Chapter 12:

Deformation and

Deformation Tensors

HE STRAIN tensor, outlined in chapter eleven, is useful for

T calculating stretches of arbitrary lines and the components of shear

and normal strain in a plane. However, the strain tensor does not

include any information on the rotation history of a deformed

volume, because it describes the strain ellipsoid shape only as determined by

the axial ratios. A related tensor, which includes both the strain and rotation

components of deformation, is the deformation tensor, F. The deformation

tensor is useful, also, because knowledge of the tensor elements, Fj, is

sufficient to derive geologically important parameters, such as the stretches

and orientation of the axes of the finite strain ellipse. The deformation tensor
is introduced in this chapter

Contents: The important distinction between coaxial and non-coaxial
deformation is explained in section 12-1. Measures for 3D strain and shape
parameters for the strain ellipsoid are outlined in section 12-2. Progressive
deformation by pure shear and simple shear are highlighted in sections 12-3
and 12-4, respectively. The components of homogeneous deformation are
distinguished in section 12-5. The deformation tensor is introduced in section
12-6. It is applied to calculate the change in length of principal stretches in
section 12-7. The decomposition of the deformation tensor into its symmetric
and skew-symmetric parts, valid only for infinitesimal deformations, is shown
in section 12-8.

Practical hint:
Some relief
from the labo-
ratory sessions
could be pro-
vided by organ-
izing a field trip
to natural out-
crops with
exemplary
deformation
patterns. A
keen observer
can find such
exemplary
features in
almost any rock
exposure,
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12-1 Coaxial and non-coaxial
deformation

The deformation history of a rock body is
determined by a continuous sequence of configu-
rations through which the rock passes from the
initial to the deformed state during progressive
deformation. The deformation can be portrayed
by either a deforming box or a deforming sphere,
both arbitrary, but popular for their simple initial
shapes. A major distinction must be made be-
tween homogeneous progressive deformations
involving distortional rotation and those that do
not. These are coaxial and non-coaxial deforma-
tions, respectively. During coaxial deformations,
the strain ellipsoid remains stationary and in-
volves no distortional rotation (Fig. 12-1a). The
axes of the ellipsoid remain parallel (for each
strain increment) at all times during the deforma-
tion. Likewise, any physical boundaries of a rock
cube, parallel to the principal stress axes, will
remain parallel to them, even after large strains.

Non-coaxial deformation involves distortional
rotation, and the rotation angle, 6, of the strain
ellipsoid, with respect to the non-rotating base of
the marker cube, is an indirect measure of distor-
tional rotation (Fig. 12-1b). A 3D deformation,
where the strain ellipsoid is rotating about one of
its principal axes of finite strain, is the most
simple rotational strain possible. Geoscience
literature has placed much emphasis on develop-
ing methods for practical strain measurement. It
is emphasized here that strain, albeit an important
component of distortion, is an incomplete mea-
sure of distortion if distortional rotation is in-
volved. Distortion may include both strain and
distortional rotation, which needs to be taken into
account for a complete description of the defor-
mation.

Coaxial deformations can be represented by the
progressive distortion of either a normalized
strain sphere into an ellipsoid or a unit cube into
a rectangular body, all without any finite rotation
of the strain axes. Figures 12-2ato d illustrate the

a) Coaxial deformation

b) Non-coaxial deformation
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Figure 12-1: a) & b) Coaxial and non-coaxial deformations.
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a) Undeformed unit sphere b) Plane strain ellipsoid
(L-S tectonite)
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Figure 12-2: a) to d) Undeformed unit sphere and three main types of ellipsoids, distin-
guished to classify finite strains in 3D deformations.
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distortion of a unit sphere inside a unit cube into
plane strain, prolate, and oblate ellipsoids. The
shape of a strain ellipsoid may vary between
prolate ("cigar," Fig. 12-2c) and oblate ("pan-
cake," Fig. 12-2d), and the corresponding rectan-
gulars vary between square prisms and square
tablets. The shape intermediate between prolate
and oblate is represented by so-called plane strain
ellipsoids, having one axis which retains unit

