Chapter 715:
Practical
Strain Analysis

HE sTUDY of deformed rocks may benefit from measurements to

T quantify the strain recorded in them. Knowledge of their state of

strain may be useful, because it constrains the extension and

shortening directions. This may help to explain the occurrence of

various types of tectonites and deformation patterns of single competent and

single incompetent layers. The amount of volume change, if any, can

sometimes be assessed if the strain of the deformed rock can be compared with

that of undeformed rocks nearby. The principal stretches (i.e., S,. S,, and S,)

determine the shape of the strain ellipsoid and the magnitude of the strain.

This Chapter outlines methods to obtain the principal stretches from strain
measurements from arbitrary outcrop surfaces.

Contents: The major types of marker objects, used for strain determinations,
are outlined in section 15-1. The distinction of prolate, oblate, and plane
strains on the basis of tectonite fabrics is outlined in sections 15-2 and 15-3.
Section 15-4 formulates criteria for analyzing plane strain. Section 15-5
provides similar expressions for general 3D deformations. Section 15-6
considers volume changes, possibly involved in any 3D deformation. Sections
15-7 to 15-10 explain a selection of the most practical techniques available for
strain analysis: (Ry/¢)-method, stretched line-method, Wellman method,
Breddin method, Fry method, and tieline method. Finally, sections 15-11 to
15-13 outline how finite strain estimates are affected if the plane of study is
oblique to the principal stretches.

Practical hint:
The theory of
strain analysis,
practiced in this
chapter, is de-
signed for
application on
natural out-
crops of de-
formed rocks.
An outdoor
session of strain
analysis on
outerops can be
considered if
suitable locali-
ties are avail-
able nearby.
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15-1 Strain analysis

The strain ellipse is a graphical concept to
visualize the amount of strain involved in the
deformation of rocks. The strain concept is useful
only at length scales for which the deformation
can be considered uniform or homogeneous. For

tion of a folded layer from initially planar strata.
The intensity of the deformation is spatially
varying and inhomogeneous, but it is uniform if
studied at the scale outlined by the deformed
parallelopiped and the undeformed cube. A
classical example of deformation analysis on
small domains is provided by the measurements

example, Figures 15-1a & b illustrate the forma- of Ernst Cloos on deformed ooids of folded

b) Deformed state

Displacement
a) Undeformed state

%
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<

Figure 15-1: a) & b) Undeformed and folded state of rock strata. The strain and rotation components of
deformation changed the original unit cube into a parallelopiped.
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oolites in the South Mountain anticline, Mary-
land, USA (Figs. 15-2a & b).

The techniques and principles of strain analysis
of rock deformation patterns have developed from
the need to quantify the amount of distortion
recorded within deformed rocks. The measure-
ment of strain in the field is an extremely diffi-
cult, tedious, and time-consuming affair and is
possible only under special conditions. This may
explain why the number of practical strain studies
performed in the field is still limited.

If all rocks would contain ooids of spherical
initial shape, strain analysis would be relatively
simple. In the absence of such spherical objects,
a variety of other objects may be utilized as strain
markers. Objects suitable for strain measurements
can be grouped as follows: a) Initially spherical
or circular objects: cylindrical worm tubes in
orthogonal sections, reduction spots, ooids,
pisolitic tuffs, spherulites, amygdules, vesicles,
and concretion balls; b) Initially ellipsoidal or
elliptical objects: conglomerate pebbles, volcanic
bombs, lava pillows, and xenoliths; c) Initially
linear objects: belemnites, crinoids, graptolites,
large prismatic crystals, boudins, and ptygmatic
folds; d) Objects with known angular features:
fossils of bilateral symmetry such as trilobites and
brachiopods; e) Evenly distributed objects: cen-
ters of mineral grains, pebbles, and other regular-
ly spaced objects.

The result of any strain analysis is affected not
only by the orientation of the plane of study
(sections 15-11 to 15-13). Another effect, influ-
encing the strain measurement, results from the
difference in mechanical properties of the strain
marker material and the host rock. Strain marker
objects, such as the pebbles in a conglomerate,
may locally affect the strain accumulation so
much that the strains inferred deviate from the
strain experienced by the rest of the rock volume,
This possible complication must be carefully
assessed in any particular strain analysis. In this
context, the term strain memory is sometimes
used to qualify how completely or incompletely

Figure 15-2a: Example of thin section photo-
graph of deformed ooids from South Mountain
anticline, USA, studied by Ernst Cloos. Image is
2mm wide.

Figure 15-2b: Strain pattern in the South Moun-
tain anticline, Maryland, based on strain esti-
mates from deformed ooids in thin section stud-
ies.
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the strain recorded in the rock represents the total
strain undergone by that rock.

Finally, the most reliable strain analyses can be
made in the laboratory on samples, carefully
marked for their original orientation in the field.
Cutting planes of the sample can be selected to
coincide with the principal planes of strain, which
can then be studied either in thin sections or on
polished planes. It is most practical to work on
enlarged photographs of either the thin sections or
the polished surfaces.
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Figure 15-3a: Sketch and photograph of isotro-
pic fabric in undeformed granite. Sample is 10
cm across.

[JExercise 15-1: Explain what is meant
if rocks have: a) complete or good
strain memory, and b) incomplete or
poor strain memory. ¢) Describe possi-
ble examples of rocks and their interna!
strain markers, which would qualify as
either good or poor strain gauges.

