in 3D, including pure shear deformations,
which are restricted to 2D (see, for example,
Fig. 12-1a).

9-8: Given the tensor (in units of MPa):

0 0 100
0 0 0
-100 0 O

a) The determinant of this tensor, following the
definition of equation (9-18b), is: I;=0.

b) All tensors with vanishing third invariants
represent a state of plane stress. For the partic-
ular tensor studied here, the first invariant, I,
is, also, 0. This means that the pressure is 0
and the tensor represents a deviatoric stress
rather than a total stress. More specifically, this
is a state of simple shear stress. But, if the
coordinate axes are rotated over 90° about the
Y-axis, then the tensor becomes equal to that
given in equation (9-20), which is a pure shear
stress. This subject is further elaborated in
exercises 10-8 and 10-10.

9-9: The real and imaginary parts of the com-
plex functions given are as follows:

a) W=f(z)=z=x+iy. The real part is x; the
imaginary part is y.

b) W=f(z)=-z=-(x+iy). The real part is -x;
the imaginary part is y.

c) W=f(z)=z?. The answer is given by equat-
ions (9-21b & ¢).

Chapter ten

10-1: a) The stress trajectories for a uniformly
oriented stress field consist of a set of straight
lines.

b) A heterogeneous stress field has curved
stress trajectories.

c) The stress trajectories are everywhere paral-
lel to the principal stresses. A uniform stress
field of straight trajectories requires the stress
orientation to be constant, but gradients in the
magnitude of the stress may occur.

10-2: v,=n,v is the index notation for the
velocity vector: (vy,V,,V3)=(n,v,n,v,n3v) =
(v cos a, v cosf3, v cos ).

10-3: The angles of the direction vector on the
plane considered, to be used for the direction
cosines, are a«=60°, §=45°, and y=60°. The
magnitudes of the principal stresses are:
0,=-600, 0,=-400, and o;=-200 MPa.

a) The magnitude of the effective stress on the
plane follows from equation (10-6a): o=
(0,%c05?60° + 0,°c0s%45 ° + 0,°c0s%60°) > = (-)424
MPa. Compressive stress, which has a negative
sign, would give a positive 0,4, according to
equation (10-6a). The sign of o, must be
adjusted if a sign convention is used that attrib-
ute a negative sign to compresive stresses.

b) The magnitude of the normal stress on the
plane considered follows from equation (10-
6b): oy=0,c08*60° +0,c08%45 ° + 0;c05%60° =
-400 MPa.
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¢) The magnitude of the shear stress on the
plane considered follows from equation (10-6c):
05 =(04-0x2) = (424%-400%)"> =141 MPa.

10-4: 2) 0y,=0y, 013=03;, and 03 =03,.

b) The explanation is as follows: For a con-
tinuous body to be in equilibrium, the resultant
forces and the resultant moment about any axis
must vanish. The cubic volumes of Figures 10-
7 a & b are infinitesimally small. The magni-
tude of the normal stresses on opposing sur-
faces of the cube must be identical for a contin-
uous body to be in equilibrium. The force mo-
ment, resulting from the shearing stresses,
must, also, vanish, according to the equilibrium
of moments. The shear stresses act at the mid-
point of each face of the infinitesimal cubes in
Figures 10-7a & b. The sum of the moments
about an axis parallel to the X-axis must be:
0,,-0,,=0, so that o,,=0,,. Similarly, the van-
ishing moments about the Y-axis and the Z-axis
require that o, =0, and o,,=0a,,.

10-5: The stress tensor elements for a situation
with o, parallel to the Y-axis and o, at 45° to
the X-axis can be determined as follows: Be-
cause o, is normal to the XZ-plane, o,,=0,,
and the shear stresses vanish so that o,=
a,,=0. Because 0, and o; both are at 45° to the
XY and YZ planes, the normal stress vanishes;
o, and o, are both 0. The remaining shear
stresses are at maximum: o,,=0,,=(0-03)/2.
The stress tensor, expressed in terms of princi-
pal stresses, reads:

0 0 (0y-05)/2
0;= 0 0 0
(0,-05)/2 0 0

10-6: a) The Kronecker delta matrix reads:

1 0 0
= | 0 1 0
0 1

b) The tensor elements of P; are:
P 0 0
Po;= 0O P O
0O 0 P

¢) The tensor elements of o;;=7;+P; are:

P47 Tay Tis
Uij = Tyx P+ Tyy T.VZ
Tk Ty P+7,

10-7: The stress tensor is given. The direction
cosines of plane ABC, also, are given: (0.7,
0.5, 0.5).

a) The pressure is P=|0,..|=|-15/3| =5
MPa. The deviatoric stress tensor [e.g., see
solution to exercise (10-6¢)] is o;-P;; or:

45 40 35
Tij = “40 40 '50
35 50 -25

b) The components of the effective stress on
plane ABC can be calculated, according to the
Cauchy formula of equation (10-11a to c):

0,=-66 MPa, 0,=-31 MPa, and 0,=-60 MPa.

¢) The magnitude of the effective stress on the
plane follows from equation (10-6a): g.=(0,>+
0,>+0,2)"?=(-)94 MPa. In order to enable the
calculation of the normal stress, using equation
(10-6b), the principal stresses are needed first.
According to equations (10-5a to c), these are:

0,=0,/1=-66/0.7=-94.3 MPa
0,=0,/m=-31/0.5=-62 MPa
0;=0,/n=-60/0.5=-120 MPa

The normal stress follows from equation (10-
6b): oy=0,1>+0,m?’+0;n’=-92 MPa. This
result demonstrates that the plane ABC of this
study is nearly normal to ;.
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The shear stress follows from equation (10-6¢):
os=(] a.7-0n? )" =(]94%-92%|)*=19.3MPa.

10-8: The tensor of exercise 9-8 is:

0 0 100
0 0 O
-100 0 O

a) The cubic equation (10-14) for this tensor
simplifies to: o +100%0;=0. The solutions for
the principal stresses, o; (for i=1, 2, or 3), are:
0,=100 MPa, 0,=0 MPa, and o;=-100 MPa.
Obviously, the above stress tensor, after align-
ment of the coordinate axes with the principal
axes of stress, can be rewritten within the new
coordinate axes, as:

-100 0 0
0= 0 0 0
0 0 -100

b) The tensor of exercise 9-8 is referred to axes
that are oriented at 45° to the principal stress-
es.

10-9: The change of coordinate axes is gov-
erned by the tensor transformation formula [eq.
(10-16)]. The direction cosines are:

X, X, X
X," cos90° cos0° cos0°
X," cos0°  cos 90° cos0°
X;" cos0° cos0°  cos 90°

Remember that cos 0°=1 and cos 90°=0. The
tensor transformation formula gives:

‘711.=532+023+032+‘733
-

Oy =0y + 03103 +033
-

O35 =010+ 05105

*

Oyp =05+ 053+035,+05;
-

O3 =0y T 05103103
-

Oy =0y, F01;+03103

‘_ *® ‘_ - -- *
Oy =0y , O3y =03, and o3, =05 .

