Chapter 4:
Stress

difficult to comprehend than force. This may partly be attributable

to the tensor nature of stress. Stress is a tensor quantity, specify-

ing the magnitude and direction of the tensional, compressional,
and shear forces per unit area in a point of a particular material plane. The
tensor notation employs double suffixes to distinguish the various types of
stresses and their orientation with respect to a particular coordinate system
(0 0. etc.). However, for an initial understanding of stress, it is not
necessary to introduce the stress tensor directly. This section considers only
the so-called principal stresses, which are denoted by single suffixes. The
mathematical concept of the stress tensor is not introduced until chapter ten.

S TRESS IS a quantity perceived by many students to be more

Contents: The stress ellipsoid is introduced in section 4-1. The fundamental
difference between the deviatoric and total stress and their interrelationships

is explained in section 4-2. That simple vector calculus is not valid for stress quantities is emphasized in
section 4-3. The relationship between principal stresses and normal and shear stress components can be
derived, taking into account the area for the different stress orientations, as shown in section 4-4.
Consequently, the force vector and the major principal stress are usually not parallel, as demonstrated
in section 4-5. The concept of stress trajectories and their application to geological intrusions is outlined
in section 4-6. Finally, some practical field methods for in-situ stress measurements are summarized in

section 4-7.

Practical hint:
Invaluable com-
prehension of
stress quantities
may be estab-
lished by per-
forming in-situ
stress measure-
ments, either
indoors or out-
doors.
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4-1 Stress ellipsoid & sign conventions

In three dimensions, stress can be graphically
and mathematically represented by a stress ellip-
soid, using three principal stresses (Fig. 4-1a).
These stresses are mutually perpendicular, and
the length of the respective axes is proportional to
their relative magnitude. The stress ellipsoid
comprises three mutually perpendicular ellipse
sections, each containing two of the three princi-
pal stress axes (Fig. 4-1b to d). The ellipsoid
representation requires that both the orientation
and magnitude of the principal stresses are
known. These requirements may be impractical
for some natural situations, where the stress
parameters may not be available. Nonetheless,
principal stresses can be considered as the master
stresses, with a particular orientation in space,
which completely determine the state of stress in
a point, independent of any coordinate system.
The equation for the stress ellipsoid, with the
coordinate axes (X,Y,Z) taken parallel to the
principal stresses, o,, 0,, and o;, is:

(0/0,)*+(0,/0,)*+(0,/0,)*=1 (4-1)

with ellipsoid tracer coordinates (o,,0,,0,). The
principal stresses are a/ways mutually perpendicu-
lar, so that there are two principal stresses in two
dimensions and three principal stresses in three

dimensions (Fig. 4-1). The suffixes are conven-
tionally chosen, such that stress magnitudes are
ranked according to |o,|> |o,| > |as|. The
absolute stress magnitudes are deliberately taken
here for the suffix ranking, because of some con-
tradictory sign conventions.

In this book, rock mechanics and continuum
mechanics are combined. However, these disci-
plines follow different sign conventions. The
convention in physics and engineering is to take
compressional stresses negative and tensional
stresses positive. Conversely, in geology and rock
mechanics the literature commonly uses a sign
convention which defines compressional stresses
as positive. The latter convention may easily lead
to computational inconsistencies in finite strain
calculations from dynamic equations including
stresses for the forward modeling of rock defor-
mation. The mechanical engineering sign conven-
tion is adopted here, unless stated otherwise.

CExercise 4-1: The 2D section of the
stress ellipsoid in the XZ-plane reduces
equation (4-1) to that of a stress ellipse:
(0,/0)*+ (0,/0;)*=1. Sketch, to scale, the
pressure circle and total stress ellipse in
a point with P=-100 MPa, ¢,=-150
MPa, and ¢,=-50 MPa.

a) Stress ellipsoid

b) Stress in
x-y plane

c) Stress in d) Stress in
X-z plane y-z plane
X
z
01

'Esu

Figure 4-1: a) The stress ellipsoid. Sections b) to d) are the stress ellipses, representing the

state of stress in the principal planes.
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4-2 Total and deviatoric stress or in two dimensions:
Stress is perceived as such a complex quantity P=0,.,=(1/2)(0,+0,) (4-2b)

by many students, not only because of its direc-
tion-dependent properties, but, also, because there
are two types of principal stresses: total stresses
and deviatoric stresses. Throughout this book, to-
tal stresses are denoted by ¢ and deviatoric
stresses by 7. Normal and shear stresses will be
distinguished by either single subscripts, e.g., oy
and o, respectively, or double subscripts when
using tensor notation, e.g., o,, and o, (see chap-
ter ten).