HHHIBNHUMITEN

Figure 15-3b: Anisotropic fabric, comprising
compositional layering and grain shape orienta-
tion in gneiss, possibly due to shortening normal
to the foliation plane. Sample is 10 cm across.
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Figure 15-4: a) to c) Three basic types of tectonites: (a) L-tectonite (prolate strain), (b) S-
tectonite (oblate strain), and (c) L-S tectonite (plane strain).

Figure 15-5:
a) Compres-
sional  pure
shear between

two  colliding b) ! c) s
plates causing | RS

L-S tectonites. | '

b) Streamline L :

pattern inside ! [

the deformat- fJ',—— i 0 \I
ion zone. <~ V0%l

¢) Both L and | [ ] | |
§ are subvert- e==] : '),,,f
ical and nor- /

mal to the
shortening
direction.
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15-2 Tectonites

A high intensity deformation is likely to trans-
form any isotropic rock into an anisotropic rock
by the development of a grain-shape fabric,
which may include the formation of rock cleavage
and lineation, due to the preferred alignment of
platy and prismatic minerals (Figs. 15-3a & b).
Bruno Sander suggested in the 1950°s that the
grain-shape fabric of deformed rocks will tend to
align with the finite strain ellipsoid that represents
the deformation of the bulk volume. He intro-
duced the terms L-tectonite, S-tectonite, and L-S-

[C1Exercise 15-2: a) Discuss the range of
fabrics one may expect to find in rocks
subjected to a general prolate defor-
mation of 1 < K < = (see section 12-
2). b) Likewise, discuss the fabrics
expected for general oblate deformations
of K-values, ranging between zero and
one,

tectonite. L-tectonites are deformed rocks, that
possess a clear grain-shape fabric or preferred
mineral orientation,
which defines a

lineation only, and in
which any foliation is
absent (Fig. 15-4a).
S-tectonites are de-
formed rocks, pos-
sessing a penetrative
foliation or schistos-
ity, defined by the
grain-shape fabric
(Fig. 15-4b). L-S-
tectonites display
both a foliation and
lineation (Fig. 15-
4c). The application
of Sander’s assump-
tion would imply that
prolate deformations
or constriction will
produce L-tectonites,
oblate deformation or
flattening results in
S-tectonites, and L-S-
tectonites correspond
to plane strain defor-
mations. One basic
assumption, underly-
ing these conclusions,
is that the mineral

Figure 15-6a: Streamline pattern and subvertical S-tectonite for orthogonal
collision with vertical and lateral transpression. This arrangement leads to
coaxial oblate deformation, extending perpendicular to shortening direction

and relative velocity vector for the plates, V.

grains behave entirely
as passive markers.
This assumes that the
grain shape mimics
the bulk strain of the
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rock volume of which the grain is a part. This
approach is useful, but limited, because experi-
mental grain shape studies suggest that grains are
active markers and have poor strain memories;
they record only part of the bulk strain.

15-3 Tectonite formation in coaxial
deformation

The kinematics, leading to the different types
of tectonites, can be illustrated, using a simple
model of coaxial, homogeneous deformation. The
development of L-, S-, and L-S-tectonites and
their orientation in
space can be linked

principal stretches, S, , ., are directly given by the
diagonal elements of the deformation tensor. The
relative magnitude of the stretches depends on the
relative magnitude of the principal strain-rates.
Progressive deformation will always be accompa-
nied by plane strain if &, is zero. The internal
deformation may locally depart from the bulk
deformation. Folding and boudinaging may occur
in competent single layers, oriented as indicated
in the central deformation zone of Figure 15-5a.
Additionally, upright L-S-tectonites may be
expected to form in plane strain between orthog-
onally colliding plates (Fig. 15-5c¢).

to the kinematics of
the wall rock of the
deforming tectonites.
Figure 15-5a illus-
trates a hypothetical
bulk deformation by
pure shear in an
orthogonal collision
zone between two
rigid plates. The
model concentrates
on the deeper, ductile
portion of the de-
forming crust. The
displacement path of
the bulk particles will
outline a pure shear
flow, as illustrated in
the flow planes of
Figure 15-5b. The
particle movements
are governed by the
following deforma-
tion tensor:

exp(é;t) 0 0
0 exp(ét) 0

<

0 0 exp(ét)
(15-1)

Figure 15-6b: Streamline pattern and subvertical L-tectonite for orthogonal

The normalized semi-
axes of the finite
strain ellipsoid, or

extension with vertical and lateral transtension (e.g., above a spreading
ridge). This arrangement causes coaxial prolate deformation, aligned with
the relative velocity vector for the plates, V.
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Figure 15-6a shows a uniaxial collision with
stretching in both the vertical and lateral direc-
tions, leading to oblate strain in the deformation
zone. Subvertical S-tectonites are formed if lateral
extrusion between two colliding plates is uncon-
strained. The perfect oblate strain occurs if the
ratio &,/é, (or &/&,) is unity, provided the
strain-rates are extensional or positive.
Subhorizontal L-tectonites may form when a
crustal segment is unilaterally stretched between
two diverging crustal plates (Fig. 15-6b). This
situation of constrictional prolate strain arises if
the ratio &,,/¢é,, is unity, but with negative strain-
rates. Subhorizontal S-tectonites may form in
crustal sections radially expanding, such as occurs
above rising plutons, gneiss domes, and buoyant

salt (Fig. 15-7a). Subvertical L-tectonites may
form in supracrustal terranes subjected to radial
constriction, as occurs between encroaching
plutons, within the stem of rising salt stocks, or
in magma pipes (Fig. 15-7b).

