Chapter 2:

Physical Quantities

and Continua

OR A skillful application of mechanical theories to rock

F deformation, it is important to become familiar with, and be

at ease with, both the units and magnitude of physical

quantities used. In rock mechanics, we have to deal with

physical quantities of extreme magnitude. For example, the viscosity of

upper mantle rock is 10% Pascal second (Pa s), its elastic shear modulus

is 10" Pascal (Pa), and the characteristic strain-rate is 10" per second

(s), of either stretch or angular shear strain (both expressed in dimen-

sionless units). The accuracy in estimation of such extreme powers of ten

is difficult, and a good approximation of the order of magnitude of these

quantities is a remarkable achievement in itself. This chapter guides the

reader into the realm of the physical quantities on which our understand-

ing of rock deformation is based. These quantities can be used successful-

ly in mechanical analyses only after adopting a so-called continuum
assumption.

Contents: Fundamental quantities and their physical units are outlined in
sections 2-1 and 2-2. Standardized SI-units and practical metric number
names are introduced in sections 2-3 and 2-4. The role of geological time
in deformation processes is briefly emphasized in section 2-5. The
important distinction between scalar, vector, and tensor quantities is
explained in section 2-6. Finally, the objective and limitations of the
continuum assumption are outlined in sections 2-7 and 2-8.

Practical hint: Pro-
fessional societies
are becoming more
and more involved
in keeping their
membership in-
formed about the
conversion to, and
use of, SI metric
units. In the present
work, the 1982
recommendations
and guidelines of the
Society of Petroleum
Engineers on the use
of SI metric units
are followed. Con-
sult a copy of their
publication (see
reference section).
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2-1 Fundamental quantities

Physical quantities require measures to express
the variation in their magnitude. Once a measure
has been defined, essentially arbitrarily, a techni-
cal instrument can be designed to determine the
magnitude or number of units as a measure of a
particular quantity. There are, in fact, only a
small number of independent or fundamental
quantities, so many physical quantities are ex-
pressed in composite units. Length, time, mass,
and temperature all are examples of fundamental
quantities. Their dimensional formulae can be
denoted by capital letters raised to the appropriate
powers, conventionally enclosed in square brack-
ets. Table 2-1 lists the dimensional formulae for
a number of fundamental and derived physical
quantities.

Alternatively, the mass-length-time system of
quantities /MLT] can be replaced by the com-
pletely equivalent force-length-time system [FLT],
also included in Table 2-1. It follows, upon
deeper reflection, that fundamental quantities are

Table 2-1: Fundamental and derived physical quantities,

their SI units and dimensional formulae.

fundamental only by definition and no intrinsic
fundamental property is involved. Fundamental
quantities are chosen to be consistent with a
series of techniques of measurement. Two other
sets of "fundamental" quantities, sometimes used
in engineering, are the pressure-length-time
system /[PLT], and the density-length-time system
[DLT]. For problems involving heat transfer,
absolute temperature is usually taken as a funda-
mental quantity, as, for example, in the mass-
length-time-temperature system [MLTY/. Other
fundamental or base quantities are used to mea-
sure electrical current, luminous intensity, and
amount of atomic substance.

[JExercise 2-1: Explain why the sys-
tems of quantities [MLT], [FLT],
[PLT], and [DLT] are all physically
equivalent.

2-2 Physical units

The actual definition of units used for

A. Fundamental

physical quantities is based on arbitrary
criteria. Man introduced weights and
measures for trade and commerce, taxa-

BN A it Symibol Dimension tion, land administration, and, finally, for
N kilogram kg M] scientific i.nvestigations. Initially, simple
Length dister i L] natural objects were used to define mea-
Time second a [T] sures. For example, the weight of gem-
Temperature  Kelvin K 6] stones is still expressed in carats, derived
El. current Ampere A 1] from the carod seed, one unit of which
Luminosity candela cd [ weights about 0.2 grams (Fig. 2-1). The
Amount of gram itself is a measure of mass, defined
substance mole mol [n] some two centuries ago by the French
_ Academy of Sciences, and is equivalent to
B. Derived _ ‘ _ the mass of one cubic centimeter of water
e gl FPOESNN at its temperature of maximum density.
g 2
g?;sc:ure g:;::lm Ea(?fglg_s, 2.2) %ETT{! ) During the past. few centurif:s, a multi-
Density kg m?® kg m? IML?] tude. of length units has been introduced,
Velocity —m s’ g [LT] serving one purpose or another. Length,