length (Fig. 12-2b). Consequently, the intermedi-
ate axes of such plane strain ellipsoids do not
change length during the deformation, i.e., S,=1,
Plane strain is generally considered the simplest
type of homogeneous deformation, as it allows
the analysis of strain in two dimensions. Two
classical types of plane strain, pure shear and
simple shear, are discussed in sections 12-3 and
12-4, respectively.
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Figure 12-3: Flinn plot. Each point in this plot represents a finite strain ellipsoid of a particular
shape (K) and the magnitude of strain (D). Any rotational deformation is not accounted for.
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[1Exercise 12-1: Determine the type of strain for each of the following stretch values: (a)
§,=2, §,=1, and §,=0.5; (b) §,=4, §,=0.5, and S,=0.5; and (¢) S,=2, S,=2, and S,=0.25.
(d) Is there any volume change involved in the strains of a, b, or ¢?

[CJExercise 12-2: The principal planes
of strain are mutually perpendicular
and contain the principal stretch axes
Si» S;, and S;. To understand better
the shape of 3D strain ellipsoids, draw
cross-sections for each of the three
principal planes for each of the fol-
lowing cases (using the data of exer-
cise 12-1): a) plane strain, b) prolate
strain, and ¢) oblate strain,

(5,,5,,S5) in various alternative ways. Two of the
most currently used shape factors are given here.
Derek Flinn adapted, in 1962, earlier 1935 work
by Zingg and introduced the k-value:

k=[(S,/S,)-11/[(S/S5)-1] (12-1a)
This measure was subsequently modified by,
among others, John Ramsay, to use logarithmic

strains and termed the K-value:

K=In(S,/S,)/In(S,/S;) (12-1b)

12-2 Measures for 3D
strain and shape
of ellipsoids

The shape of a finite
strain ellipsoid in 3D is deter-
mined by the relative magni-
tude of the three principal
stretches (S,,S,,S;). The
magnitude of the finite strain
is determined by the absolute
magnitude of the three princi-
pal stretches. However, it is
of practical convenience to
introduce an expression, gen-
erating a unique number for
indicating the shape of a
strain ellipsoid; likewise, a
single measure of finite strain
magnitude in 3D could some-
times be more practical than
specifying all three principal
stretches.

Many workers have sug-
gested dimensionless shape
parameters for classifying the
strain ellipsoid shapes, using

strain ellipsoid shape (.

-C‘m

Figure 12-4: Hsu plot. This is an alternative for the Flinn plot. The
shape (L) and magnitude (N) parameters of a strain ellipsoid can be
plotted as points in this diagram.
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Figure 12-5: a) to d) Four sequences of progressive deformation. Strain parameters are
given in Table 12-1. See exercise 12-3.
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strain magnitude and shape on a Hsu plot.

CExercise 12-3: Figure 12-5 shows four sequences of progressive deformation, all starting
from a cube and deforming coaxially into rectangular blocks. Table 12-1 presents the three
principal stretches for each block, including stretch ratios and their logarithms. a) Determine
for each sequence what type of deformation is involved, i.e., plane strain, apparent constric-
tion, true flattening, progressive volume loss, etc. b) Plot the shape of the ellipsoids and their
strain magnitude for each of the the four sequences on a Flinn diagram. c) Also, plot the

The K- and k-values both yield unique numbers
for unique shapes: unity for plane strain, infinity
for ideal prolate strain ellipsoids, and zero for
ideal oblate ellipsoids. Figure 12-3 shows a
modern version of the so-called Flinn plot, which
graphs In(S,/S,) versus In(S,/S,) and shows the
possible spread in ellipsoid shapes. The Flinn plot
is particularly useful to show the evolution histo-
ry of a strain ellipsoid shape during progressive
deformation. However, it does not differentiate
between coaxial and non-coaxial strain histories.

Table 12-1: Principal stretches, their ratios and natural logarithms for each

A measure for the magnitude of the 2D strain

is given by the Ramsay strain parameter, D:
D=[In*(S,/S,)+In*(S,/S,)]"? (12-2)
Contours of equal strain magnitude plot as circles

in the Flinn plot of Figure 12-3, according to the
circle equation (12-2).