[JExercise 15-3: The various types of
tectonites, here explained in terms of
coaxial 3D deformation, also, can be
formed in non-coaxial deformation.
What type of tectonite do you expect
to find in shear zones caused by sim-
ple shear?

[JExercise
15-4: Discuss
ways in
which the
tectonites,
illustrated in
Figures 15-8a
& b, may
possibly have
formed.

Figure 15-7a: Streamline pattern and subhorizontal S-tectonite in radial extension
above a ballooning pluton. This situation leads to coaxial oblate deformation.
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15-4 Determining plane strain

When strain is studied in two dimensions, it is
usually assumed that no stretch occurs in the third Rg=8,/8,=§; (15-4)

dimension. Strain in two dimensions can be
represented by a strain ellipse (Fig. 15-9a & b).
The ellipse section studied should be perpendicu-
lar to the intermediate principal strain axis of un-
changed, constant length. Study of deformation in
3D is straightforward only if the deformation is
indeed confined to plane strain. If the deforma-
tion does not involve volume change, so-called
isochoric deformation, then S,=1/8S, (cf., eq. 15-
13a). The initial radius, L,, of a spherical object,
deformed by plane strain into an ellipse section
with absolute princi-
pal lengths, L, and

The area of the principal ellipse section, A, for
true plane strain and normalized by the undistort-
ed initial circle section is:
A=S,S, (15-5)
The validity of the plane strain assumption can
be checked by establishing that "L,," determined
from equation (15-2), is equal to L,, as measured
on the sample.

L., can be deter-
mined for strains in
nature from:

Lo=(L,Ly)" (15-2)

This follows from the
definition of stretch
as the normalized,
deformed, semi-axial
lengths, i.e., S;,=
L,/L, and S;=L,/L,,
in combination with
the plane strain con-
dition S,=1/S;. The
principal stretches, S,
and S,, then follow
directly from the
absolute lengths of
the semi-axes of the
strain ellipse, without
the need of direct
knowledge of L,:

S;=(L,/Ly)"* (15-3a)
S;=(L,/L))"*(15-3b)

The associated axial

&

ratio or ellipticity,
R, is as follows:

Figure 15-7b: Streamline pattern and subvertical L-tectonite in supracrustal sink

Sflow between buoyant plutons (or within a rising salt dome), leading to coaxial

prolate deformation.

CHAPTER 15: Practical Strain Analysis



274 WelermARs - Principles of Rock Mechanics

Figure 15-8a: Gneissic tectonite outcrop, referred to in exercise 15-4. Courtesy John
Ramsay.

a) (So = S, of plane
N strain ellipsoid)

N

b) (S4=1/85 for

isochoric and plane
deformation) Figure 15-9: a) & b) Unde-
Jformed strain circle and de-
Jformed strain ellipse for plane
strain. The principal semi-axes
are normalized, using their ac-
tual dimensional lengths, ac-
——S8y=1+e; — cording to expressions (15-3a
& b).

X
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Figure 15-8b: Amphi-
bolite gneiss, referred
to in exercise 15-4.

[1Exercise 15-5: Figure 15-10 illustrates
a section through a material ellipsoid,
outlined by a deformed ooid. The sec-
tion shown contains the long and the
short axis of the material ellipsoid.
a) Assuming plane strain and no vol-
ume change, what must be the absolute
length, L,, of the intermediate axis of
the material ellipsoid (perpendicular to
the plane of view)? What is the magni-
tude of the strefch, S,? b) Determine the
value of stretches S, and S,. ¢) Deter-
mine the ellipticity, R. d) Determine
both the absolute area and normalized
area of the ellipse section.

1.2 mm

0.7 mm

©

Figure 15-10: Deformed ooid with dimensional
semi-axial lengths, as indicated. See exercise 15-
5.
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15-5 Determining isochoric non-plane
strains

Deformations involving no volume change are
termed isochoric. The initial radius, L,, of any
spherical object, isochorically deformed into
either a prolate or oblate ellipsoid of semi-axial
lengths, L,, L., and L, is:

tion follow from the absolute lengths of the semi-
axes of the observed ellipsoid sections:

|=L1”31(L3L3)”3 (15-7a)
S,=L,"*/(L,Ly)"* (15-7b)
S,=L2/AL)*"? (15-7¢)

The normalized area of the principal ellipse
section, A (normalized by the unit area of the
intial sphere section), is:

=(L,L,Ly" (15-6)
p— - /3 23
The stretches for a general isochoric 3D deforma- A=8,8;=(L,Ly)"/L, (15-8)
3.5 : : :
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Figure 15-11: Plot of S, versus S,. Distinguished are the line for volume changes without strain

(S;,=S,), and curves for plane strain (8,=

1/8;), ideal prolate strain (S,=1/S;%), and ideal

oblate strain (S,=1/S;'?). The field of general prolate strain occurs for (1/S,)<S,<(1/S; )
and that of general oblate strain occurs for (1/S;)>S,> (1/8;)"?, both without volume change.
Deformations, accompanied by volume gain and loss, occur for S,> (1/87) and S,< (1/5;").
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It follows that, if S, and S; are overestimated by
neglecting any shortening of S,, due to usage of
equations (15-3a & b) rather than (15-7a & c¢),
the normalized area, A, will appear larger than
unity. Conversely, if S, and S, are underestimated
by neglecting any extension of S,, due to usage of
equations (15-3a & b) rather than (15-7a & ¢),
the normalized area, A, will appear smaller than
unity.