like many other quantities, was initially
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scaled so that it could be estimated without
resorting to special instruments hence, the estab-
lished unit of one foot, based on a human length
scale. The now universally accepted unit of meter
(named by the French after the Greek term
"metron" for "measure") was originally related to
the size of the Earth. One quadrant of the Earth’s
circumference was defined as exactly 107 meters
or 10* kilometers. There are variations in the
radius of the Earth, and the length of the meter as
a precision term has been stabilized by a recent
redefinition, including the wavelength of an
atomic spectral line. The meter is the length equal
to 1,650,763.73 wavelengths in vacuum of the
radiation corresponding to the transition between
the levels 2p,, and 5ds of the Krypton-86 atom,
according to the Eleventh General Conference on
Weights and Measures of 1960.

Time is another quantity with a fascinating
history and obviously is of paramount importance
to geology. Aristotle defined it as a quantity
referring to motion from the point of view of
earlier or later. Indeed, time is a unique quantity
because it cannot be measured instantaneously. It
must measure changes of motion. We believe so
strongly in this concept that a person will be
acquitted from suspicion in a crime if it can be
proven that the person was in another location B
at the time of the crime in location A. This
assumes that it is impossible to move from A to
B within zero time (which is possibly detested by
Einstein’s relativity theory).

Astronomy played a major role in defining
time units, and the measurement of time is, there-
fore, partly connected to the rotation of the
Earth. Periods of light and darkness were divided
into poorly defined temporal hours in ancient
times. Even today’s calendars, in many cultures -
including the western Gregorian almanac, are
based on the number of days required by the
Earth to complete one revolution around the Sun.

Figure 2-1: The weight of diamonds is expressed
in carats, one unit of which weights about 0.2
grams.

Pope Gregory XIII endorsed, in 1582, a seasonal
calendar, based on tables that included calcula-
tions by Copernicus, although the Church strong-
ly opposed Copernican cosmology. The division
of a day and night into 24-hours stems from the
fourteenth century when the first mechanical
clocks were invented. The precise standardization
of time measurements dates from the foundation,
by navigational need, of the Royal Observatory at
Greenwich in 1675. This, also, prompted division
of the hour into sixty minutes and the minute into
sixty seconds. The second has been adopted as
the standard unit of time by the International
System of Units (SI units). The Thirteenth Gener-
al Conference on Weights and Measures adopted
the following definition in 1967: The second is
the duration of 9,192,631,770 periods of radia-
tion, corresponding to the transition between the
two hyperfine levels of the ground state of the
Cesium-133 atom.

[JExercise 2-2: Discuss whether it would be scientifically sound to propose the introduction
of any new physical quantity if no apparatus exists to measure units of the appropriate scale.
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[CJExercise 2-3: Some physical quanti-
ties are dimensionless; they are initially
constituted of measurable units but are
expressed in terms of either a fractional
change or percentage. Explain why
strain is an example of a dimensionless
quantity.

2-3 SI metric units

One of the earliest metric systems was created
by Gabriel Mouton, vicar of St. Paul at Lyons, in
1670. However, metric units became of recog-
nized importance when, in 1790, the French
Academy of Sciences was requested by the central
government (National Assembly) to establish a
uniform system of weights and measures. The
system designed was made compulsory in France
in 1840, followed by legal recognition of the
system in the United States of America through
an act of Congress in 1866. The subsequent
implementation of the system has been slow. In
1875, seventeen countries signed a treaty on the
use of metric units; by 1900, some 35 countries
had accepted these units. However, not until 1971
was it recommended by the U.S. Secretary of
Commerce that the metric system should be
introduced nationally through a coordinated
program. As of October 1995, Britain has been

Table 2-2: Some additional, derived quantities and their

ordered by European Union officials to adopt the
metric system for all packaged foods, switching
to kilograms from the British imperial system of
pounds and ounces.

The term "SI" originates from renewed at-
tempts by the French to introduce a universal
system of metric units according to "Le Systeme
International d’Unités," at conferences in 1960,
1964, 1968 and 1971. Worldwide academic and
industrial groups have incorporated and are
progressively following the recommended Inter-
national System of Units. The SI system is not
identical to, but is closely related to, schemes of
earlier attempts to standardization, such as cgs
(centimeters, grams, seconds), mks (meters,
kilograms, seconds), or mksA (meters, kilo-
grams, seconds, Amperes), all of which are
systems of metric units. Spelling and rules of
punctuation of SI units are identical in all lan-
guages to aid the global communication of quanti-
tative measurements. The seven fundamental SI
quantities, together with the standard units,
correspond to fundamental units used in Table 2-
1. Some additional, derived quantities are listed
in Table 2-2.