Several alternatives are available to express
the shape and strain magnitude of strain ellip-
soids; one frequently
used shape factor is

of the four deformation sequences shown in Figure 12-5. See exercise 12-3. Lode’s shape parameter,

S, S, S, S,/S,  8,/8,
Series (a)
Stage 1 1.00 1.00 1.00 1.00 1.00
Stage 2 1.25 1.00 0.80 1.25 1.25
Stage 3 1.67 1.00  0.60 1.67 1.67
Stage 4  2.50 1.00 0.40 2.50 2.50
Series (b)
Stage 1 1.00 1.00 1.00  1.00 1.00
Stage 2 1.20 1.04 0.80 1.15 1.30
Stage 3 1.51 1.10 0.60 1.37 1.83
Stage 4  2.09 1.20 0.40 1.74  3.00
Series (c)
Stage 1 1.00 1.00 1.00 1.00 1.00
Stage 2 1.13 1.00 0.80 1.13 1.25
Stage 3 1.33 1.00 0.60 1.33 1.67
Stage 4 175 1.00 040 1.75 2.50
Series (d)
Stage 1 0.50 1.00 1.00 1.00 2.00
Stage 2 0.63 1.00 0.80 1.25 1.26
Stage 3 0.83 1.000 0.60 1.20 1.38
Stage 4 1.25 1.000 040 1.25 2.50

L:

La(S//S) La(S,/S;) L=[In(Sy/S)-In(S,/S,)}/

[In(S,/S;) +1n(S,/S,)] (12-3)

0 0
g?]! gg% The Lode shape factor is
0.92 0.92 zero for plane strain, -1
for ideal prolate strain,
and +1 for oblate strain
0 0 ellipsoids. An alternative
0.14 0.26 expression for the strain
0.32 0.60 magnitude is Nadai’s
0.55 1.10 strain parameter, N:
N=[[In%(S,/S,) +1n3(S,/S,) +
0 0 I%(S/SI31?  (12-4)
0.12 0.22
0.29 0.51 The Hsu plot combines
0.56 0.92 the Lode shape parameter
and the Nadai strain
parameter in an alterna-
g 0.69 tive for the Flinn plot
022 023 (Fig. 12-4). The Flinn
g:;g g;g plot and classical Hsu
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plot have both been used in the geological litera-
ture. Neither of these plots differentiates between
coaxial and non-coaxial strain histories.

12-3 Pure shear

It is common to distinguish between so-called
rotational and non-rotational 2D deformations,
whereby the strain ellipse either remains station-
ary or not. Non-rotational deformation in 2D is
known as pure shear deformation, which devel-
ops plane strains only and involves no distortional
rotation. Pure shear is simple to construct, be-
cause each of the new principal axes of the strain
ellipse remains parallel to the original axes at all
times during the deformation. Likewise, any

physical boundaries of a rock cube, with ribs
paralleling the principal strain (and stress) axes,
remain parallel to them original axes even after
large strains (Figs. 12-6a to e). The relative
lengths of any deforming rectangle will be given
by the principal stretches, S,,S,,S;, with S,
always retaining unity.

If strain is regarded as a series of superim-
posed small stretches, L;, then the resulting total
strain can be measured as a logarithmic strain, e
(also termed natural strain or true strain):

a) Pure shear ©

e=2(0L/L,) (12-50)
If 6L, is taken infinitesimally small:
e=f(dLifLo)=
In(L/Ly)=
In S (12-5b)

The change of the
stretches S, and S,
during progressive
deformation has been
graphed against the
major natural strain,

B

b) Before deformation

Reference plane

c) 25% flattening

€, in Figure 12-7,
using equation (12-
5b). The time, re-
quired for each incre-
ment of natural strain

Z

W

3

to accumulate, is
constant for constant
strain-rate deforma-
tions. This means

d) 30% flattening

e) 40% flattening

that the horizontal
axis of Figure 12-7
can alternatively be

2 read as a non-dimen-

4
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sional time scale.