10-10: Given is the following deviatoric stress
tensor:

100 0 0
=1 0 0 0
0 0 -100

a) Counter-clockwise rotation of the coordinate
axes of 45° about the old X,-axis gives the
direction cosines, as follows:

X, X X3
X," cos 45° cos 90° cos 135°
X," cos90° cos 0°  cos 90°
X;" cos 45° cos 90° cos 45°

The transformation matrix is:

0.7 0 -0.7
0 1 0
0.7 0 0.7

Using these direction cosines in the tensor
transformation formula (10-16) yields:

7y =0.57,,-0.573+04+7,,+0+0.57;,+0.57;;
=0, 75 =0, 7, =0, 75'=+100 MPa, and
73, =-100 MPa. In conclusion, the new stress
tensor is:

0 0 100
‘rij'= 0 0 0
-100 0 0

b) The normal stresses have vanished from the
new stress tensor, due to the rotation of the
coordinate axes to align with the directions of
maximum shear stress.

¢) The maximum shear stress is 100 MPa.

10-11: The stresses at a point on a fault plane
are 0,,=-150 MPa, 0,,=-200 MPa, and o,,=0.
The coordinate axes are oriented as follows: Z
is vertical, X points westward, and, conse-
quently, Y points northward.
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a) The normal stress on a fault plane of §=35°
is given by equation (10-19a): ¢, =-183.7
MPa.

b) The shear stress is given by equation (10-
19b): ¢,,"=23.5 MPa.

10-12: If o, (=-80 MPa) is horizontal and o;
(=-45 MPa) is vertical, than a practical choice
of coordinate axes renders o,,=0,, 0,,=0;, and
all the shear stresses vanish from the stress
tensor. The normal and shear stresses on a
bedding surface inclined at §=30° follow from
applying equations (10-19a & b): 0y=-55.75
MPa and og=-15.16 MPa.

10-13: The overcoring stress test in a mine at
a depth of 1.5 km gives normal stresses of -62
MPa in the N-S direction, -48 MPa in the E-W
direction, and -51 MPa in the NE-SW direc-
tion. One is free to choose coordinate axes, If
the X-axis is fixed at E-W and the Z-axis at N-
S, then 0,,=-48 MPa, 0,,=-62 MPa, and o,,=-
51 MPa. The principal stresses follow from
equations (10-21a & b). The orientation of the
principal stresses follows from angle 6 in
equation (10-20).

10-14: The maximum shear stress follows from
applying equation (10-24) to the stresses given.
They are 0.5, 3, 5, and 5.5 MPa at distances
of 2, 4, 22, and 34 km to the San Andreas
Fault. Obviously, at the time these stress mea-
surements were taken, movement of the San
Andreas Fault had relieved much of the elastic
shear stress accumulated in its vicinity, due to
the relative plate movement in opposite direc-
tions at either side of the fault trace.

10-15: The coefficients of the cubic equation
(10-26) are given as follows: I;=4 MPa, L,=

-11 MPa, and I;=-30 MPa. Substitution of
these invariants in equation (10-26) yields:

3-402-110,+30=0

Cubic equations always have three possible
solutions, each solution corresponding to one
principal stress. The principal stresses, o; (for
i=1, 2, or 3), are here: 50 (0;), 20 (o,), and
-30 (o3) MPa.

10-16: a) The cubic equation (10-26), for plane
deviatoric stress simplifies to:

2+71,=0 or 7(72+1,)=0

This is so because the first and third invariants
vanish for tensors of plane deviatoric stress.

b) It is now obvious that solutions for the
principal stresses, o; (for i=1, 2, or 3), are:
7,=(-1)'"?, 7,=0, and 73=-(-1,)'".

Chapter eleven

11-1: The ellipsoid of Figure 11-1 has the
following characteristics:

Direction \Y S, S;
Length, L 2 cm 1.2ecm 0.6 cm
Stretch, S 1.66 1 0.5
Elongation, ¢  0.66 0 -0.5
Quadratic

elongation,

A (=8%) 2.75 1 0.25

(There is volume loss; no volume loss occurs
here only if S, is 2.4 cm rather than 2 cm.)

11-2: A line with a stretch, S, of 0.7 has an
elongation, e, of -0.3, and a quadratic elon-
gation, A, of 0.49.

11-3: Remember that the stretch S=1+e=
L/Ly=R/R;. The normalized change in volume
is: 6V=(V,-V)/V,=S8%1. The normalized
change in surface area is: 6A=(A;-Ay)/A;=

S1.

a) Consider a shrunken sphere with a radial
stretch of 0.5. The fractional change in volume
is -0.875, which is equivalent to 87.5% shrink-
age. The associated fractional change in surface
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area is -0.75, which is equivalent to 75%
shrinkage.

b) Consider an expanded sphere with a radial
stretch of 2. The fractional increase in volume
is 6V=2%-1=7, or 700%. The corresponding
increase in surface area, 6A, is 3 or 300%.

11-4: The derivation showing that the maxi-
mum shear strain is (e,-e;)/2 is analogous to
that derived for the maximum shear stress in
section 10-10. Another important conclusion is
that, for plane strain, the maximum shear strain
magnitude is equal to e, [because, for plane
strains, e;=-e;, so that (e,-e;)/2=e,]. If the
maximum shear strain is expressed in terms of
the engineering shear strain, 7, then y=2e,.

11-5: Parallel lines with different stretches that
are initially crossed by perpendicular marker
lines will bend those marker lines. Consequent-
ly, the deformation is heterogeneous in all such
cases.

11-6: This drawing procedure can be easily
completed on Figures 11-10b & c. The defor-
mation of Figure 11-10b is homogeneous, but
that of Figure 11-10c is heterogeneous.

11-7: The relationship between rock fabric or
foliation and finite strain is considered a com-
plex issue. Mineral grains tend to align during
deformation to form a foliation, defined by a
grain shape fabric of uniformly oriented and
elongated mineral grains. The long axis of the
mineral grains will tend to align with the direc-
tion of maximum stretch. However, mineral
grains are not passive strain markers (refer to
section 7-2), and the finite strain recorded by
deformed mineral grains may differ from the
bulk strain experienced by the rock volume as
a whole (cf. Figs. 7-3a to c¢). The foliation in
Figure 11-13 can be interpreted to trace the S,-
trajectories. The spacing of the foliation tight-
ens in the central zone of shear, which indi-
cates that the strain magnitude is larger in the

central zone. The shear zone is clearly record-
ing a component of differential simple shear
(cf. Fig. 11-11a). The steep gradient of the
shear strain can be explained simply by the
occurrence of strain softening in the central
shear zone, due to grain-size reduction and
shear heating during progressive shear (see,
also, exercises 7-5 and 7-8).

11-8: Porous rock that closes pore space upon
deformation undergoes a volume change that is
equal to the former porosity. The first invar-
iants of the strain tensor would be J,=-0.32
and J;=-0.17 for the compactional deforma-
tions of the rocks in Figures 11-14a & b.