The standardization and associated conversion
of units is a slow process, and many alternative
units are still in use. Although the established
length measure for scientific communications is
the meter, the petroleum industry is reluctant to
rescale their vast databases. Many of their
older drilling records are measured in feet,
which - multiplied by the size of concession

areas in acres - gives rise to reservoir-volume
estimates in terms of rather awkward acrefeet.
Many other deviations from SI metric units
are still encountered in the literature and the
appropriate conversion to SI units can be
made using Table 2-3.

ST units.
Quantity ST-unit Symbol Equivalent
Frequency Hertz Hz s!
Radiation Bequerel  Bq s
Amount of el.  Coulomb C As!
Energy Joule J N m
Power Watt W N m s’
Magnetic flux ~ Weber Wb Nm A"
Voltage Volt \% NmA's
El. resistance ~ Ohm 0 N m A?g!
El. capacitance Farad F N'm' A?s?
El. conductivity Siemens 8 N'm' A%s

[1Exercise 2-4: Give the equiva-
lent volume in SI units for one
acre-foot.
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Table 2-3: Conversion factors for non-metric
units to metric units.

To convert To Multiply by
Inch m 0.0254
Foot m 0.3048
Yard m 0.9144
Mile m 1609.3
Acre m? 4046.9
Hectare m? 10,000
Pound kg 0.4536
Dyne N 103

Dyncm? Pa 0.1
Pound in? Pa 6895

Bar MPa 0.1
Atm MPa 0.1013
Poise Pas 0.1
Gallon (US) L 3.7854
Gallon (UK) L 4.5461
Barrel L 158.98
Erg J 107
Calorie J 4,187

Horsepower W 745.70

2-4 Metric number names

Powers of the ground number ren feature
frequently in the SI metric system, and prefixes
are recommended for use if either large or small
numbers recur. For example, the time scale in
geology is in millions of years, so the use of the
mega-annae or Ma (10° years) is a permitted
practice. (Annae is plural for year in Latin.)
Table 2-4 lists the prefixes used to distinguish
orders of magnitude in metric units. It should be
carefully noted that capital (upper case) Latin,
lower case Latin, and lower case Greek letters are
employed as prefix symbols. For example, the
kilometer or km is 1,000 meters; the micrometer
or pm is 10° m. The symbols for SI metric
prefixes are included in Table 2-4. The radius of
the Universe is over 10* meters, but it may,
also, be measured in parsecs, an astronomical
measure (Fig. 2-2). The largest terrestrial defor-
mation structures are principally confined to the
approximately 1,000-kilometer-wide fold belts,

which puts an upper limit on the size of deforma-
tion features. These belts comprise large recum-
bent fold nappes, covering hundreds of square
kilometers. The other end of the scale bar is
constrained by the size of the individual grains of
which rocks are composed.

(1Exercise 2-5: Only metric systems
benefit from the practical fact that
their units break down into multiples of
ten. For example, 1 km=10° m=10°
em=10° mm=10" pm. Now consider
the old English length unit which puts
12 inches (or "thumbs") into a foot, 3
feet into 1 yard, and 5,280 feet into the
mile. a) Calculate how many yards are
there in a mile. b) Do you prefer non-
metric or metric units?

Table 2-4: Metric number names for multiples of
ten.

Magnitude Sl-prefix  Symbol
10'® atto a
101 femto f
102 pico p
107 nano n
106 micro I
107 milli m
10 centi c
107 deci d
10 deka da
10? hecto h
10° kilo k
10° mega M
10° giga G
10" tera T
10" peta P
10" exa E
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1025 —
meters _|
_I— 1 megaparsec
1020 —
meters _|
s 1 parsec
-~ 1 light year
101 5 ]
meters _|
—= 1 astronomical unit
1018 —_
meters _|
105 —
meters | "
¥ 1 nautical mile
- 1 mile
_| *1 kilometer
"L 1 fathom
1 meter, 10° —_—f1 rd
™1 foot
— 1 inch
=1 1 centimeter
- 1 millimeter
™ 1 point
105 —
meters L 4 micron,
- 1 micrometer
=t 1 nanometer
1019 —— 1 &ngstrém
meters
—— 1 picometer
107 —— 1 fermi
meters
@

Figure 2-2: Logarithmic length scale of metric
units (left) and corresponding practical units
(right).