CJExercise 15-6: Refer to exercise 15-
§. a) If measurement of L, would now
indicate a real stretch, S,, of 1.2,
what would be the normalized area of
the (S,,S,)-strain ellipse section?
b) What is the shape of the strain
elllipsoid, prolate or oblate?

[JExercise 15-7: Derive equation (15-
6), using the definition of the stretches
and the condition of no volume
change.

15-6 Determining volume changes

If strains are studied in 3D, the concept of the
strain ellipse is expanded into an ellipsoid of unit
volume. The introduction of the strain ellipsoid
provides a tool to discuss the possible involve-
ment of any volume change during the deforma-
tion of rocks. Consider a plane strain, which
initially assumed L, was left unchanged by the
deformation. If it later turns out that "L,," deter-
mined from equation (15-2) is larger than the
measured L,, then the sectional area of the (S,,
S;)-ellipse must have increased by shortening of
L,, during the deformation. The strain ellipsoid
will approach a prolate shape, and it, thus,
departs from the plane strain shape that was
initially assumed for practical convenience. Strain
ellipses (S,,S;-sections), involving increase or
decrease in sectional area, can be visualized by
plotting S, versus S; (Fig. 15-11). The curve for
plane strain ellipses is defined by:

S,=1/8, (15-9a)

because S,S,5,=1 and S,=1 (Fig. 12-2b). Perfect

T

Figure 15-12: a) & b) Undeformed strain circle and deformed ellipse for a general plane strain.
Equally spaced lines in the undeformed state rotate at different rates during deformation.
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isochoric, prolate strains have: and is limited by the definition S, =S,. Likewise,
true volume loss must have occurred if §,<
S,=1/8,2 (15-9b) 1/S,"2, and maximum volume decrease occurs

when S,=S,, and is limited by the definition
because S,S,S;=1 and S,=S, (Fig. 12-2c). Per- S,28;.

fect isochoric, oblate strains have:

S;=1/8,'% (15-9¢)
because S,S,S;=1 and S,=S8, (Fig. 12-2d).

It folllows from the above relationships that

true volume gain must have occurred if S, > 1/S2.

[(OExercise 15-8: Use the stretches
values of cases (a) to (¢) in exercise
12-1 to check the validity of equations
(15-9a to ¢).

Maximum volume gain may occur when S,=S,,

a) b) Pure shear

Wy = 35°

c) d) Simple shear (y=0.7)

35°

©|

Figure 15-13: a) to d) Deformation of elliptical objects by pure shear (a & b) and simple shear
(c & d). For this case the initial orientation of the elliptical object and amount and direction
of deformation are chosen such that similar strain ellipses result.
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15-7 (R;,¢)-method for elliptical objects

Figures 15-12a & b illustrate a general homo-
geneous deformation of an initially circular
object. It is important to realize that, after de-

formation, straight lines remain straight, parallel
lines remain parallel and have similar stretches,
the angles between lines are changed, and circles
are transformed into ellipses.
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Figure 15-14: a) Randomly oriented elliptical objects in undeformed volume and corresponding
(R, ¢)-plot. The straight line plotted gives the initial ellipticity of the objects, which is uniform
in this case. b) Appearance of hypothetical rock fabric after bulk finite strain, R, of 1.5 super-
posed on that of (a). The finite strain, Rs, follows from the lowest R,, as indicated in the (R, ¢)-
plot. c) Similar fabric after bulk strain, Ry, of 3. The (R,¢)-plot shows a typical tear drop
curve, which appears only if Ry> R,. The actual value of Ry follows from equation (15-10a).
The value of R, follows from equation (15-10b).
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Figure 15-15: Standard (R, ¢)-plots for finite strain (Rs) of 1.5, 2, 3, 4, 5, and 6. The family
of (R,)-curves in each plot arises if populations of different initial ellipticities (R; ) occur.
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Practical strain measurements have established
that very few rocks contain strain markers of
initial spherical shape. Even undeformed ooids
may deviate from the spherical shape so much
that they can be considered better as initially
ellipsoidal objects. Figures 15-13a to d demon-
strate that objects, originally of elliptical shape,
deform into ellipses of different orientation and
aspect ratio. The ellipticities of each of three
ellipses (initial object, R;, final object, R;, and
strain ellipse, Rg) generally are all different. The
axial ratio of the deformed ellipse, R;, may be
larger or smaller than that of the initial ellipse,
R;, depending upon the orientation of the stretch-
ing directions. The orientations of the initial
elliptical objects, the deformed elliptical objects,
and the finite strain ellipses are all likely to be
different.