11-9: a) The hypothetical normal stress, 7,, of
the stress tensor for the case given is: 7,,=
2Ge;;=2 x 10 GPa x 0.5=10 GPa.

b) Firstly, elastic strains with elongations of
0.5 do not occur in rocks, because the devia-
toric stresses are commonly ranging between
10 and 100 MPa. The corresponding elastic
elongations are two to three orders of magni-
tude smaller than 0.5.

c) Secondly, elastic deformation with elonga-
tions of 0.5 or a stretch of 1.5 do not occur in
rocks, because the brittle failure strength is two
to three orders of magnitude smaller than 10
GPa (see Table 6-1, p. 82).

11-10: The tensor elements of Lamé’s expres-
sion (11-16b) are:

2Gey +he,; 2Geg, 2Ge,;
Ty=| 2Gey 2Gey,+Ne, 2Ges;
2Gey, 2Ge;, 2Gez;+Aess

11-11: a) The maximum shear stress in a rock,
subjected to a stress field of 100 MPa, is: 100
MPa (cf. exercise 10-10). The associated
maximum shear strain, for a modulus of G=10
GPa is: e=7/2G=0.005.
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b) The angular shear strain, caused by the
elastic shears, is less than half a degree.

¢) Large deformations such as folding occur
principally by ductile flow under stresses that
are subcritical to that required for causing
brittle failure. (Brittle failure stresses are given
in Table 6-1.)

11-12: A characteristic geological strain-rate
follows from €;=7,/27. Characteristic tectonic
stress is on the order of 100 MPa, and crustal
viscosities range from 10% to 10** Pa s. The
corresponding strain-rates range between 5 x
10" and 5x10"7 s'. The most commonly
adopted geological strain-rate of 10" s' oc-
curs, for example, when (7, ) is (10 MPa,
5x10% Pa s) or (100 MPa, 5x10?' Pa s) or (200
MPa, 102 Pa s).

Chapter twelve

12-1: a) A deformation with principal stretches
$,=2, S,=1, and S;=0.5 is a perfect plane
strain.

b) A deformation with principal stretches
S,=4, S,=0.5, and S;=0.5 is a perfect prolate
strain.

¢) A deformation with principal stretches S, =2,
S,=2, and S;=0.25 is a perfect oblate strain.

d) No, volume change was not involved in any
of the above deformations, because the product
of the principal stretches, S,.S,.S;, remains
unity for all cases.

12-2: Draw these sections to scale, and you
will understand more of strain ellipses.

12-3: a) The deformation sequence of Figure
12-5a [Series (a) in Table 21-1] is a progres-
sive pure shear deformation, because it is an
irrotational deformation, involving perfectly
plane strains only. No volume change is in-

volved, because the product of the principal
stretches remains unity for all stages of the
illustrated deformation. The deformation se-
quence of Figure 12-5b [Series (b) in Table 21-
1] is a progressive, general oblate strain with
less than one percent volume change. The
deformation sequence of Figure 12-5c [Series
(c) in Table 21-1] is a progressive deformation
with ten percent volume change in each of the
stages 2, 3, and 4. The final deformation in-
volves 30 percent reduction in volume. Al-
though the intermediate stretch remains at unit
length throughout the deformation, this is
neither a pure shear deformation nor a progres-
sive plane strain distortion. The shape parame-
ters indicate a general oblate strain. The defor-
mation sequence of Figure 12-5d [Series (d) in
Table 21-1] is a progressive deformation,
showing 50 percent compactional volume
change in the first increment of deformation.
The first increment is a perfect oblate strain. A
shortening, subsequently superimposed in the
future S;-direction, maintains a general oblate
strain regime, but without any further volume
change, as S,.5,.S; remains consistently at 0.5.

b) Compose the deformation tracks in a Flinn-
Ramsay plot for each of the progressive defor-
mation series (a) to (d).

c¢) Also, compose the deformation tracks in a
Hsu plot for each of the progressive defor-
mation series (a) to (d).

12-4: a) The three major stretches in Figures
12-6¢ to e are: 1.33, 1.43, and 1.67.

b) The three minor stretches in Figures 12-6¢
to e are: 0.75, 0.7, and 0.6.

The stretch values obtained in (a) and (b) can
be plotted in the graph of Figure 12-7. It
follows that, for pure shear deformation with-
out volume change, S,=1/S; and S, remains
unit length throughout the deformation. For
pure shear deformation, combinations of S, and
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S;, other than those graphed in Figure 12-7,
cannot occur.

12-5: a) The ultimate orientation of the major
stretching axis, after an infinitely large simple
shear, is parallel to the direction of maximum
shear stress, which is parallel to the reference
plane in Figure 12-8a.

b) The height of the deformed unit cube re-
mains unchanged during simple shear deforma-
tion.

¢) The material lines, that retain unit stretch
throughout the deformation, are horizontal in
Figure 12-8a, and are parallel to the Y-axis or
parallel to the X-axis, or they may have any
other orientation within XY-planes.

12-6: a) An angular shear strain of unity occurs
for Yy=45°. The corresponding value of 6 is
31.72°, which is the angle between the princi-
pal stretching axis and the direction of shear
movement. The principal stretches for a unit
simple shear are as follows: S,=1.63, S,=1,
and S;=0.61.

b) The S, and S; values of (a) can be plotted in
Figure 12-9a. The 6 values can be plotted in
Figure 12-9b.

c) Figure 12-8e is indeed consistent with a unit
simple shear deformation, according to the data
in the plots of Figure 12-9a & b.

12-7: a) The values of (y,0) are (0°, 45°),
(22°, 39°), (31°, 36°), and (45°, 32°). These
values can be plotted in (y,0)-space and fitted
to a curve.

b) The correct mathematical realtionship be-
tween @ and  is: 6=[tan'(2/tan ¥)]/2.

¢) The formula 6=(90°-y)/2 [unlike the solu-
tion given in (b)] would imply that the major
stretching axis remains parallel to the diagonal

material line, that connects the corners of the
deforming square in all subsequent parallelo-
grams. This is not the case, although the mis-
take is often made by inexperienced geologists.
The major stretching axis rotates more slowly
than the material line that is the diagonal of the
deforming cube. However, these two lines con-
cerned coincide only at the onset of deforma-
tion.

12-8: In the absence of the fault reference
surface, the original orientation of the de-
formed object would remain unknown. In that
case, the finite deformation pattern may have
been produced by either of the two shears,
simple or pure, as outlined in Figures 12-13a &
b.

12-9: The deformation tensor for the pure shear
deformation of Figure 12-17a is:

2 0 0
Fp= | 0 1 0
0 0 05

The deformation tensor for the compactional
deformation of Figure 12-17b is:

y

1
F= [ 0
0

o= O

0
0
0.5

12-10: The finite elongations, outlined by the
strain ellipses in Figures 12-18a & b, are
identical. However, the orientation of the finite
strain ellipses in Figures 12-18a & b is differ-
ent, because rigid body rotation occurred after
the elongation in Figure 12-18b. If the coordi-
nate axes are allowed to rotate with the rigid
body rotation after pure elongation, then the
finite deformations of Figures 12-18a & b
become indistinguishable.