1
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Figure 12-6: a) to e) Principle sketch of pure shear deformation. The deformation
is always by plane strain without rotation, this is a coaxial deformation.
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ClExercise 12-4: Examine the pure shears of Figure 12-6¢ to e. a)
Plot the three major stretches, for each stage illustrated, against
the natural strain, ¢, in Figure 12-7. b) Also, plot the three minor
stretches against the natural strain in the same diagram.
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0 0.5 1 1.5 2 25 3
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e

Figure 12-7: Change of the principal stretches in pure shear deformation as
a function of natural strain or non-dimensional time, if assuming constant
strain-rate throughout.
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12-4 Simple shear

One particular type of rotational deformation in
2D, maintaining plane strain throughout, is
known as simple shear deformation. Progressive

simple shear is easy to construct, because it is a
rotational deformation, where any of the lengths
in the top and bottom planes of an initial cube
remain constant throughout the deformation
(Figs. 12-8a to e). The major principal stress for
simple shear is consistently oriented at 45° to the

a) Simple shear

TINE=45°)
\C.
1

?-I/ /
%] Y.
Cta sttt en el . “‘T‘i-ﬁ::/.:/'
Reference plane
b) Before deformation c)y=0.4
Y=0
z Z
y=+22"
X
d)y=0.6 e)y=1
e Z
y=+31" e

Figure 12-8: a) to e) Simple shear deformation. This deformation is a special
case of non-coaxial, plain strain, where the height of the sheared cube remains

constant.
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direction of shear. The rotation angle or angular
distortion, y, of the rotating vertical boundary
provides a measure of distortional rotation,
termed the angular shear strain or engineering
shear, v:

y=tan y (12-6)
The stretches, S, and S;, change during progres-
sive simple shear and relate to the angular shear
strain, v, by:

S, =[(1/2)[Y*+2+ (y*+4y) V2|2
S;=[(1/12)[y*+2-(v* +4v)""]]"

(12-7a)
(12-7b)

The changes of both S, and S, are graphed
against vy in Figure 12-9a. The rotation angle, 6,
between the major stretch axis, S,, and the non-
rotating base of the marker square (Fig. 12-8c) is
another measure of distortional rotation:

Figure 12-9b graphs the relationship between 6
and 7.

ClExercise 12-5: a) What is the ulti-
mate orientation of S, after an infi-
nitely large simple shear? b) What is
the height of a unit cube (cf., Fig. 12-
8a) after infinitely large shear over its
basal plane? ¢) Which material lines
retain unit stretch throughout the
deformation? Label those lines in
Figure 12-8a.

[1Exercise 12-6: Consider an angular
shear strain of magnitude 1 (unity).
a) Calculate the values of ¥, S,, S;,
and 6, using equations (12-6) to (12-
8). b) Plot your values in Figures 12-

tan 20=2/y (12-8) 9a & b. ¢) Check the outcome against
the values in Figure 12-8e.
a) b)
6 60°
| =
2
5 P § 50°
/ ©
; // 2 4
Si=1+e; b= \
3 @ 30° A
£ 0,
L £ %
/ & ?ff?b
v - ]
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83 0 | | 0°
0 1 2 3 4 5 0 1 2 3 4 5
Shear vy Shear v
)

Figure 12-9: a) Change of the principal stretches in simple shear deformation, as a function of angular
shear strain. b) Change in orientation of the major stretch axis, as a function of angular shear strain.
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[JExercise 12-7: a) Plot ¥ against #, noting that at the onset of deformation
Y¥=0° and 0=45°, using three further pairs of (,0) from Figures 12-8c to e.
b) Derive the mathematical relationship between  and 6, combining equations
(12-6) and (12-8). ¢) Explain why 8 is not equal to [(90°-y)/2].

a) Rigid body translation

¢) Pure elongation
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b) Rigid body rotation
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d) Distortional rotation
(+strain)
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Figure 12-10: a) to d) Four components of homogeneous and isochoric deformation.
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12-5 Components of deformation