Figure 15-14b illustrates a finite strain ellip-
ticity, Rg, of 1.5 and the corresponding pattern of
the (R, ¢)-plot. The peak in the (R;,¢)-plot gives
an ellipticity for R, of 3. The finite strain elliptic-
ity, R, of 1.5 follows directly from the lower R~
values, as indicated in Figure 15-14b. A larger fi-
nite strain with ellipticity, Rg, of 3, illustrated in
Figure 15-14c¢, constrains the spread in orienta-
tion (or fluctuation, F) of ¢ and results in a
typical teardrop-shaped curve. The teardrop curve
arises only if the strain ellipse has an ellipticity
larger than that of the initial elliptical objects
(Rs>R;). The values of Rg and R, then are as
follows:

Rs=(R¢ oy Ry i)
Ri=(Ry /Ry m‘m)”ﬁ

(15-10a)
(15-10b)

Both the final orientation, ¢,
and the ellipticity, R;, of de-

formed elliptical objects depend
on the angle the elliptical objects
made initially with the stretching
directions. In practical applica-
tions, the ellipticity, R;, of the
deformed objects is plotted
against ¢. The ellipticity of the
finite strain, Ry, can be estimat-
ed, according to this so-called
(R;,¢)-method. The method as-
sumes that the elliptical objects
were initially oriented randomly
(but all having their principal
plane coinciding with the plane of
section). Figure 15-14a illustrates
the undistorted ellipses and a plot
of the initial ellipticity of the
objects, R;, against their orienta-

b) Q
RO

\
B
N

tion, ¢, with respect to an arbi-
trary reference line. The (R, ¢)-

(<

plot of the undeformed rock will
be a straight line, provided the
initial ellipticity of the objects,
R;, is uniform. The ellipticity of
initial objects is likely to vary,
and this can be accounted for in
the (R;,¢)-method (see below).

Figure 15-16: a) & b) Tracings of deformed pebbles in
deformed conglomerate. The sections contain the major and
minor principal lengths, L, and L;, of the material ellipsoids
outlined by the deformed pebbles. The ellipticity is R=L,/L;.
See exercise 15-9.
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o

[l Exercise
15-9: Con-
struct
(R;6)-plots
for each of
the three
outcrop
tracings in
Figure 15-
16atoc.
Determine
the values
of R, R;,
and the
orientation
of §; for
each case.

Figure 15-16c: Thin section micrograph of deformed oolitic limestone. See

exercise 15-9. Courtesy John Ramsay.

If the initial ellipticities of the objects, R;, are
both variable and larger than Rg, then the (R;,¢)-
plot may show as a diffuse field of dots. The fi-
nite strain of the rock is then best established by
comparing the (R;,¢)-plot for your particular case
with theoretical plots, such as shown in Figure
15-15. [(R;,¢)-charts are found in Lisle, 1988.]

15-8 Stretched-line method for linear
objects

Many bedding planes may expose deformed
stretched belemnites, crinoids, crystals, or single
layers. Figure 15-17 sketches two stretched
belemnites within a plane with a clear stretching
or extension lineation. Belemnites are the rem-
nants of marine encephalopods (squids), found in
Jurassic and Cretaceous sedimentary rocks. They
are made up of crystalline calcite fibers and are
commonly more brittle than the surrounding
marls and marly limestones in which they occur.
The belemnites breakup into separate fragments

when stretched, and their initial length, L,, can
be reconstructed by summing up the lengths of
the individual fragments. The spaces between the
fragments are commonly filled with fibrous
quartz or calcite.

The extension lineation in Figure 15-17 is most
likely parallel to the direction of greatest exten-
sion or the S,-axis. The stretch of the belemnite,
S,, follows from S,=L,/L,. The principal stretch,
S, follows from the following equation [see
section 14-2 and equation (14-1)]:

S,=[Scos’d’+(1/S,)%sin’p’]'? (15-11)
for plane strain. The angle, ¢, is measured be-
tween the belemnite and the S,-direction. The
stretch, S, here is equal to S,.

If the deformation was not by plane strain, two
stretched lines are needed for the strain analysis
(because the theorem S,=S," no longer holds):
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Figure 15-17: Sketch of
stretched belemnites in L-S
tectonite. See exercise 15-10.

S.=(S*cos’a+ S,sin’x) ' (15-12a)
S5=(Scos?8+S.2sin?) "> (15-12b)

The stretches, S, and S;, are for each
of the linear objects used, and « and
§ are the respective angles with the
S,-directions outlined by the stretch-
ing lineation.

Stretching
lineation

[IExercise 15-10; Examine the
two stretched belemnites in
Figure 15-17, and establish
whether the deformation was
by plane strain or not. Estah-
lish S,, S;, and R, using the

graph of Figure 14-6¢. ©

a) Trilobite b) Brachiopod

Cephalon
Hingeline

Median line

©

Figure 15-18: a) & b) Two examples of fossil specimens with bilateral symmetry, suitable for strain
analysis by either the Wellman or Breddin method if the specimens are from deformed rocks.
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15-9 Wellman and Breddin methods
for angular objects

Undeformed fossils sometimes possess bilateral
symmetry, so that the initial angle between, at
least, two linear features is known. Figures 15-
18a & b illustrate a trilobite and a brachiopod,
each having lines perpendicular to the line of bi-
lateral symmetry. For the brachiopod, the median
line is normal to the symmetry line; for the trilo-
bite, the division between the cephalon and the
rear body is normal to the symmetry line. The
two principal techniques considered in turn below
are the Wellman method and the Breddin method.