12-11: The stretches for the deformations of
Figures 12-17a & b can be calculated by substi-
tuting the tensor elements, as determined in
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exercise 12-9, in equations (12-12a & b): §,=2
and S;=0.5 in Figure 12-17a, and S,=1 and
S,=0.5 in Figure 12-17b. S,=1 for both cases.
In conclusion, the deformation of Figure 12-
17a is a perfect plane strain; Figure 12-17b
illustrates a perfect oblate strain.

12-12: The major principal stretch, S,, of the
infinitesimal strain ellipse, for each location in
the fold, can be calculated, substituting the
deformation tensor elements (F,;,F,;,F;,,F;3) in
equation 12-12a. The corresponding tensor
elements are: (0.5,0,0,2) for x,=0, (0.5,0,2,2)
for x,=2, (0.5,0,4,2) for x,=4, (0.5,0,8,2) for
Xo=8, and (0.5,0,10,2) for x,=10. The orien-
tations of the same strain ellipses can be calcu-
lated from equation (12-13).

12-13: All the values of Table 12-2-are consis-
tent with their mutual interrelationships, ac-
cording to equations (12-12a & b) and (12-13).

Chapter thirteen

13-1: a) Comparison of Figure 13-3a & b
indicates that the streamlines are everywhere
parallel to the velocity vectors of the flow. The
length of the velocity vectors scales the mag-
nitude of the local flow velocity. Streamlines
outline streamtubes, and the flux of fluid flow
across any section of a particular streamtube
remains constant. If flowlines diverge, the flux
remains the same, but the flow rate slows
down. If flowlines converge, the flux, also,
remains constant, but the flow rate speeds up.

b) The flow tube can be chosen as wide or as
narrow as required. Ten percent of the total
fluid flux occurs in the central streamtube
between the streamlines for ¥=0 and ¢=0.1.
Obviously, the streamlines are, here, normal-
ized by the total fluid flux through the top of
the flow box in Figure 13-3b. The wider
streamtube between streamlines for Y =0 and
¥ =0.5, for example, encloses 50% of the total
fluid flux in the right half of the section. The

total fluid flux through the horizontal top of the
outlined area is 2x100%, because the central
line of flow symmetry has been taken as a
reference surface (normal to the plane of draw-
ing) with y=0.

¢) The particles of an initial strain marker
move along the streamlines outlined in Figure
13-3b. Consider a small cube with initial coor-
dinates (x,, z,) for its four corners as follows:
(0, 0), (0, 0.5), (0.5, 0.5), and (0.5, 0). The
(0, 0) corner remains stationary during the
flow. The (0, 0.5) corner moves vertically up-
ward along ¢=0. The (0.5, 0.5) corner moves
along ¥=0.25 and maintains the same Z-coor-
dinate as the (0, 0.5) corner, now outlining a
rectangle, rather than a square. The (0, 0.5)
corner slides along the horizontal base of the
box, which, also, is a streamline for =0, and
this corner will reach the origin at time infinity.

d) Equipotential lines for the pure shear flow of
Figure 13-3b are illustrated in Figure 13-5.

13-2: a) The velocity components for a pure
shear flow, with a coordinate system chosen
such that y=¢,xz [m? '], are [differentiating
according to egs. (13-1a & b)]: v,=0dy/dz=
é,x and v,=-0y/0x=-€,z.

b) The streamlines for =0 coincide with the
two coordinate axes, X and Z.

¢) All of the shear strain-rates vanish from the
strain-rate tensor, using the coordinate axes
implied in y=¢,xz [m? s']. (However, refer to
exercise 10-10, and realize that the normal
strain-rates would vanish and shear strain-rates
would become equal to the principal strain-rates
if the coordinate system is rotated 45° about
the Y-axis.)

d) The numbers along the box outlined in
Figure 13-3b, are the non-dimensional lengths
of the flow box. The fractional numbers along
the streamlines are flux rates of fluid flow
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across any observation line between a point on
the normalized streamline for Y =0 and another
point on any one of the adjacent streamline(s).

13-3: The properties of flownets are summa-
rized in the first paragraph of page 217. Equi-
potential lines are surfaces, normal to the plane
of section, across which matter moves. Equi-
potential lines are, everywhere, perpendicular
to streamlines. A streamline or flowline repre-
sents surfaces, also normal to the plane of
section, across which no matter can move, as
explained in the first paragraph of page 216.
Because the streamlines in Figure 13-5 are
symmetric about the X and Z axes, the axes
themselves represent streamlines, as well. No
material moves across them, and, because the
streamlines cross at the origin, the X and Z-
axes must have y=0.

13-4: The stream function for the pure shear
flow of Figure 13-5 is: y=¢,xz [m? s']. The
equipotential function, ®, is: ®=(¢,/2)(x*-z%)
[m? s'] [cf. eq. (13-9b)]. Solutions for ®=0
occur at points that satisfy x>=z?, which is for
x=y and x=-y. This pair of orthogonal, conju-
gate lines is dashed (stippled) in Figure 13-5.

13-5: a) The normal and shear strain-rates can
be written as functions of the flow asymptote
angle, «, as follows: é,=¢&,cos (90°-a) and
¢, ,=¢€8in (90°-a).

b) The ratio é,,/é,.=tan (90°-a). The angles
«, indicated in Figure 13-8, effectively fix the
rate of the shear and normal strain-rates as
follows:

o=0° has é_/é,, =
a=30° has é,/é,=1.73
a=60° has é_/¢,.=0.58
a=90° has é,/e..=0
a=-30° has é,/é,,.=-1.73
a=-60° has é,/é_=-0.58

In conclusion, the strain-rate tensors, normal-
ized by é,,, for the flows of Figure 13-8 (and
Figs. 13-9 & 13-11) can be written as:

e e
0 0 0 for a=0°
| ® 0 1 )
[ 1 0 173 ]
0 0 0 for a=30°
173 0 1
1 0 058 |
0 0 0 for =60°
058 0 1 |
1 o o |
0 0 0 for 0x=90°
0 0 1 |
1 0 -1.73 |
0 0 0 for av=-30°
173 0 1
1 0 058 |
0 0 0 for a¢=-60°
058 0 1

13-6: a) The velocity-gradient tensor, L;, for a
pure shear flow of Yy =¢,xz, can be calculated,
using equation (13-17), and is as follows:

& 0 0
L=[0 o0 o
0 -4

b) The deformation tensor, F;, can be deter-
mined, using equations (13-20a to d) and (13-
2la & b):

expé;t) 0 0
F;= 0 0 0
0 0  exp(-é,t)

¢) The principal stretches can be calculated, if
the deformation tensor elements are known,
according to equations (12-12a & b) [see, also,

APPENDIX: Solutions to Exercises



336  WeieRMARS - Principles of Rock Mechanics

eq. (12-16)]: S;=exp(é;t) and S;=exp(-&;t). If
the major principal strain-rate, &,, is 0.315
Ma! or 10" s!, then S,=2 after t=(In2/
0.315) Ma=2.2 Ma.

d) & e) The requested graphs are similar to that
shown in Figure 12-7, because t=In S,/&,.