Homogeneous deformation can comprise five
components: volume change, rigid-body transla-
tion, rigid-body rotation, strain, and distortional
rotation. Volume change has been considered
separately in sections 11-2 and 15-6. The four
components of isochoric deformation distinguish-
ed here may occur coevally in any rock volume,
but they can be better understood if explained
individually. A rigid-body transiation spatially
translates all material particles along parallel
displacement paths (lines or curves) of equal
length and involves neither a distortion of shape
nor a change in the orientation of any marker
grid (Fig. 12-10a). A rigid-body rotation rotates
all material particles over the same angle with
respect to a rotation center, and causes no distor-
tion in shape, but does change the orientation of
all material lines (Fig. 12-10b). Pure elongation
causes changes in the shape of an undistorted
strain circle, measuring changes or stretches of
initial lengths (Fig. 12-10c¢). This component of
deformation is irrotational in the sense that there

is no rotation of the principal axes of strain
during pure elongation alone. Distortional rota-
tion is a component of simple shear deformation
(Fig. 12-10d). It is a rotational strain and differs
from a rigid-body rotation, which, if occurring
alone, is not accompanied by a strain (Fig. 12-
10b). The principal axes of strain rotate always
during a distortional rotation.

Rigid-body translation and rigid-body rotation
are commutative, in the sense that there is no
difference in the final state, whether rotation
occurs first and then the translation, or vice versa
(Fig. 12-11a & b). However, the two components
of deformation that may cause distortion, i.e.,
pure elongation and distortional rotation, cannot
be superimposed commutatively. Figure 12-12a
demonstrates a pure shear deformation, followed
by a special distortional rotation, termed simple
shear. Figure 12-12b superimposes these defor-
mations in reverse order, and the final deforma-
tion state will be different from that seen in
Figure 12-12a.

a) Rigid body translation
+ Rotation

St et (e entl e |

Initial

b) Rigid body rotation
+ Translation

Z
Initial
L —a ]
Tl A
/'--.. / i ;'0
7 ‘\/‘\ f, fﬁx/‘gfefee/
/ \\/‘-.. A 1 "-.7}!
<17 7~ f
4. 7 '\/ 7
.r]{‘\ i L -\‘“1"{
RS TN I
~/ /

s

Figure 12-11: a) & b) Rigid body rotation and translation are commutative deformation processes.
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Progressive deformation by pure shear and
simple shear can be distinguished if the field
relationships indicate that rock has deformed with
one face adjacent to relatively undeformed wall
rock. Figure 12-13a illustrates a unit volume of
rock, deformed by a simple shear of 0.83 parallel
to a perfectly lubricated stretching fault. Figure
12-13b achieves a similar finite deformation
shape of the unit volume by 66% flattening by
pure shear, assuming an appropriate initial orien-
tation for the marker. The marked volume in the
pure shear deformation (Fig. 12-13b) is indistin-
guishable from that in the simple shear deforma-
tion (Fig. 12-13a) after a 34° anti-clockwise
rotation of the stretching fault. However, the
strain ellipse in Figure 12-13b has deformed
coaxially, and its stretching axis has remained
parallel to the stretching fault at all times.

Strictly mathematically, it can be demonstrated
indeed that a pure shear and a simple shear differ
only by a rigid-body rotation and a rigid-body
translation. This similarity has led to the common
understanding among field geologists that it is
impossible to determine whether a particular
deformation pattern of plane strain has been
formed by pure shear or simple shear. The
mathematical similarities between a simple shaer
(Fig. 12-13a) and a pure shear plus rigid-body
rotation (Fig. 12-13b) is different from physical
situations where ductile rock has flowed adjacent
to physically rigid walls. In such situations, the
stretching fault is a useful reference surface to
distinguish the pure shear from a simple shear
deformation. The stretching fault, also, is a useful
reference boundary to determine the orientation
of the major axis of the principal stress that must

a) Pure elongation -

Initial state

Distortional rotation

Pure elongation

BT AR u
|
|
l
X
b) Distortional rotation ¥
‘ zZ
Initial state
PR Sy e 7
R .
s
i
s
s
!
s
/
/!
X

T

Figure 12-12: a) & b) Pure elongation and distortional rotations; shown here are the special cases of
pure shear and simple shear deformation. They are non-commutative deformation processes.
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shear.