The Wellman method is a quick graphical tech-
nique to obtain the strain ellipse from a popula-
tion of, at least, ten differently oriented fossils of
formerly bilateral symmetry. A photograph or
surface tracing of the plane, containing the de-
formed fossils, is used as a starting point. Figures
15-19a & b explain the theoretical basis of the
technique. The set of perpendicular lines of the
undeformed fossil can be translated parallel to
themselves to form triangles about a line, AB, of
arbitrary length and orientation. A multitude of
differently oriented fossils thus plotted would
trace the undeformed unit circle. Figure 15-19b
applies the same principle to the deformed lines,

a) Undeformed state

Diameter
of circle

<) b

b) Deformed state

Diameter of
ellipse

!

Figure 15-19: a) & b) Wellman technique for strain analysis draws a line, AB, of
arbitrary length and orientation. Line AB then acts as the base of triangles,
constructed by translating parallel to themselves systematic sets of lines in fossils,

either deformed (b) or undeformed (a).
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and it follows that these trace the strain ellipse.
Figures 15-20a to c illustrates many differently
oriented brachiopods and the steps involved to
obtain the strain-ellipse shape, according to the
Wellman technique.

[IExercise 15-11: Use the Wellman-
method to determine the shape and
orientation of the strain ellipse from
the deformed fossils for the two dif-
ferent localities illustrated in Figures
15-21a & b.

The Breddin method can be used to obtain the
strain ellipse from one deformed (initially bilater-
ally symmetric) fossil only, provided the direction
of maximum extension, S,, is known. The start-
ing point is an equation, which relates the two
principal stretches to the angular distortion, v,
and the angle, 6°, measured between S, and the
extended fossil line (Figs. 15-22a & b):

R¢=S,/S,=[tan(6’ + y)/tanf’]'" (15-13)
This relationship is graphed in Figure 15-22c.
This graph or equation (15-13) allows the estima-
tion of the strain ellipticity, Ry, from a deformed
fossil specimen.

)

0]
—
%
m @
=]
O

/(s
T
IS
1~

Figure 15-20: a) to c) Theoretical basis of Wellman strain-ellipse construction: (a) Random
set of deformed brachiopods photographed from outcrop. (b) Tracings of the hingelines and
median lines of the brachiopods. (c) Wellman plot for the data set seen in (b). The finite strain
ellipse is estimated by a best fit of the triangle points labelled 1 to 8.
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Figure 15-21b: Deformed states of initially bilaterally symmetric cephalons of trilobites.
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Figure 15-22a & b: Undeformed and deformed states of initially bilaterally symmetric
fossil.

[CJExercise 15-12: Use the Breddin method to establish the shape and orienta-
tion of the strain ellipse from the deformed trilobite specimens for the two
different localities illustrated in Figures 15-23a and b.
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Figure 15-22¢: Breddin curves, generated by plotting angular distortion, v, versus orientation, 6 (see
Figure 15-21b) for a range of finite strains, Ry, using equation (15-13). See exercise 15-12.
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Figure 15-23: a) & b) Examples of deformed Ordovician Angelina trilobites, orig-
inally bilaterally symmetric. The extension lineation, marked by the shadow
striations, is assumed to coincide with the S,-direction. See exercise 15-12. Courtesy

John Ramsay.
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a) .- .

Figure 15-24a & b: Undeformed and
deformed states showing the marked
centers of strain markers. The initially
statistically uniform distribution is trans-
formed into a non-uniform distribution.
This non-uniform distribution can be
utilized to infer the finite strain ellipse for
the deformed state.

b) -

15-10 Fry and tieline methods
for spaced centers

Rocks may not always contain bilat-
erally symmetric fossils nor linear or
elliptical or spherical markers. An addi-
tional method of strain analysis uses the
spacing between the centers of pebbles,
ooids, or mineral grains. The elementary
assumption is that the initial distances
between the centers of the objects used
were statistically equal in the undeformed
state (Fig. 15-24a). After the deforma-
tion, the distribution of the center-points
is no longer uniform (Fig. 15-24b) and,
thus, provides a means to infer the shape
and orientation of the strain ellipse for the
deformed rocks. The principal techniques
used are the Fry method and the tieline
method.

The Fry method of strain determination
is a graphical technique. The center-

points of the objects in the deformed rock are
first marked. A transparent overlay is marked
with a small cross in the center (Fig. 15-25a).
The cross will be the center of the Fry plot,

c)

Rt 2

e

Figure 15-25: a) to c) Hllustration of Fry method to construct the strain ellipse from
non-uniformly distributed centers of strain marker objects. The so-called Fry plot
(c) outlines the strain ellipse on a transparent overlay. On this overlay are numer-
ous dots, obtained by shifting the central cross to match with any particular strain
marker center. All surrounding centers are then marked on the overlay, before
repeating the procedure for each center point in the original set of strain markers

fa & D).
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Figures 15-26a & b: The tieline-method
takes an arbitrary reference center in the
deformed state and measures the orienta-
tion and length of tielines to the centers of
all other grains in a half circle space
around the reference center. In the unde-
Jormed state, the pairs of angles and
lengths will be uniform (if the initial fabric
is uniform), but this is not so in the de-
formed state (see Figure 15-26¢).

which collects all marked points on the overlay
and leaves a blank area around the plot center,
imaging the strain ellipse. The plot is generated
by matching the center of the overlay with one of
the marked objects and copying all other object-
centers onto the overlay. The procedure is repeat-
ed many times by shifting the center of the
overlay to match with the next object, marking
again all other object-centers on the overlay (Fig.
15-25b). A strain ellipse image emerges in the
center of the Fry plot (Fig. 15-25¢).