2-5 Geological time scale

The Big Bang theory places the formation of
the known Universe some ten to fifteen billion
years back in time. Earth was subsequently
formed by gravitational accretion of a proto-

planetary cloud about 4.6 billion years ago. The
surfaces of our Moon and neighboring planets
were battered by showers of meteorites some four
billion years ago. The resulting impact craters
observed on Mars, which has the same diameter
as the Earth, suggest that the crust of our planet
must have solidified before four billion years ago.
Obviously, for geological processes, time is one
of the most important quantities, and the recently
developed knowledge of its immense span (Table
2-5) helps geoscientists in understanding better
the slow formation of rock deformation patterns.

Because four billion years is such a long time
as compared to the human life span, it is not easy
for us to develop a good grasp of the geological
time scale. It may help to improve your under-
standing by thinking of the following examples.
The emergence of the shield volcano of Mauna
Loa, Hawaii, and the strato-volcano of Etna,
Sicily, each took about one million years. Early
homonids appeared only one million years earlier,
Many different phases of mountain building have
been recognized to have occurred throughout
geological time. The most recent Neogene and
Alpine fold belts are due to the collision of active
continental margins on tectonic plates, previously
created by the breakup of Pangea. This breakup
started about two hundred million years ago, but
Pangea had been a stable supercontinent in the
preceeding two hundred million years. The
formation of mountain ranges at collisional plate
boundaries occurs at time-averaged uplift rates in
the order of one hundred meters per million
years. We cannot observe such uplift rates by
direct means, but they are accompanied by the
formation of large deformation patterns in the
interior of such mountain ranges. The world’s
highest mountain chain, the Himalayas, started to
form after the closure of the Tethys ocean, due to
the subsequent slow ploughing of the Indian sub-
continent into mainland Asia during the past forty
million years. In conclusion, studies of natural
deformation patterns indicate that they commonly
take millions of years to form.
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Table 2-5: Simplified geological time scale showing the absolute age of
CJExercise 2-6: divisions between the major periods and epochs. Up to ten digits notation
a) Obtain a is used to highlight the enormity of the time span covered.

rough measure

of tectonic Eon/Era  Period/yrs Epoch/yrs

strain-rate by

dividing plate Phanerozoic

velocity by the Cenozoic  Quaternary Holocene

total width of 10,000

an orogen. Pleistocene
1,600,000

b) Next, calcu-

Iite'the M. Tertiary Pliocene
i 5,300,000
mum strain that Miocene
may have accu-
mulated in 23,700,000
crustal rocks O[igoce,ne
over the four 36,600,000
billion years of Eocene
its solid-state 57,800,000
history. Paleocene
66,400,000
Mesozoic  Cretaceous
144,000,000
Jurassic
208,000,000
Triassic
245,000,000
Paleozoic  Permian
286,000,000

Carboniferous (Eur)
(360,000,000)
Pennsylvanian (US)
320,000,000
Mississippian (US)
360,000,000
Devonian
408,000,000
Silurian
438,000,000
Ordovician
505,000,000
Cambrian
570,000,000

Precambrian

Proterozoic
2,500,000,000

Archean
3,400,000,000
4,600,000,000

Major events

Extinction of large mammals
Ice ages

Emergence of homonids

Increasing specialization of
mammals

Spread of primitive mammals
Extinction of dinosaurs
Spread of flowering plants

First birds

First mammals

First dinosaurs

Extinction of many invertebrates

First reptiles

First forests
First amphibians

First air-breathing animals
First land-plants

First vertebrates (fishes)
Spread of marine invertebrates

First organisms (blue-green algae)
Formation of Earth

CHAPTER 2: Physical Quantities and Continuum Assumption



30 WEIJERMARS - Principles of Rock Mechanics

2-6 Mathematical properties of
quantities

One of the most tedious aspects of physical
quantities is their mathematical dimension. Quan-
tities must be carefully distinguished as either
scalar, vector, or tensor quantities. Their mathe-
matical dimension greatly affects the way in
which one may apply and manipulate such quanti-
ties. Scalar units are zero-order tensor quantities,
represented by a 1x1 matrix, i.e., a single num-
ber. Vector quantities are first-order tensors,
which can be represented in any arbitrary coordi-
nate system as a 1x3 matrix. The common tensor
quantity is a second-order tensor, which typically
uses a 3x3 matrix notation.