13-7: The velocity gradient tensor, L;, for a
simple shear flow of Y=¢& 7%, can be calculat-
ed, using euation (13-17), and is as follows:

2.,

0
0 0
0

SO o

13-8: The vorticity tensor, W, in terms of

angular velocity is:

ij?

0 -0
wij= -QZ 0 QK
Q, 2, 0

X

The vorticity and angular velocity or rotation
rate are sometimes confused in the geoscience
literature.

13-9: The strain-rate tensor, Dy, for a plane
deformation with coordinate axes, as illustrated
in Figure 13-10a, is as follows:

Cx
D;=10

ij
€xe

The vorticity tensor, Wy, is as follows:

0 0 -in
w,=| 0 0 0
&2 0 0

The velocity-gradient tensor, L, is equal to the
sum of the strain-rate and the vorticity tensors,
that is, L;=D;+W,:

éo 0 28,
L= [0 0 o0
0 0 -é,

This implies that the magnitude of ay/2=-¢,,
(or &, /2=¢,,, depending on the sign convention
followed for the vorticity).

Chapter fourteen

14-1: a) The calc-silicate of Figure 14-5 has
developed boudins, and, therefore, the calc-
silicate, at the time these boudins were formed,
was more competent than the adjacent marble.

b) Generally, the folding is due to initial layer-
parallel shortening. The tight fold, shown here,
has a component of bulk shortening normal to
the axial surface. Extension occurred parallel to
the axial surface and normal to the fold hinge.

¢) Megascopic and parasitic folds occur in the
calc-gilicate layers, where the enveloping sur-
face is parallel to the direction of bulk shorten-
ing. Obviously, boudins must have formed after
the limbs of the folds rotated into parallelism
with the direction of principal extension. The
calc-silicate resists extension more than the
marble, and the calc-silicate layers on the fold
limbs have separated into individual boudins.

14-2: The ptygmatic folds in the competent
pegmatite veins of Figure 14-8a are due to bulk
shortening normal to the axial surface of the
folds. The competent vein can adjust to ductile
compressive deformation in the host rock only
through folding in order to accommodate the
component of layer-parallel shortening.

The folded boudins in the amphibolite gneiss of
Figure 14-8b require an explanation different
from that given to explain the folds and
boudins of Figure 14-5. It is obvious that, here,
the boudins formed first. Subsequently, the
separate boudin sections and the host rock
were, together, folded into harmonic, similar
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folds. The boudin-segments became imbricated
during the folding. The dark amphibolite layers
are more competent than the gneiss.

The initial extension and subsequent shortening
of material lines and layers cannot occur in
progressive simple shear or pure shear defor-
mation. The opposite mechanism of deforma-
tion, where material lines rotate from an initial
shortening direction into an extension direction,
is more common and is discussed in detail in
sections 14-4 and 14-6. The initial shortening
and subsequent extension are graphed in Figure
14-13d for a range of initial orientations. How-
ever, the structure of Figure 14-8b can be
explained best by a change in the regional
deformation regime, rather than by a single
episode of progressive deformation with con-
stant shear directions. A change in the regional
orientation of the shortening and extension
directions could account for the final structures
of Figure 14-8b.

14-3: a) The two imaginary lines, A, in the
incremental strain ellipse for pure shear defor-
mation (Fig. 14-9) are consistently 90° apart
and at 45° to the direction of principal shorten-

ing.

b) Any material lines, that become oriented at
45° to the shortening direction, will rotate
further away from the shortening direction
during the next increment of deformation and,
consequently, sweep into the field of extension.
However, the imaginary lines, A, separating
the fields of shortening and extension of incre-
mental strain, always remain at 45° to the
shortening direction throughout the deforma-
tion.

14-4: a) All the material lines in the cubic rock
volume of Figure 14-10a will have stretched
and rotated into the direction of extension after
very large finite strain, except for those materi-
al lines that are exactly parallel to either the Z-

axis or the Y-axis (normal to the plane of
section) or any other lines oriented parallel to
the YZ-plane.

b) In the progressive pure shear deformation of
Figures 14-10a & b, any material lines that are
perfectly parallel to the X-, Y-, or Z-axis do
not rotate at all.

c¢) The fastest rotation of material lines occurs
when they are in the XZ-plane (Fig. 14-10a)
close to the Z-axis, but with «; slightly less
than 90°. In contrast, for lines with az=90°,
no rotation occurs at all.

14-5: Although the rate of stretching is not
included in Figure 14-10d, the lines which
stretch fastest are parallel to the X-axis in
Figure 14-10a & b, with «=0° at all times.
Such lines plot along the S,-axis in the graph of
Figure 14-10d.

14-6: a) The stretching history of material lines
with o, =70°, 80°, and 89° can be plotted in
Figure 14-10d, using equation (14-3b). It will
follow that these lines first shorten (S,<1)
before reversal of the stretching direction
occurs (S,>1) for larger bulk stretches of S,.

b) The requested explanation is as follows:
Material lines that have «,>45° first shorten
and then extend when they rotate into the field
of incremental extension (cf. Fig. 14-9). Even
the material lines with a;=60° will initially
shorten for a brief moment, but the effect is
negligible, as illustrated in Figure 14-10d,
because these lines soon sweep into the exten-
sion field.

14-7: a) The two imaginary lines, A, in the
incremental strain ellipse for simple shear
deformation (Fig. 14-12) are consistently 90°
apart. One of the lines is parallel to the direc-
tion of shear movement; the other line is nor-
mal to the direction of shear.
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b) One of the material lines, B, that will
become a direction of no-finite-strain, B, after
some finite strain (Figs. 14-12 & 14-19), coin-
cides with the line, A, that is parallel to the
direction of shear motion. This is so because
material lines that are parallel to the direction
of shear movement cannot rotate at all and
remain in that orientation with constant length
throughout the simple shear deformation.

14-8: The rotation history of material lines with
oy=0° plots along the +y-axis in Figure 14-13c.
Such lines maintain «=0° throughout the
simple shear deformation.

14-9: The finite strain ellipse of Figure 14-15
illustrates a major principal stretch of S;=1.5.
The material lines, A", were initially at 45° to
the shortening direction in the incremental
strain ellipse at the first instant of pure shear
deformation (Fig. 14-9). Subsequently, these
material lines, A", have rotated into the field of
extension, and, for S,=1.5, their orientation is
o,»=30°, according to the plot of Figure 14-
11. Angles o, are measured between line A"
and the X-direction of principal extension.