[1Exercise 12-8: Discuss why, in the absence of the fault reference surface, it is impossible
to tell whether the final deformation, shown in Figure 12-13, was due to a pure or a simple

T
45°

-] Marked
/ \\ unit
/ volume

) [

Stretching fault —// =———=> Simple shear ————>

Similar
geometry

Pure shear +

Rigid body rotation

T

Figure 12-13: a) & b) Similar deformation patterns may arise due to (a) simple shear, and (b) pure
shear, followed by a rigid body rotation. However, the type of shear can still be told apart if a
physical boundary, here a stretching fault, of the deforming rock volume is used as a reference

surface for the distortion.

have prevailed during the deformation. The
principal deviatoric stress for a pure shear re-
mains perpendicular to the stable boundary of the
deforming rock volume, and is at 45° to that
boundary for a simple shear deformation.

12-6 Deformation tensor

The changing shape of any material body in
flow space can be expressed as a relative dis-
placement of material points. Rigid-body transla-
tion and rotation can simply be removed from the
analysis of deformation by choosing a coordinate
system such that its origin coincides with material
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Figure 12-14: a) & b) Rigid body translations (a) and rotations (b) can be distinguished in the
description of distortions if the coordinate axes are kept parallel to the material boundaries of

the undistorted rock volume.

boundaries of the undistorted rock volume (Figs.
12-14a & b). The description of deformation is
then reduced to its distortional components, i.e.,
irrotational strain and distortional rotation. The
challenging part of any description of deformation
is to quantify the amount of distortional strain
and distortional rotation experienced by a rock.

If a Cartesian description is adopted, the
position (x,y,z) of any point in the displaced state
had coordinates (x,,Y,,z,) before its displacement.
Any rigid-body translation is removed from the
description by keeping, at least, one particle of
the deforming body at the origin and translating
the coordinate axes accordingly, if necessary.
Figures 12-15a to c illustrate a pure shear, simple
shear, and composite deformation, all within the
XZ-plane. Normal (or pure shear) strain is de-
fined as d(x-+u,)/dx and (simple) shear strain as
du,/dz, so that finite deformation can be quanti-
fied if all the finite displacements u; are known.

The displacements, u;, over a particular time
interval, will vary in space as described by the
displacement gradient tensor, J (J;=0u,/dx;):

u=J X

(12-9a)
The new position, x;, of any particle, x;, can then
be described by the coordinate transformation:
with Kronecker’s 6. The matrix (J;+6,) is
termed the deformation gradient or deformation
tensor, Fj.

Excluding rigid-body translations, the displace-
ment, x;, of original particles, x;, in Eulerian
space (XYZ) can now be described by the dis-
placement equation:

X; = Fyx;

(12-10)
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a) Pure shear b) Simple shear
Z Z
+dz
+ 8z
0 0
c) Pure + simple shear d) Displacement gradient
'/————— no gradients in
. - = Y-direction (1)
du |du [ du
ax ay oz
ov. | 9v | av | | nodisplacement
ax |oy | oz in Y-direction (1)
+82 aw (| aw | ow
ax dy 0z
0 A w_,p
+ dx % =0
(") for plane deformation in XZ-plane
(2) if boundary of deforming volume is kept
parallel to X-axis
T

Figure 12-15: a) to d) Examples of the various displacement gradients, featuring in the displacement

gradient tensor, J; (featured in d).

In the case of homogeneous deformation, the
deformation tensor will be valid not only for
infinitesimally small singularities, but even for
finite volumes, provided rotation is taken into
account.

It is worth noting that y, does not change in
planar flows in the XZ plane, so that y=y, and
F,,=1 in all such cases (Figs. 12-15a to ¢). For
example, a unit simple shear has F,,=F,=F,,=

Fy;=1, and all other tensor elements equal to
zero. The corresponding particle coordinate
transformation equations are: x=x,, y=y,, and
Z=X,+12, [Fig. 12-15b, with angle tan'(du/dz]. A
rigid-body translation has no displacement gradi-
ent, i.e., du,/0x;=0, so that F;=§;. A 180° rigid-
body rotation about the Y-axis in Cartesian XYZ-
space has only three non-zero tensor elements,
F,,=F;=-1 and F,,=1 (Fig. 12-16).
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(<

Figure 12-16: Rigid body rotation about Y-axis
can be represented by a symmetric deformation
tensor with only three non-zero elements, F,,=

F33=“I and F22=I.