The total stress includes both a pressure and
deviatoric stress. The deviatoric stress is free
from any pressure contribution and causes distor-
tion of shape, whereas pressure may cause only
potential volume change. In other words, the
pressure is the difference between the deviatoric
and total stresses. Any constitutive equation, gov-
erning either elastic deformation or ductile creep,
involves the deviatoric stress, because the pres-
sure component in the total stress is not contribut-
ing to any distortion without volume change.

Pressure and stress are related as follows: The
pressure induced by a total stress in any point is
equal to the mean of the total principal stresses in
that point:

P=0,.,=(1/3)(0,+0,+0;) (4-2a)

Pressure is sometimes considered as a reactive
force acting opposite to compression, in which
case pressure is positive and the use of absolute
values of P in egs. (4-2a & b) may be preferred.

Principal deviatoric stresses, 7,,;, resulting
when any of the principal total stresses differ
from P, can be directly calculated from:

T123=025P (4-3)

The difference between 7, ¢, and P may be
clarified, considering their respective role in a
small party balloon inflated with air (Fig. 4-2a).
The balloon’s elastic shell deforms if subjected to
a total external stress, o,. The pressure inside the
elastic shell will increase by a particular amount,
P,, due to the application of o,. However, the
balloon’s deformation is the result of the devia-
toric component of the total stress, i.e., 7,=a,-P,.
The total stress balances the sum of the deviatoric
stress and the induced pressure (P,). The direc-
tion of the stress arrows may indicate compres-
sion or tension. The principal axes of the devia-
toric and total stresses coincide at all times, but
Figure 4-2b emphasizes that all arrows of the
total principal stresses point in the same direction
(here compressional), whereas those of the devia-

a) Inflated balloon

b) Inflated and loaded balloon

71 =01-Pg]

" Deviatoric
stresses

T

Figure 4-2: a) Principle sketch of the pressure inside a stress-free balloon. b) Total stress and
deviatoric stress both exist when an external surface force is applied.
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Figure 4-3a: Photoelastic fringes of polarized
light, transmitted through aggregate of plexiglass
grains. The fringes are contours of equal devia-
toric shear stress magnitude.

toric stress point in mutually opposite directions
(7, is compressional; 7, is tensional). The devia-
toric stress arrows accurately indicate the direc-
tion of material displacement, if any, associated
with the distortion of shape.

Figure 4-3b: Crushed clast of quartz in polymict
sandstone aggregate. Courtesy Hakan Sjostrom.

If there is no deviatoric stress, the total stress
is sometimes called neutral or isotropic, implying
the absence of any real stress (or tensor quantity),
and only a pressure (scalar quantity) occurs. It
should be noted, again (cf. section 3-5), that
some schools avoid to term the mean lithostatic
stress a pressure. They follow the assumption that
any time a rock is buried, it is subjected to a
stress regardless of whether or not the principal
stresses are equal. In this assumption, the mean
stress may be taken equal to the pore pressure.

Gradients of deviatoric stress can be visualized
in materials like plexiglass, which are photo-
elastic. Figure 4-3a shows an aggregate of plexi-
glass pellets, a good analog for porous and
granular sedimentary rocks at shallow depths, and
visualizes the deviatoric stress distribution inside
the vertically loaded grains. Shear stresses can
exist only if there is deviatoric stress, and vice
versa. The isochromatic fringe patterns of polar-
ized light outline surfaces, where the magnitude
of the maximum shear stress, 7s, for individual
material points is equally large:

Ts max = (1/2)(7,-75) = constant (4-4)

In Figure 4-3a, the deviatoric stresses are largest
in the center of the grains, as can be inferred by
comparison with the scaled trajectories of the
normally loaded sample of Figure 6-5 (see chap-
ter six).