14-10: a) The plot of (ag.-crp) against S, can be
easily constructed, using equations (14-7) and
(14-8) or applying the solutions given in Figure
14-16.

b) The requested plot shows that the difference
between the lines B and B” is zero at the onset
of deformation. But for S, equal to 6, the
difference has grown to 80°. This means that
the volume of rock, containing material lines
that are still shortening at that moment in the
deformation, has become very small, and, thus,
most of the material lines in the rock are ex-
tending. This, for some geologists, may be
counter to intuition of what is expected to
happen to material lines in pure shear defor-
mation. Extension of material surfaces inside
rocks is much more common than their short-
ening.

14-11: The major principal stretch, S,, for the
finite simple shear deformation of Figure 14-17
is 1.5. It follows from Figure 12-9a that the
angular shear strain is slightly less than unity,
that is, y=0.84, according to equation (12-7a).
The material lines, A*, were initially parallel
and normal to the direction of shear movement
in the incremental strain ellipse at the first
instant of simple shear deformation (Fig. 14-
12). The material line, A", that was parallel to
the direction of shear, remains fixed in that
orientation throughout the deformation. Howev-
er, the material line, A", that was originally
normal to the direction of shear movement,
progressively rotates toward the direction of
shear movement. For S;=1.5 and yv=0.84, the
orientation of «,.=50°, according to the plot
of Figure 14-14 and equations (14-6).

14-12: The major principal stretching axis, S,,
starts at 45° away from the direction of shear
movement and progressively rotates towards
the shear direction as S, increases. The minor
stretch axis initially is at 135° or -45° to the
direction of shear movement, but it progres-
sively rotates toward 90° or -90°, that is,
normal to the direction of shear movement.

14-13: a) The plot of (og.-arp) against S, can be
best produced by first plotting (cg.-cz) against
v and then adding an alternative scaling of the
strain axis with S,, according to equation (12-
7a).

b) The answer here is entirely similar to that
given in exercise 14-10b for pure shear defor-
mation.

14-14: Pure shear deformation: a) to ¢) The
40% flattening in the strain ellipse of Figure
14-22 implies S;=0.6 and S;=1/S;=1.67. The
dimensional length of the short semi-axis is 2.1
cm. By definition S;=L;/L,, and this implies
that Ly=L;/S;=2.1/0.6=3.5 cm. Thus, the
radius of the undeformed unit circle is 3.5 cm.
The intersection of the unit circle and the finite
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strain ellipse determines the orientation of
lines, B, of no-finite-strain (cf. Fig. 14-15).
They occur at 30° to the extension axis and are
drawn as two conjugate lines, that are 120°
apart. The angle oy of 30°, thus obtained
graphically for S;=1.67, is compatible with the
data plotted in Figure 14-16. The lines, A, of
no infinitesimal strain are 90° apart and, also,
symmetric about the shortening direction.
Initial material lines, A®, of no infinitesimal
strain are, for S,=1.67, oriented at 20° to the
extension direction, according to equation (14-
4) and Figure 14-11. The initial material lines,
B’, of no finite strain are, for S,=1.67, orient-
ed at 78° to the direction of extension, accord-
ing to equation (14-8) and Figure 14-16.

d) The various deformation sectors of the finite
strain ellipse for the pure shear deformation of
Figure 14-22, when completed, are similar to
those indicated in Figure 14-19a. The deforma-
tion structures, that are likely to occur in each
sector, are systematically discussed in the text
of page 248.

14-15: Simple shear deformation: a) to c¢) For
the simple shear deformation of Figure 14-23,
the dimensional length of the short semi-axis is
1.5 cm. The radius of the undistorted strain
circle is Ly=L;/S;=1.5/0.6=2.5 cm. The
intersection of the undistorted unit circle and
the finite strain ellipse determines the orienta-
tion of lines, B, of no finite strain. One of the
lines, B, is horizontal; the other is at 65°
(counter-clockwise) to the direction of shear
movement. The angle of ay=65°, for y=1, is
compatible with the data plotted in Figure 14-
18. It, also, follows from equation (14-10). The
two lines-of-no-infinitesimal-strain, A, are
oriented as follows: One of the lines remains
parallel to the horizontal direction of shear
movement at all times. The complementary line
is consistently normal to the direction of shear
movement. One of the initial material lines-of-
no-infinitesimal-strain, A", is, for y=1, orient-
ed at 45° to the direction of shear movement,

according to equation (14-6) and Figure 14-14.
The complementary line, A", is parallel to the
direction of shear at all times (cf. Fig.14-19b).
One of the initial material lines-of-no-finite-
strain, B, is, also, parallel to the direction of
shear motion at all times. The complementary
line, B", is 116° away from the direction of
shear movement, according to equation (14-10)
and the plot of Figure 14-18.

d) The various deformation sectors of the finite
strain ellipse for the simple shear deformation
of Figure 14-23, when completed, are similar
to those indicated in Figure 14-19b. The defor-
mation structures, that are likely to occur in
each sector, are systematically discussed in the
text of page 248.

14-16: Incompetent single layers, hosted in
more competent matrix rock, may develop
mullions and inverse folds. Mullions form in
incompetent layers that are parallel to the
shortening direction. Inverse folds are thought
to look similar to pinch-and-swell structures
and form when extended normal to the shorten-
ing direction (cf. Fig. 14-20).

14-17: a) For a pure shear deformation without
volume change, the following conditions apply:
S,=1 and §,.S5,.S;=1 and, also, S,=1/8S;.
Equations (14-12a to ¢) then simplify to:

(tan6, /tan,.) =S,
(tan6,/tanf,.) =S, !
(tanf,/tan6,.) =S,

b) Consider a plane of final orientation (6,, 6,,
0;)= (10°,30°,10°) after a pure shear strain
with S, =2. The initial orientation (6,.,0,.,0.) =
(35°,49°,19°) has been solved, using expres-
sions obtained in exercise 14-17a.

Alternatively, the nomogram of Figure 14-26¢
can, also, be used to solve this exercise. To
find 0,, use S,/S, (or S,?) of 0.25. The vertical
line above S;/S,= 0.25 crosses a curve for
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6,=10°. That curve can be followed further
back to the vertical axis, where it crosses at
6,.=35° (for S;/S,= 1). Likewise, the angles
6,. and 6. can be recovered from the nomo-
gram of Figure 14-26¢.

¢) The deformed and undeformed orientations
of the plane can be illustrated in a fashion simi-
lar to that of Figures 14-26a & b.

14-18: Using equation (14-13), the stretches of
the lines, for pure shear in the XZ plane, are:

a) S(90°.90°.n°)=53= b) S(gu".o",mf*):l, c) S(2°,90°.90°)
=S,, and d) S(gno_mulﬁou):O.?S +0.258,%.