[0 Exercise 12-9: Give the deformation
tensors for the deformations shown in
Figures 12-17a & b.

[JExercise 12-10: Figures 12-18a & b
illustrate apparently non-commutative
superpositions of a rigid body rotation
and pure elongation. Study the se-
quence of events and explain how the
finite elongation for both cases are, in
fact, similar if coordinate axes and
initial orientations of strain markers
are chosen carefully.

©

Figure 12-17: a) & b) Examples of homogeneous deformations. See exercise 13-

9,
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Figure 12-18: a) & b) Superposition of rotation and pure elongation is not commutative in u
strict sense. However, a smart choice of strain markers and coordinate axes will reveal both
sequences result in identical finite elongations, differing in orientation only by a rigid body

rotation. See exercise 12-10.

12-7 Length and orientation of
principal stretches

Figures 12-19a and b explain how the matrix
elements, F,,, F,;, and F,;, are physically ex-
pressed as the normalized dimensions of a cubic
(unit) volume, deforming in two-dimensional or
planar flow along a stable detachment horizon or
reference plane. The angle, ($, between the
detachment surface and any surface rotated
normal to the detachment surface is (Fig. 12-
19b):

6=taﬂ'1(F33;F13) (12'1 1)

The principal stretches, S, and S,, of the
principal ellipse section of a strain ellipsoid for a
plane deformation (Fig. 12-16c) can be deter-
mined from the deformation tensor elements, F,,,
F.;, Fs,, and Fs;, as follows:

S, =[0.5(K+[K*-4(F,,Fx-F,3F3)%]'?)]'?
S3=[O,S(K-[K2~4(FI|F33-F!3F3|)3]”3)]”2

(12-12a)
(12-12b)

with K=F,’+F;*+F,>+F;>. One can see that
a rigid-body translation, which has tensor ele-
ments F, =F,=F;;=1 and F;=F,, =0, yields a
unit circle with S,=S,=1. The angle, f;, between
the finite strain ellipsoid’s major axis and the X-
axis is:
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Figure 12-19: a) to c) Deformation matrix
elements can be physically represented by
the dimensions of a parallelopiped (b),
which corresponds to a unit square in an
undeformed state (a). (c) The finite strain
ellipse stretches (S, and S;) and orientation
(6) can all be calculated from the deforma-
tion tensor, according to equations (12-12a
& b) and (12-13).

05=0.5 atan[(2F,,F3,-2F ;3Fy3)/(F "+ F}3*F3,Fy?)] (12-13)

Substitution of the F; values for a unit simple
shear yields 6,=31.7°.

[JExercise 12-11: Give the stretches
of the strain ellipsoids for the defor-
mations of Figures 12-17a & b.

OExercise 12-12: The deformation
tensor for the fold structure in Figure
12-20 is given by F,,=0.5, F,=0,
F,,=1, F,=2, and F,,=x,, with all
other components equal to zero. Cal-
culate the principal stretches and the
orientation of the finite strain ellip-
soids for infinitesimally small particles
within the folded layer at x,=0, 2, 4,
8, and 10. Make a blow-up figure of
one fold limb, and draw the strain
ellipse orientation and ellipticity to
scale for each point calculated.

Figure 12-20: a) & b) Initial state of a
layer before and after deformation, result-
ing in quasi-similar fold-shape and 50%
horizontal shortening. This deformation is
Sully described by the following transforma-
tions: x=0.5x, and z=x,/+2z, See exer-
cise 12-12.

12-8 Decomposition of deformation
tensor

The variable part of the deformation tensor, F;
(=06, +0u;/0x;), is the displacement-gradient
tensor, J. For infinitesimal deformations, the
displacement-gradient tensor can be separated into
the sum of a symmetric matrix, E;, and skew-
symmetric matrix, Q;:

J;=E;+1; (12-14)
The symmetric matrix describes the strain compo-
nent of the deformation and is, therefore, called
the strain matrix:

E;=(1/2)[(3u;/3x;)+ (3u;/8x )] =
e Yil2 v1s/2

Yul2 €xn Ynl2
Yul2 Yn/2 ey

(12-15a)

It is worth noting that the geoscience literature
sometimes confusingly uses the term strain matrix
for what is, in effect, the displacement-gradient
matrix, and vice versa. The rotation component
of any deformation can be expressed by the skew-
symmetric rotation matrix:

0;=(1/2)[(Bu;/dx))-(Bu/dx)] =

0 /2 -w/2
-wy/2 0 w/2 (12-15b)
w/2 -w,/2 0

with principal rotations, w,.