The deviatoric stress inside the grains of Figure
4-3a occurs partly because there is no fluid in the
pore space between the grains. If a pore fluid
were present, and if the fluid pressure were
sufficiently large, the deviatoric stress in the
grains may vanish altogether. On the other hand,
grains will be crushed (Fig. 4-3b) if the devia-
toric stress becomes larger than the threshold
stress for brittle failure. Such failure occurs only
at relatively shallow crustal depths above the
brittle-ductile transition (see later, section 8-10).
At deeper crustal levels, the pore space closes by
crystalline creep and grain boundaries deform by
ductile flow rather than through brittle failure (for
details, see chapter six to eight).
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OExercise 4-2: The compressive total princi-
pal stresses at various crustal depths are:

D at 0 km, ¢,=-50 MPa, 0,=0 MPa, o;=
+50 MPa; II) at 4 km, 0,=-150 MPa, o,=
-100 MPa, and o;=-50 MPa; III) at 6 km,
g,=-200 MPa, ¢,=-150 MPa, and ¢,=-100
MPa; IV) at 7 km, ¢,=-225 MPa, 0,=-175
MPa, and 0,=-125 MPa. a) Calculate the
pressure at each depth, using the state of
total stress, and compare it with that calcu-
lated from the Ilithostatic load, taking
p=2,700 kg m™. b) Calculate the magnitude
of the deviatoric stresses. ¢) Draw to scale
three sections of the principal planes (see Fig.
4-4) of both the deviatoric and total stress
ellipsoids. Indicate the direction of the stress
arrows. Include a scaled circular section to
represent the pressure. d) What is the direc-
tion of ¢,? How can you explain the origin of
the large deviatoric stresses?

Three principal planes of stress

4-3 Normal and shear stress

Figure 4-4: Sketch of the three, mutually perpen-
dicular, principal planes of stress. See exercise
4-2.

The magnitude of
the three principal
deviatoric stresses,
)23, and pressure,
P, can be easily
computed from three
known principal
stresses using ex-
pressions (4-2a) and
(4-3). However,
computation of the
magnitude of the
normal and shear
components of either
the total or devia-
toric stresses, on an
arbitrary plane

inside a stressed _

continuum, is not so
straightforward as
that for normal and
shear forces [c.f. eq.

Plane on which o, works has
effective surface area: Acosg

xf Normal to Q

Plane of surface
area: A

Plane on which o3 works has—
effective surface area: Asinf —

i

(3-3a & b)]. This is

because the normal
stress, oy, on any

Figure 4-5: Stress components, acting on arbitrary plane, Q, the normal of which
is at angle & to the major principal stress, o, Mohr’s equations resolve the
normal and shear stress on the plane.
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arbitrary inclined plane involves a change in
surface area, A, on which the normal force is
working, which needs to be taken into account in
the calculation of the normal stress. The defini-
tion of stress as a force per unit area transforms
it into a tensor quantity, due to which the resul-
tant stress can no longer be obtained by simple
vector addition. The magnitude of o, is equal to
F,./A. The normal stress, oy, and the shear
stress, o, on the plane considered can be calcu-
lated from the Mohr equations (named so after
the German engineer Otto Mohr who introduced
the equations near the turn of the last century)

(Fig. 4-5):
on=[(o,+05)/2]+[(0,-05)/2] cos 2¢ (4-5a)

which follows from Fy=F,cosé+F.sinfé and,
thus, oyA=(0,Acosé)cosé + (o;Asiné)siné;

05=[(0,-05)/2] sin 2¢ (4-5b)

which follows from Fs=F siné-Ficosé and thus
osA=(0,Acosé)siné-(o,Asiné)cosé. For £=45°,
equation (4-5b) is the same as equation (4-4).

The angle, £, indicated in Figure 4-5, is mea-
sured, within the plane of the two principal str-
esses, between the major principal stress and nor-

mal to the plane for which the normal and shear
stresses are calculated. The Mohr equations are,
also, valid for deviatoric, rather than the total
stresses used here.