The tieline method or center-to-center method
was developed earlier than the Fry method, which
is simpler but less accurate. The tieline method

chooses one reference center and then plots the
distances of all other object-centers within a half
circle-space around it (Fig. 15-26a & b). The
180-degrees of the arbitrary half circle-space are
subdivided into two halves of +90° and -90°.
The measurements are plotted in a graph of the
direction angles against the distances to other
object-centers in those directions (Fig. 15-26¢). A
line of best fit reveals a low and a high in the
mean distance for particular directions. The high
marks the direction and length of the L-direction.
The low in the curve of mean distances gives the
orientation and length of the L,-direction. The
ellipticity is equal to Rg=L,/L,.

40

30

Figure 15-26¢: Plot of tieline measurements graphing the orientations, o, of tielines versus their

absolute length, d. See text.
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Figure 15-27: Thin section micrograph of oolitic limestone deformed by pressure solution. See exercise
15-13. Courtesy John Ramsay.

a) L

Figure 15-28: a) to d) Prolate strain ellipsoid and scaled sections of the principal planes.
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complete?

[1Exercise 15-13: The oolitic limestone of Figure 15-27 is deformed by pressure solution
of matter in distinct seams. The (R,,¢)-method of strain analysis does not work, because
the margins of the ooids are partly removed by the solution transfer. a) Use the Fry-
method to obtain the shape and orientation of the strain ellipse. b) Determine the strain
again, uvsing the tieline-method. ¢) Do you think the strain-memory of the ooids is

15-11 Oblique sections of prolate
strains

One complication, associated with strain deter-
minations of rocks in natural outcrops, is that the
surface of exposure does not necessarily coincide
with any of the principal planes of strain. It is,
therefore, worthwhile to assess how the various
types of strain ellipsoids appear in arbitrary cross-
sections. Consider a rock volume, comprising
deformed ooids that were initially perfect spheres.
Exclude any volume change. Three cases of strain
are considered below in turn (prolate, oblate, and
plane strain).

Figures 15-28a to d illustrate the prolate ooid
and the three characteristic sections
coinciding with the principal planes.

The ellipticity of the principal ellipse of prolate
strain is Rg=S,/S,=L,/L,.

The plane of view in natural outcrops may not
always follow the principal planes of strain. Any
arbitrary section, oblique through the center of
the prolate ooid, would contain L,, because the
prolate shape is an ellipsoid of revolution about
the L,-axis. The length of the long axis of the
ellipse in the arbitrary section, L,, depends upon
the angle, ¢, between L, gzpucep and the plane of
section (Fig. 15-29a):

L, repucen = (L °c0s’p+Ly%sin’g)'*  (15-14)
The ellipticity of the ellipse will be R wgpucen=
L; repucen/Ls and is, in arbitrary sections, always

The measurement of the two principal
stretches in the principal planes of
strain is straightforward. The long
axis of the ooid is L, and the short
axis is L,; for isochoric prolate
strains S, =(L,/L,)** and S,=(L,/L,)"?
[using L,=L, in egs. (15-7a & ¢)].

Figure 15-29: a) Orientation
of oblique section inside pro-
late strain ellipsoid. b) Plan
view of the oblique section.
Equation (15-14) quantifies

L, pepvcens and equation (15-
15) allows calculation of the
true strain ellipticity, R, if
angle ¢ (indicated in the strain
ellipsoid) is known.

b)

N

[-1 reduced

Ls
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equal to or smaller than the true ellipticity (Fig.
15-29b). More specifically, for prolate strains,
arbitrary sections may show ellipticities, varying
between L,/L, and unity. Sections off-center, but
at angle ¢ to L,, will show ellipticities equal to
that of a section through the center for the same
¢. For, although the sectional area of the ooid cut
will be smaller, the long and short axis of the
ellipses are reduced proportionally, without
affecting R. Using the facts, that L, gepucen=
R repucenXls and Rg=L,/L; yields:

Rs=[(R% repucen-sin’¢)/cos’¢]" (15-15)
Equation (15-15) allows recovery of the true
strain ellipticity, Rg, from strain measurements in
oblique sections, provided ¢ is known. It follows
that the maximum ellipticity, Rg, occurs always
for ¢=0°, when R=R; pepucen-

15-12 Oblique sections of oblate strains

Figures 15-30a to d illustrate a perfect oblate
ooid and the three typical sections coinciding with
the principal planes. The measurement of the two
principal stretches in the principal planes is
straightforward; oblate strains without volume
change have S,;=(L,/L,)"”® and S,=(L,/L,)**
[using L,=L, in eqgs. (15-7a & c)]. The ellipticity
of the principal ellipse of oblate strain is Rg=
S/S;=L,/L,.