14-19: a) Truly wnidirectional boudins form
only under perfect plane strain in competent
layers that coincide with the S,-S, surface (Fig.
14-24b). The separation line between the indi-
vidual boudins coincides with lines of no finite
strain (Fig. 14-28b). All other material lines
suffer extension, causing them to boudinage.
Truly single folds form only under perfect
plane strain in competent layers that coincide
with the S,-S; surface (Fig. 14-24b). The fold
axis coincides with lines of no finite strain
(Fig. 14-28b). All other material lines suffer
shortening and may buckle. Chocolate-tablet
boudinage, with equally strongly developed
boudins in all directions, develops only in
perfect oblate deformation in competent layers
that coincide with the S,-S, plane, as illustrated
in Figure 14-24d. There are no material lines
of no finite strain (Fig. 14-28d). All material
lines will suffer extension. Dome-and-basin
Jfolds, with equal amplitude wavelengths in the
different lateral directions, develop only under
perfect prolate deformation in competent layers
that coincide with the S,-S; plane, as illustrated
in Figure 14-24c. There are no material lines
of no finite strain (Fig. 14-28c). All material
lines will suffer shortening.

b) The directions of the separation "channels"
of chocolate-tablet boudins in perfect oblate
strain are impossible to predict. This is so be-

cause all material lines in the S,-S, plane of the
boudinaging surface extend equally in theory
(Fig. 14-28d). However, in nature, physical
imperfections or perturbations determine which
directions develop in the separation "channels."
The problem is rather similar to that of predict-
ing the orientation of mud cracks in drying clay
or columnar joints in cooling basalt. It is to be
expected, therefore, that boudins, formed under
perfectly oblate strain in the S,-S, plane, dis-
play a hexagonal pattern, rather than the choco-
late-tablet pattern, a term coined by J.G. Ram-
say.

¢) The direction of the egg-carton grooves of
dome-and-basin folds in perfect prolate strain is
impossible to predict. This is so because all
material lines in the S,-S; plane of the folding
surface shorten equally in theory (Fig. 14-28c).
However, again, in nature, imperfections or
perturbations determine which directions devel-
op into the egg-carton grooves of dome-and-
basin folds. It is worth mentioning that many
dome-and-basin type folds in nature have not
formed during one episode of deformation, but
rather by two distinct superimposed deforma-
tions occurring at separate times.

14-20: a) Despite the difference between pure
and simple shear in 2D deformation analysis, it
appears that their respective ellipses of super-
imposed strain histories contain sectors with
strain evolutions that are rather similar (cf. Fig.
14-19a & b). The pure shear deformation
possesses a symmetry that is absent in simple
shear deformations, which possess only point
symmetry. The surface-of-no-finite-elongation
for rotational or coaxial 3D deformations will
be different from that illustrated for the irro-
tational 3D deformations in Figure 14-28a to d.
However, the similarities, that occur in the
strain histories of rotational and irrotational 2D
deformations (that is, pure and simple shear)
are, also, expected to exist for rotational and
irrotational 3D deformations.
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b) Understanding non-coaxial 3D deformations
is more complex than coaxial 3D deformations,
because the planar symmetry, existing in Fig-
ures 14-28a to d, will vanish. However, sur-
faces of no-finite-strain will possess a point
symmetry similar to that observed for strain
histories of simple shear deformation (cf. Fig.
14-19b).

Chapter fifteen

15-1: a) & b) See answers to exercise 7-2a.

¢) The measurement or gauging of strain is
possible when strain markers are available.
Such markers can be mechanically active or
passive. Active strain markers have a viscosity
different from that of the host rock. Passive
strain markers have the same viscosity as the
host rock. The material outline of passive strain
markers deforms together with the host rock in
a passive fashion. The total strain is duly
recorded by passive strain markers, which have
a perfect strain memory. However, most strain
markers are active and may record more (if
incompetent) or less (if competent) strain than
the host rock. Examples of strain markers are
cited in the text on page 267. It still remains
largely unclear how the strain memory of the
rock inclusions, commonly used for practical
strain analysis, compares to that of the bulk
deformation, experienced by their host rock.

15-2: a) A general prolate deformation is likely
to generate an L-tectonite with a strong stretch-
ing lineation in the direction of S, (cf. Fig. 15-
6b). It, also, develops a progressively better
defined foliation fabric in the S;-S, plane if the
shape factor, K, is close to unity. If K=1, the
rock becomes an L-S tectonite.

b) A general oblate deformation is likely to
generate an S-tectonite with a well-defined
foliation fabric in the S,-S; plane (cf. Fig. 15-
6a). It is very unlikely that any stretching
lineation develops, unless the shape factor nears

unity, and a weak lineation develops (cf. Fig.
15-5¢). In the latter case, it becomes an L-S
tectonite.

15-3: A shear zone, if caused by simple shear,
is still an example of perfect plane strain defor-
mation. The resulting fabric is likely to be an
L-S tectonite, with the stretching lineation
aligned with the S, direction and a foliation
fabric in the S,-S; plane of finite strain.

15-4: Figure 15-8a illustrates an L-tectonite.
Such a fabric can be formed in supracrustal
sink flows between buoyant plutons or in the
tail of a rising pluton (Fig. 15-7b). L-tectonites
are, also, generated in the tectonic scenario of
Figure 15-6b. Figure 15-8b illustrates an L-S
tectonite (weak lineation, L, strong foliation,
S). Such L-S fabrics indicate that the strain
shape factor K is slightly larger than, or close
to, unity. Such fabrics are generated by pro-
gressive pure shear deformation (cf. Fig. 15-5a
to c), but, also, by progressive simple shear
deformation that is commonly dominating the
deformation regime in shear zones below thrust
nappes. This sample was taken from a Caledon-
ian nappe complex in Scandinavia.

15-5: Refer to Figure 15-10:

a) The dimensional lengths of the semi-axes of
the strain ellipse, outlined by the deformed ooid
are: L, =1.2 mm and L;=0.7 mm. The as-
sumption of plane strain implies: S,=1/S; or
L/Ly=Ly/L; or L,.L;=L,% It follows that
Ly=0.92 mm. The assumption of plane strain
implies that S, must be unity.

b) §;,=1.2/0.92=1.3 and S;=0.7/0.92=0.76.

¢) The ellipticity, according to equation (15-4),
is: Rg=S,/S,=8,2=1.69.

d) The absolute area of the strain ellpse is:
27L,L;=5.28 mm?. The normalized area,
according to equation (15-5), is: A=S,.S;=1.28.
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15-6: Refer to Figure 15-10, and see, also,
exercise 15-5:

a) If the actual measurement of L, on the
sample of Figure 15-10 reveals that S,=2, then
the assumption of plane strain, on which the
calculations of exercise 15-5 were based, is
wrong. The true length of the intermediate axis
can be computed, using equation (15-7b): L,=
[(L,L3)"?/S,)**=1.2 mm. The normalized area
of the strain ellipse’s S,-S; section now be-
comes: A=(L,L;)'?/L,>*=0.84. This area is
much smaller than the 1.28 that earlier fol-
lowed from the plane strain assumption (exer-
cise 15-5d).

b) The three principal stretches are, after
recalculation, dropping the assumption of plane
strain, due to the new evidence against this
assumption: Firstly, Ly=1 mm (from S,=
L,/L,). Secondly, S,=1.2, S,=1.2, and S;=
0.7. The ooid is perfectly oblate.