[JExercise 4-3: Compare the set of equa-
tions (4-5a & b) and (3-3a & b), and ex-
plain the difference. How do the Mohr
solutions differ from vector caleulus
solutions?

CJExercise 4-4: Consider the syn-sedi-
mentary slumping and liquefaction of
sedimentary layers shortly after deposi-
tion which may cause so-called syn-sedi-
mentary deformation of beds (Fig. 4-6).
The physics of slumping is easy to un-
derstand, acknowledging the importance
of pore pressure. Consider a sedimenta-
ry slope of loosely packed grains with
ample pore space internally and a thick
cover of aquiclude mud. a) Discuss why
the slope will likely collapse when the
ground water table rises. b) What is
liquefaction, and how does it explain
syn-sedimentary slumping?

Figure 4-6: Slump-folds due to liquefaction of sediments shortly after deposition. Tortonian marl
formation, Tabernas basin, southeast Spain.
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Figure 4-7: Principle sketch of potential slide mass resting at slope o
with pure pressure, P, at the basal layer. See exercise 4-5.

[1Exercise 4-5: Consider the gravity sliding of rock slabs. King
Hubbert and William Rubey published, in 1959, an important
study on the effect of fluid pressure in pores of rock at the base of
potential slide masses (Geological Society of America Bulletin,
volume 70, pages 115 to 166). It is simple to repeat their exercise.
Consider a slab of rock with arbitrary length, resting on a slope
as indicated in Figure 4-7, The pore pressure inside the basal layer
is P. The coefficient of internal friction is p=0.85. a) First take
P=0. Consider the normal and shear stress at the base of the rock
slab, and using eqs. (4-5a) & (4-5b), decide for which slope angles
« the rock sheet is stable, critical, and unstable. b) Derive a
general relationship between critical slope, a,, and the normalized
pressure, (P/oy), and graph the result in terms of «, versus the
normalized pressure, (P/gy). Remember, the presence of fluid
pressure does not affect the magnitude of the shear stress but
causes an apparent lowering of the normal stress. ¢) To initiate
spontaneous gravitaty sliding on a shallow slope of only 2°, what
normalized pressure is needed? d) If the pore pressure is zero,
what additional shear stress needs to be applied externally to
initiate gliding on subcritical slopes? Derive a general relationship
between critical slope, «,, and normalized tectonic shear stress,
(1¢/ey), and graph the result in terms of «, versus the normalized
tectonic shear stress, (7¢/0y). Remember, the presence of tectonic
shear stress does not affect the magnitude of the normal stress but
causes an apparent increase of the shear stress. ¢) Combine
the expressions resulting from (b) and (d), and construct one plot
showing how both normalized pressure, (P/gy), and normalized
tectonic shear stress, (7i/oy), affect the critical slope, «..
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4-4 Mohr circle of stress

The Mohr circle is a simple nomogram or
method to construct graphically the shear and
normal stress components on a plane of arbitrary
orientation, &, provided o, and o; (or 7, and 73)
are known (Fig. 4-8a). Two perpendicular axes
are constructed. The vertical axis is scaled for the
shear stress; the horizontal axis is similarly scaled
for the normal stress (Fig. 4-8b). The magnitudes
of the two known principal stresses, o, and o,
are then plotted along the horizontal axis, and the
center for the Mohr circle is located along the
horizontal axis between o, and ¢,. The practical
purpose of the Mohr circle is that the magnitude
of the normal stress, oy, and the shear stress, o,
on the plane of orientation, £, can be read from
the two axes. The reading is done for point Q,
located on the circle, in a position determined by
the double angle, 2¢, measured in an anti-clock-
wise direction from the horizontal scale. Figure
4-8c¢ graphs the variation in both the total normal
and the shear stress against £ as simple gonio-
metric functions, given in eqs. (4-5a) & (4-5b).

The Mohr equations and the associated nomo-
gram for deviatoric stresses in two dimensions is
much simpler, because it follows from equations

Figure 4-8a: Situation sketch for Mohr diagram.