The above decomposition of the deformation
matrix cannot be applied to finite deformations,
as non-linear terms need to be taken into account
for large deformations. However, finite deforma-
tion patterns and the associated finite strains and
rotations may be determined by stepwise superim-
position of small increments of strain and rota-
tion. The finite strains, displayed in Figure 12-
21, were constructed from the particle movement
paths after integration of the rate of displacement
equations, which accounts for the non-linearity of
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Figure 12-21: Sequence of progressive deformation by plane strain corresponding to the

deformation tensor elements of Table 12-2. See exercise 12-13.

Stage O
Stage 1
Stage 2
Stage 3
Stage 4
Stage 5
Stage 6
Stage 7
Stage 8
Stage 9

Fl3

0

0.0500
0.1007
0.1527
0.2068
0.2638
0.3243
0.3893
0.4596
0.5361

F31

0

0.1000
0.2014
0.3055
0.4138
0.5277
0.6488
0.7787
0.9193
1.0724

F33

1

1.1000
1.2150
1.3466
1.4985
1.6668
1.8599
2.0783
2.3251
2.6036

S,

1

1.13
1.27
1.43
1.61
1.81
2.04
2.30
2.59
2.91

0.89
0.79
0.70
0.62
0.55
0.49
0.44
0.39
0.34

71.29
71.99
72.64
73.25
73.79
74.27
74.68
75.04
75.51

Table 12-2: Numerical values
of non-zero deformation ten-
sor elements (F; ), stretches
(S, and S;), and orientation
(6) of the finite strain ellipses

for the nine deformation

stages, illustrated in Figure
12-21. See exercise 12-13.
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large deformations. The deformation tensor
elements for each stage in the deformation are
given in Table 12-2, together with the principal
stretches, S, and S,, and the orientation, 6, of the
finite strain ellipse.

If a principal strain-rate of an irrotational
deformation is known, then the stretch, S,, at
each instant of time, t, elapsed since the onset of
the deformation is given by the following equa-
tion:

S,=exp(ét) (12-16)

For details, see exercise 13-6 in chapter 13.

[OExercise 12-13: Check some of the
values in Table 12-2 for the stretches
and orientation of the finite strain el-
lipse, using equations (12-12a & b)
and (12-13).

References

Articles

The following articles provide useful complementary
reading to the topics discussed in this chapter:

Hsu, T.C. (1966, Journal of Strain Analysis, volume 1,
pages 216 to 222). The characteristics of coaxial and non-
coaxial strain paths.

McKenzie, D.P. (1979, Geophysical Journal of the Royal
Astronomical Society, volume 58, pages 689 to 715).
Finite deformation during fluid flow.

McKenzie, D.P. and Jackson, J. (1983, Earth and
Planetary Science Letters, volume 65, pages 182 to 202).
The relationship between strain rates, crustal thickening,
paleomagnetism, finite strain, and fault movements within
a deforming zone.

Pfiffner, O.A. and Ramsay, J.G. (1982, Journal of
Geophysical Research, volume 87, pages 311 to 321).
Constraints on geological strain-rates; arguments from
finite strain states of naturally deformed rocks.

Ramberg, H. (1975, Tectonophysics, volume 28, pages 1
to 37). Particle paths, displacement and progressive strain
applicable to rocks. See, also, correction in Ramberg
(1986, Tectonophysics, volume 121, page 355).

Weijermars, R. (1988, American Journal of Physics,
volume 56, pages 534 to 540). Progressive fluid deforma-
tion in low Reynolds number flow past a falling cylinder.

Weijermars, R. (1989, Earth and Planetary Science
Letters, volume 91, pages 367 to 373). Experimental
pictures of deformation patterns in a possible model of
the Earth’s interior,

CHAPTER 12: Deformation and Deformation Tensors