15-7: Equation (15-6) states: L,= (L,L,L;)"".
The condition of no volume change is: S,S,S;
=1. The definitions of the stretches are: S,=
L,/Ly, S,=L,/Ly, and S; =L;/L,. Substitution of
the stretches in dimensional lengths into the
condition of no volume change gives equation
(15-6).

15-8: Exercise 12-1 gives three principal
stretches, (S;, S,, S;), as follows: (a) (1, 1,
0.5), (b) (4, 0.5, 0.5), and (c) (2, 2, 0.25). It
was established in exercise 12-1 that these
stretch values represent: (a) perfect plane
strain, (b) perfect prolate strain, and (c)perfect
oblate strain. Equation (15-9a), valid only for
plane strain, states S,=1/S;. Yes, this is com-
patible with case (a); just substitute (1, 1, 0.5).
Equation (15-9b), valid only for prolate strain,
states S;=1/S;%. Yes, this is compatible with
case (b); just substitute (4, 0.5, 0.5). Equation
(15-9c¢), valid only for oblate strain, states that
S,=1/S,;"2. Yes, this is compatible with case
(c); just substitute (2, 2, 0.25).

15-9: Applying the (R;60)-method of strain
analysis on elliptical markers:

a) The (R0)-plot for the strain ellipses in
Figure 15-16a is bell-shaped, because Rg<R;;
that is, Rg=1.34 and R;=2.7. The average
orientation of S, is at 20°, measured in a coun-
terclockwise direction away from a vertical
reference line.

b) The (R;0)-plot for the strain ellipses in
Figure 15-16b can be approximated by a tear-
drop-shape, because R¢>R;; that is, Rg=2.3
and R;=1.65. The average orientation of S, is
at 32°, measured counterclockwise from a
vertical reference line.

c) The (R;,0)-plot for the deformed ooids in
Figure 15-16¢ can, also, be approximated by a
teardrop shape, because Rg>R;; that is, Rg=
1.97 and R;=1.52.

15-10: Applying the stretched line method to
the two stretched belemnites of Figure 15-7:
The respective stretches and their angles, o and
B, with the S, direction, indicated by the
stretching lineation, can be measured on Figure
15-7. The longer belemnite has «=30° and
S,.=1.3. The shorter belemnite has §=60° and
Ss=1.2. These values can now be substituted in
equations (15-12a & b) to evaluate for S; and
S,. It follows that S;=1.35 and S;=1.1. As-
suming no volume change has occurred, S;
should be smaller than unity, so the conclusion
is that S; should be renamed to S,, as follows:
S5,=1.35 and S,=1.1. The condition of no
volume change, that is, S,S,S;=1, yields S;=
0.67. The conclusion is that the deformation is
not by plane strain, because K> 1, It is general
oblate strain, but it is still close to plane strain
and that is why the rock of Figure 15-17 is still
an L-S tectonite. The ellipticity of the finite
strain ellipse, Rg, for the S,-S; plane, is Rg=
S,/8;=1.35/0.67=2.
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15-11: Applying the Wellman method on the
outcrops of Figures 15-21a & b yields the
following ellipticities: (a) Rg=S,/S;=1.5 and
(b) Rg=L,/L;=1.25.

15-12: Applying the Breddin method to the
trilobite specimens of Figures 15-23a & b
yields the following ellipticities for the finite
strain ellipses: (a) Rg=2.08 and (b) Rg=2.15.

15-13: Strain analysis on the oolitic limestone
of Figure 15-27: (a) Fry method: Rg=1.7; and
(b) tieline method: Rg=1.79.

(¢c) The ooids that have accommodated a bulk
deformation of the rock volume by pressure
solution along the grain boundaries. Some
ooids have suffered more pressure solution than
others. The finite strain, inferred by the two
methods applied, may well be representative
for the bulk strain. As a population, the ooids
may have a good strain memory. However,
individual ooids that did not suffer from pres-
sure solution, have no strain memory at all.

15-14: The true or maximum ellipticity of an
L-tectonite, if assumed due to perfect prolate
strain, that gave an Rg=2 in a section at 45° to
L, can be calculated, using equation (15-15):
Rs=2.65.

15-15: The maximum ellipticity of a section
through the oblate ellipsoid is: R¢=L,/L;. An

oblique section has: Ry uoucen =Ly /Ly ergasn-

Combining the two equations yields:

RS =Rs REDUCEDLG INCREASED!L"'!'

This expression can be simplified by the substi-
tution of expression (15-16) for L; crpasen:

Ry =R pepucen(Ly°cOs’G + L;%sin’g)' %/, =
Rs REDUCED (RSZCQSZCI{’ + Sin2¢) ”2-

Further evaluation gives:

RS = [(st Rmucabsngb)"{(l'cos%)}”z-

It can be seen that the maximum ellipticity, R,
occurs always for $=90°, when Rg=Rg 1opicen-

15-16: a) The maximum ellipticity of a section
through the ellipsoid of plane strain (and any
other general strain ellipsoid) occurs when
Rs=L,/L;. Oblique sections have ellipticities
determined by:

Ry oprique= L4 repucen/Ls Repucen =
[(L,*cos’a+L,%sin’a)/(L,%cos*8+ L, sin?3)] /2
and R OBLIQUE —
(Rs%cos’a+sina)/ (R cos’B+sin’g).

b) Plane strain is, partly, more complex than
ideal oblate or ideal prolate strain, because the
radial symmetry of the strain ellipse, that
occurs in both prolate and oblate strain, does
not exist for plane strain (see, also, exercise
14-20). However, if the plane of observation
coincides with the S,-S; plane, then the defor-
mation analysis of plane strain is simple, be-
cause all the deformation occurs in the plane
observed. But the strain ellipse in oblique
sections may appear with misleading shapes. It
may even expose as a perfect circle, when the
section coincides with a plane of no-finite-
strain.

Chapter sixteen
16-1: Write a good essay!

16-2: Most nations face problems in finding
good repositories for radioactive waste. Com-
missions have been set up to assess the stability
of salt domes. If the country possesses exposed
granite plutons, these have, also, been studied
as possible sites for the construction of storage
cavities. Salt is easily excavated by selective
dissolution. But one disadvantage of salt is that
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it represents, after ice glaciers, the most mobile
rock mass on our planet, because its effective
viscosity is relatively low, as compared to that
of other rocks. Salt even flows under its own
weight, as is evidenced by the salt glaciers in
Iran and by the slow closure of ancient tunnels
in salt mines through crystalline creep of the
salt walls. On the other hand, cold, crystalline
granite does not flow at near surface conditions
and is basically immobile. However, one
disadvantage of granite repositories is that the
inability of crystalline creep in cold granite can
lead to the accumulation of large stresses in
granite plutons. This may lead them to fracture
and fault, which can make underground cavities
unsafe if levels of stress have not been exam-
ined prior to the cavity construction.

16-3: a) Obviously, length and strength (or
time) are scaled down in analog experiments

for practical purposes.

b) Yes, the velocity has the dimensions of
[length.time™].

16-4: Make sure you do not repeat in your
future career the errors listed here!

16-5: Write a sound research proposal.
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