(4-2b) and (4-3) that 7, is always equal to -7;.
Consequently, the Mohr equations for deviatoric
stress simplify to:

Tn=[(7,-75)/2] cos 26 =7, cos 2¢ (4-6a)
7s=[(7,-75)/2] sin 2é =7, sin 2¢ (4-6b)

Figure 4-9a shows the corresponding Mohr
diagram for deviatoric stress in two dimensions.
An alternative method, perhaps more practical
than the Mohr circle, directly plots the variation,
in both the normal and the shear stress against £,
as a simple goniometric function (Fig. 4-9b).

[JExercise 4-6: a) Construct a Mohr
diagram to find oy and og on planes at
30° and 45° to the o,-direction at 4
km depth in the example of exercise
4-2. b) Subtract the pressure, and
find 7y and 73 on planes at 30° and
45° to the 7,~direction at 4 km depth.

[ClExercise 4-7: Construct a Mohr dia-
gram to find the magnitudes and
orientations of o, and ¢; from known
oy and o on two perpendicular planes
in the same material point studied.
On plane (1): 0,=220 MPa and o=
110 MPa; on plane (2): oy=120 MPa
and o3=-110 MPa.

[JExercise 4-8: Use a Mohr circle to
demonstrate that: a) the shear stress
on any two perpendicular planes is
always equal in magnitude but oppo-
site in sense and b) the sum of normal
stresses on any two perpendicular
planes is constant for a given state of
stress.
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Figure 4-8b & c: b) Mohr circle for total stress (see text). c) Relative magnitude of shear
stress and normal stress for plane orientations, . The pressure, P, is equal to (0,+0,)/2.
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Figure 4-9: a) Mohr circle for deviatoric stress. b) Relative magnitude of
normal and shear stress.
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4-5 Force and stress orientation

A complication, often little emphasized, if not
neglected, in the literature, is that the major prin-
cipal stresses, o, and 7,, usually are not parallel
to the net force vector, F,,. This can be demon-
strated as follows: Consider first a granite block,
resting on a horizontal plane (Fig. 4-10a). In this
case, the vectors of 7,, o,, and the gravitationally
induced F,, are parallel. However, this will not
be so for stresses at the basal plane of a granite
block on an inclined slope (Fig. 4-10b). This be-
comes apparent, comparing equations (3-3a & b)
for vector calculation of force magnitudes and
equations (4-6a & b) for tensor calculation of
stress magnitudes. The normal and shear stresses
on a plane of area A and inclination o have
orientations which coincide with the vectors of
the normal and shear forces, and their magnitudes
are given by 7,=(Fy/A)-P and 7,=(F¢/A)-P.
Combining equations (3-3a & b) with (4-6a & b)
yields:

Tn=[(F/A)-Plcos a=7, cos 2§ (4-7a)
7s=[(F,«/A)-P] sin o=, sin 2§ (4-7b)

It can now be concluded that the

[1Exercise 4-9: Consider the difference
between a stress and force orientation
by comparing the plots of exercise 3-3¢
with the graph in Figure 4-9b. a) For
which slope a is the shear stress at
maximum? What is the magnitude of
the shear force for this slope? b) For
which slope « is the normal stress at
maximum? What is the magnitude of
the normal force for this slope? ¢) Cal-
culate and sketch the orientation of o,
and F,, on the slope, @, for maximum
shear stress and minimum normal
stress.

orientations of 7, (fixed by £) and F,
(fixed by «, if F,, is due to gravity)
are related by (Fig. 4-11):

a=2¢ (4-8)

where the angle, £, is measured be-
tween the principal stresses, 7, (or
0,), and the normal to the plane of
shear stress and o is the slope of the
plane.

Figure 4-10a) & b): a) The major
principal stress, 7,, on the base of a
horizontal plane, loaded by overlying
rocks, is parallel to the force vector,
F... b) On a sloping surface, the net
load force and the major principal
stress are no longer parallel. Figure
4-11 and the text explain why.
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that material. Stress trajectories for a
non-uniform stress field integrate the
principal stress directions into an
orthogonal set of smoothly curved
gridlines.