For example, scalar quantities, such as temper-
ature and pressure are simple to deal with be-
cause their values are valid for at least one partic-
ular location. Such quantities are not direction-
dependent at that point. Scalar quantities, there-
fore, may be summed and subtracted in a
straightforward fashion. However, in manipula-
tions involving vector quantities, such as velocity
and force, it is important to take into account not
only their (1) spatial position, but, also, their (2)
direction of operation. The summation of forces
and velocities, therefore, requires vector addition.

Still more involved are quantities with tensor
properties, such as stress and strain. These
quantities are of paramount importance in geolog-
ical applications of continuum mechanics, and
their tensor formulations are outlined in Part 2 of
this book. What makes tensor quantities some-
times awkward to deal with is that they can be
manipulated only if three circumstances are fixed
and specified: (1) the spatial location, (2) the
direction of the operating quantity, and (3) the
orientation of the material plane(s) on which the
quantity is operating.

2-7 Continuum assumption

Measurements of any material properties would
be rendered useless if made on volumes where
these properties are either unrepresentative or
intrinsically unstable. For example, the density of
a porous sandstone may turn out, surprisingly, to
be zero if measured within one of its pores at a
length scale smaller than the pore size. It would,
therefore, be meaningless, after having spent so
much effort in establishing acceptible measures of
physical quantities, if no constraints were placed
on the nature of the materials to which such
quantities may be applied. For this purpose, a
fundamental principle of continuum mechanics is
the continuum assumption. It assumes that the
properties studied in a point of the continuum
material are valid as a point average, irrespective
of the detailed physical structure of the medium
itself. In practice, this means that the property
has been established at the macroscopic level,
studying a representative, elementary volume (Fig
2-3).

For example, continuum mechanics of rocks is
concerned with the macroscopic deformation in
which the smallest characteristic length is much
larger than the size of the grains. This approach
allows modeling of the rock deformation by a
mathematical idealization, commonly in the shape
of some functional relationships among the consti-
tutive variables. Creep laws of rock flow include
the assumption that the various types of statistical
averages of certain crystal motions give rise to
the global flow (see chapter eight). The estab-
lished flow laws suggest that the rocks internally
flow as an isotropic viscous medium and thus
allow geophysical modeling of the internal geom-
etry of the rock deformation by continuum me-
chanics. The microscopic process of crystal
plasticity is important for understanding and
explaining why the flow can occur in the first

ClExercise 2-7: Group each of the following quantities in one of three categories of the appro-
priate mathematical dimension (scalars, vectors or tensors): velocity, stress, temperature,
strain, time, strain rate, acceleration, force, length and vorticity.
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place (see chapter seven), but
it is essentially ignored in the

continuum assumption. A

ClExercise 2-8:
Explain why
spatial changes
in the compo-
sition and tex-
ture of a rock
unit (Fig. 2-4)
may either com-

Physical quantity

Domain of

microscopic _p.l-q— macroscopic
effects

Domain of

| effects

plicate or jeop-
ardize the con-

|
1
|
I
I
! Inhomogeneous
: medium
I
I
| Range for
| representative, Homogeneous
I elementary | medium
< volume—>
I I
! |
| ] -
Length scale

Eﬂ

tinuum assump-
tion.

2-8 Limitations of continuum
assumption

In order to be able to describe the rheological
behavior of rocks, it is preferable to apply the
description to volumes which remain texturally
and compositionally unchanged during the defor-
mation. Time-dependent rheology, accounting for
compositional and textural changes, is rather
complex, and our present knowledge of rock flow
allows only a very simplistic approach. This
implies that current constitutive equations cannot

Figure 2-3: The continuum assumption considers macroscopic, physical
properties at the scale of representative elementary volumes.

account for compositional changes, textural
changes, or time-dependent volume changes. The
limitations of this simplistic continuum model are
severe for the creeping flow of rock, where time
scales involved are much larger than those of
instantaneous elastic distortion or brittle faulting.
The stress field in rupturing rock is continuously
modified by the growth of the new internal
separation boundary, which, also, complicates the
continuum approach once failure has occurred. If
the length of the cracks and joints is smaller than
the volume of the rock under study, the continu-
um assumption may still apply to the whole

=S
Biotite
§ -

c)

Figure 2-4: a) to d) Telescoping views of rock specimen at various length scales. See exercise 2-8.
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volume. However, if the length of discontinuities
is equal to or larger than the dimensions of the
volume studied, these discontinuities must be dis-
tinguished as internal boundaries, separating
discrete elements of the continuum.
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CJExercise 2-9: Discuss a possible con-
tinuum approach for an unconsolidated
sedimentary rock, compacting during
deformation.
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