Any arbitrary section oblique through the
center of the oblate ooid would certainly contain
L,, because the oblate shape is an ellipsoid of
revolution about the L; axis. The length of the
short axis of the ellipse in the arbitrary section,
L. \nereasen, depends upon the angle, ¢, between
L, and the plane of section (Fig. 15-31a):

principal plane of the strain ellipsoid.

[JExercise 15-14: Strain analysis on an outcrop of deformed pebbles has yielded an ellipticity
Ry=2. Careful study of the outcrop indicates the pebbles define a perfect L-tectonite. The
surface in which the ellipticity was measured is at 45° with respect to the maximum extension
direction, indicated by the long axis of the pebbles. Calculate the true ellipticity of the

L4

c) d)

Figure 15-30: a) to d) Oblate strain ellipsoid and scaled sections of the principal planes of strain.
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a) b)
L
= by / 1
La increased —
Ls K
L3 increased
o
Figure 15-31: a) Orientation of oblique section inside oblate strain ellipsoid. b) Plan
view of the oblique section. Equation (15-16) quantifies L; jepeisen- Se€ exercise 15-15.
a) b) c) d)
L1
/u L
L
Ls
L2
o

Figure 15-32: a) to d) Plane strain ellipsoid and scaled sections of the principal planes of strain.
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L increasen = (L cos’d +Lysin’g)'?  (15-16)
The ellipticity of the ellipse will be Rg pepucen
=L,/L; \ncreasep and is, in arbitrary sections, al-
ways equal to or smaller than the ellipticity in the
L,-L, plane (Fig. 15-31b). More specifically, for
oblate strains, arbitrary sections may show ellipti-
cities, varying between L,/L, and unity.

[JExercise 15-15: Derive an expres-
sion similar to equation (15-15) but
that allows solving Ry for oblique
sections through oblate strain ellip-
soids.

15-13 Oblique sections of general
strains

Figures 15-32a to d illustrate an ooid of plane
strain, intermediate in shape between the oblate
and prolate ellipsoids of revolution. The plane
strain ellipsoid itself is not a body of revolution -
all three principal axes have different lengths.
The stretches in the principal sections follow di-
rectly from S,=(L,/L,)"* and S;=(L./L))"* [see
eqs. (15-3a & b)]. In fact, everything which
follows here is valid not only for a plain strain
ellipsoid, but, also, for oblique sections of any
general ellipsoid. The ellipticity of the principal
ellipse of general strain is Rg=S,/S,=L,/L, [using
eqs. (15-7a &o)].

b)

—

1 reduced

LS increased

s

Figure 15-33: a) Orientation of oblique section inside plane strain ellipsoid. b) Plan view of
the oblique section. Equation (15-17a & b) quantifies L, gepycrp GNd Ly pyepeasen» Tespectively.

See exercise 15-16.
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Any arbitrary section, oblique through the
center of an ooid of plane strain shape, would
comprise the following axial lengths (Fig. 15-
33a):

L, reovcen = (L, cos’a+Lsin’e)'?  (15-17a)
L, increasen = (L,%cos’B+L;%sin’8)?  (15-17b)

Consequently, the ellipticity of the ellipse will be
Rs repucep = Ly repucen/Ls increasep @nd s, in arbi-
trary sections, always equal to or smaller than the
ellipticity in the L,-L; sections (Fig. 15-33b).
More specifically, for plane strain, arbitrary
sections may show ellipticities, varying between
L,/L; and unity, which occurs for =0° and o
such that L, pepucen=L.

In conclusion, arbitrary sections through the
center of deformed ooids show elliptical shapes
with ellipticities ranging between unity and the
maximum values reached in sections containing
the major and minor stretching axes. It is useful
to compare the strain ellipses, seen on differently
oriented surfaces in the same outcrop, to establish
which section is closest to that of the L,-L, sec-
tion. If there is any angle between the stretching
lineation and the plane of strain analysis, equa-
tions (15-14) to (15-17) may be used to obtain the
corrected lengths of the principal directions of the
strain ellipse from the reduced ellipticity, mea-
sured in oblique sections.

[ClExercise 15-16: a) Derive an expres-
sion to obtain Rg from oblique sec-
tions through the general strain ellip-
soid of Figure 15-33a. b) Argue why,
contrary to the common assumption
in structural geology, plane strain is
partly more complex to deal with than
either ideal oblate or ideal prolate
strains.

15-14 Strain analysis in 3D

The practical analysis of 3D strains is possible
making use of the methods for the analysis of 2D
strains, outlined in sections 15-7 to 15-10. The
strain ellipticities, thus established, may need
correction if obtained from marker objects on
rock surfaces that are oriented oblique to the
principal axes of strain. The angular relationship
between such rock surfaces and the principal axes
of the bulk strain ellipsoid can be assessed quali-
tatively using the tectonite concept outlined in
sections 15-2 and 15-3. Additional methods to
check whether the deformation was by perfect
plane strain are outlined in sections 15-4 and 15-
5. Once the general shape and orientation of the
principal strain axes have been established, the
angles « and 8 between the principal axes and the
plane of study must be measured (Fig. 15-33a).
Subsequently, the strain estimates made on planar
rock slabs oblique to the principal directions of
the strain ellipsoid can be corrected, using the
expressions given in sections 15-11 to 15-13 (and
in the solution of exercise 15-16a).
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