Figure 4-12a illustrates the trajecto-
ries of the principal stress in a verti-
cal plane through the center of an
axisymmetric subsurface dome of
either salt or magma, considering
only the stresses arising from the
pressurized dome. The pressure on
the walls of the dome is a surface
force, which causes deviatoric and
associated total stresses inside the
host rock, as shown. The o;-trajecto-
ries, outside the dome area, are al-
ways perpendicular to the vertical
plane of section, and visualized are
the o,- and o,-trajectories. The verti-

cal plane above the dome contains the
o,- and o,-trajectories and is itself
normal to g,. The points where ¢, and
T| 0, have the same magnitude, so that

their axial orientation becomes indis-

Figure 4-11: The angular relationship between a gravitational tinguishable, are termed isotropic
load force, F,,, and the major principal stress on a plane points or neutral points, if both

inclined at angle «. See equation (4-8).

4-6 Stress trajectories and intrusions

The state of stress in a point can be represented
by a stress ellipsoid, which fixes the relative
magnitude of the three axes of the principal
stress. If the three principal stress axes inside a
material are similarly oriented in each point of
the material, the stress field is uniform. A simple
fashion to display graphically the spatial variation
or absence of variation in the orientation of the
principal stress axes makes use of a set of orthog-
onal gridlines, representing the principal stress
directions: stress trajectories. The stress trajecto-
ries for a uniform stress field are an orthogonal
set of straight gridlines. The orientation of the
stress axes inside a material does not necessarily
need to maintain a uniform orientation throughout

stresses are larger than zero, and

singular points, if they are both equal

to zero. Figures 4-12b & c illustrate
the stress trajectories in horizontal planes through
the dome at one and two kilometers depth, resp-
ectively. The sections of Figure 4-12b are com-
plementary to those shown in Figure 4-12a, and
together they visualize the variation in the orien-
tation of the three principal stress axes in three-
dimensional space.

An important property of principal stress
trajectories is that a trajectory must either end
parallel or perpendicular to a surface free of
shear stress. In the example of Figure 4-12, the
ground surface is free of any shear stress. Also
the walls of the pressured dome are free from a
shear stress, because only a pressure, which is
equal in all directions without generating any
shear stress, is exerted. It is worth noting that the
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a) Vertical section (o5 normal to section outside neutral point area,
o, normal to section inside neutral point area)

Neutral point Neutral point
Oz = O3

02=03

—— 0, trajectories

o, trajectories
o5 trajectories

b) Horizontal section at 2 km depth  ¢) Horizontal section at surface
(normal to o)

@

Figure 4-12: a) Stress trajectories in vertical section, parallel to the symmetry axis of a
pressurized dome, b) & c) normal to the symmetry axis.
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Figure 4-13: Block diagram of an igneous dome, showing common features, such as radial dikey,
ring dikes, and cone sheets.

stress trajectories are orthogonal to the walls of

the solid rock, if free of shear stress. However,
the pressure is, also, a surface force for the host
rock and causes stress gradients, as outlined by
the trajectories. Using the geometrical constraint
of mutual orthogona]ity' anc':l .ortthor{aIity to striking high-relief feature, interrupting
she_ar stress~fret_> boundaries, it is quite simple to the relatively low-relief landscape of
es_t:fnatg tl}e llke}y stress trajecto.ry pattern, New Mexico (Fig. 4-14). The Rock, in
arising in simple, isothermal mechanics. fact, is the remnant of the central in-
trusion pipe underneath a Tertiary
volcano, which has now been removed
by erosion. From the pipe emerge, at
least, three subvertical radial dikes,
clearly visible on aerial pictures. Sketch
a horizontal trajectory map likely for
the paleostress in the country rock at
the time of dike emplacement.

[JExercise 4-10: Consider the relation-
ship between stress trajectories and
intrusive structures. Ship Rock is a

Stress trajectories are extremely useful in
geological applications, involving dike intrusion
and shear faulting. Intrusion of pressurized
material, whether hot magma, pressurized ductile
salt, or clay, is most likely to succeed within -
o, surfaces, perpendicular to the least principal
stress axis. The trace of the o0,-0, surfaces is
outlined by the o,-trajectories in Figure 4-12a and
by the o,-trajectories in Figure 4-12b. Figure 4-

13 shows the likely intrusion pattern, resulting
from this stress field.
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Figure 4-14: Ship Rock Mountain, a landmark in the desert of New
Mexico. The explacement of the radial dikes can be understood in terms
of stress trajectories. See exercise 4-10. Courtesy John Shelton.

[JExercise 4-11: The orientation of po-
tential intrusions can be predicted from
the stress trajectories. The Richat
Dome, Mauritania, is a beautiful, axial-
ly symmetrie, shallow dome of 60 km
diameter, exposing concentric rings of
outward dipping, alternately competent
and incompetent, sedimentary rocks
(Fig. 4-15). Assume that the dome is
due to a buoyant, granitic pluton un-
derneath. a) Sketch the principal paleo-
stress trajectories in the area at ground
level for the time of the dome forma-
tion. b) Predict the orientation of the
pegmatite dikes found in the Richat
area.

Figure 4-15: Oblique photograph, by Gemini
astronaut, of the Richat Dome, Mauritania. The
area enclosed by the outer layer of rim rock is
approximately sixty kilometers in diameter. See
exercise 14-11.
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Dome is not.

[JExercise 4-12: a) Sketch the stress pattern, suggested by the fault pattern over the
Clay Creek Dome, Texas (Fig. 4-16a). b) Sketch the stress pattern, suggested by the
fault pattern over the Bell Isle Dome, Louisiana (Fig. 4-16b). ¢) Argue why the stress
pattern implied by the Clay Creek Dome is radially symmetric and that of the Bell Isle

a) Clay Creek Dome, Texas

Figure 4-16a: Pattern of subsurface faults
around Clay Creek Dome, USA. See exercise
4-12.

4-7 In-situ stress measurements

It is relatively straightforward to measure the
present-day stresses in rocks using two principal
methods: hydrofracturing and overcoring. Hydro-
fracturing pumps up inflatable packers against the
wall of a drill hole until the rock fractures.
Fractures are assumed to open in the direction of
the ¢,-0, plane so that the orientation of o, is
found perpendicular to the fracture. The magni-
tude of o, is assumed equal to the hydraulic
pressure required to open the crack. The orienta-
tion of the bore hole is of great influence on the
accuracy of the results; repetition of the measure-
ments in bore holes at right angles helps to

b) Bell Isle Dome, Louisiana

Figure 4-16b: Pattern of subsurface faults
around Bell Isle Dome, USA. See exercise 4-12.

constrain both the magnitude and orientation of
the three principal stresses.

Overcoring is a more involved technique,
where a drill hole is made and strain gauges are
emplaced. It is assumed that the stress in the
direction of the strain gauge is not affected by the
hole itself. The strain gauges are not able to
measure anything in this hole as such because of
instantaneous elastic displacements of the walls
controlled by the stress field. However, the walls
would resume their unstressed shape if the outside
stress could be removed, and the associated
recovery of elastic strain is a measure of the
stress magnitude (see chapter five). The release of
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the tectonic stress is achieved by cutting an
annular hole with an inner radius larger than that
of the initial drill hole. In this fashion, a rim of
rock is preserved around the hole in which the
strain gauges now record the elastic recovery of
the wall rock. Again, the orientation of the drill
hole is of important significance to the accuracy
of the results. The principal stresses can be
calculated from the normal stresses on the walls
of the drill hole, using the Mohr equations, as
applied in exercise 10-13 (chapter 10, page 171).

Relatively little attention has been paid to
methods of paleostress determination, using past
deformation structures, preserved in rocks, to
recover the principal stresses at the time the
deformation took place. The estimation of paleo-
stress magnitudes is likely to remain rather
conjectural because of the uncertainty about the
physical conditions prevailing at the time of
deformation. However, paleostress directions
sometimes can be constrained using the stress
trajectory principles outlined in section 4-6.

from the model in Figure 4-12c¢.

[JExercise 4-13: The horizontal stress pattern about the salt dome of
Figure 4-17 is not radially symmetric at all. a) Draw the stress trajecto-
ries on Figure 4-17. b) Explain what may be the cause of this deviation
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Figure 4-17: Principal stress orientations in horizontal section of an elliptical salt
dome, north Germany. Generated by a finite-element model, calibrated by in-situ

stress measurements (fat arrows).
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