Chapter 5:
Elasticity

T Low temperatures and shallow crustal levels, rock behaves

brittly and, consequently, will fracture at high stress and is

elastic in response to low stress. At the higher temperatures of

deeper crustal levels, rocks initially, also, deform by instanta-
neous elastic distortion if subjected to a deviatoric stress. However, the
elastic distortion is negligible compared to the large distortions caused by the
slow flow or crystalline creep, occurring when the stress is maintained for
geologically significant periods. In order to understand why rock can both
fracture in a brittle fashion and flow in a ductile fashion, it is necessary to
understand some basic principles of rock rheology. This chapter provides,
together with chapters six to eight, a state-of-the-art outline on rock
rheology, and highlights which parameters have a principal influence on the
mechanical response of rocks.

Contents: Section 5-1 outlines mechanical model analogs for simulating
elastic behavior. Section 5-2 introduces basic measures of strain and stress-
strain and strain-time graphs. The elastic moduli and their relationship are
discussed in sections 5-3 to 5-7. Some practical applications of crustal stress
calculations, associated with elastic loading, are outlined in section 5-8.
Anelasticity and the standard linear solid are introduced in section 5-9.

Practical hint:
Elasticity theory
becomes much
more digestible
and interesting
by investigating
the rheology of a
variety of strips
of natural and
synthetic rub-
bers, both com-
pressible and
incompressible.
Attempt to mea-
sure or estimate
some of the elas-
tic moduli.
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5-1 Elasticity models

The initial response of any rock subjected to a
deviatoric stress is instantaneous elastic distortion.
The amount of elastic strain is extremely small,
rarely more than a few percent, but elasticity
provides a mechanism for propagating various
types of elastic waves through the Earth’s interi-
or. Elastic distortion is recoverable, because the
rock will resume its initial shape if the stress is
removed. This behavior is commonly portrayed
by a mechanical spring model or Hookean ele-
ment (Fig. 5-1a). Shallow crustal rocks principal-
ly deform elastically, possibly followed by per-
manent or irreversible distortion, due to rock
failure if the distortion exceeds the elastic limit.
The frictional plastic movement over any fault
plane after failure can be represented by a fiic-

tional plastic unit (Fig. 5-1b). The failure itself,
or, in case of a pre-existing fault, the static fric-
tion, is, perhaps, best resembled by a plug-pull
model, first introduced here (Fig. 5-1c). The
complete process of elastic distortion, failure, and
subsequent frictional plasticity over fault planes
can be summarily represented by the mechanical
array of Figure 5-1d, showing a spring, plug, and
frictional unit in series. The model will be slight-
ly modified later to account for anelastic behavior
observed in rocks (section 5-9).

Elasticity of rocks arises from the interatomic
forces, maintaining each atom in its lattice posi-
tion. A crystal lattice will aim at a low energy
state by balancing repulsive and attractive inter-

atomic forces. If placed under

a) Elastic spring

~ W

b) Frictional plastic

tension, the interatomic at-
traction resists the extension,
and, similarly, shortening is
resisted by interatomic repul-

sion. Volume change is limit-
ed by a general resistance to
any changes in lattice spac-

NNV

c) Peak strength plug

o9 I

d) Elasto-plastic unit with peak strength

IS I

s

Residual strength

ings. Individual crystals will
contribute to the overall
elastic behavior of a rock.
The elastic nature of crystal
lattices may be represented
by emplacing a mechanical
spring model inside the crys-
tal lattice and representing
each interatomic bond by a
spring of a particular stiffness
(Fig. 5-2). Because it is
impractical to sum up all the
individual elastic stiffnesses
of the bonds between atoms,

rock mechanics provides so-
called elastic moduli, valid

AL

for a particular type of mac-
roscopic rock deformation
and the specific stress ap-

T

plied.

Figure 5-1: a) to d) Mechanical models used as analogs to visualize the
rheological behaviour of rocks in the elasto-plastic regime.
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[JExercise 5-1: Produce a qualitative
graph, showing the force required to
maintain motion at all stages for the
case of an elasto-plastic unit with peak
strength (Fig. 5-1d).

5-2 Elastic strains, creep tests, and
constant strain-rate tests

The elastic moduli for rocks, defined in sec-
tions 5-3 to 5-7, are based on laboratory measure-
ments of two types of strain or distortion. These
are the elongation, e, and the angular shear
strain, y. Either of these strain measures are
tensor quantities, discussed in detail in chapters
eleven and twelve. However, if the direction of
elongation is known, a simple definition can be
used (Fig. 5-3a & b):

e=(L-Ly/L, 5-1)

with the intial line length, L,, and the deformed
line length, L. Any elastic strains in rocks are
extremely small, unlike that suggested by Figures
5-3a & b. Elastic
strains in rocks are

Figure 5-2: Spring model of crystal lattice. This
representation may help to understand the signif-
icance of elastic moduli used in rock mechanics.

mated from:

SV/V=e,+e,+e,

(5-2)

Expression (5-2) is valid only for infinitesimal
strains (e,,e,,e;< <1). The other measure of
strain, the angular shear strain, vy, was intro-

treated as infinitesi-
mal quantities.

In three dimen-
sions, three principal
elongations may ex-
ist, mutually perpen-
dicular and denoted
by subscripts, e,, e,,
and e,. Extension is

a) Undeformed

F—-»Llo=5cm——]

b) Deformed

counted positive, and
shortening by com-

pression is negative.

If the deformation in-

volves no volume

]

change, e, +e,+e,
=0. Any fractional
change of the vol-

ume, V, can be esti- A
X, normalized by L,

Figure 5-3: a) & b) Pure elongation. (a) Undeformed line of initial length, L,
(b) Deformed line of length L=L,+x. The elongation equals the length increase,
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a) Undeformed

b) Deformed

The rheological
behavior of visco-
elastic materials is

: : y = tany determined in labora-
’ tory tests, using

1 // // // // // // // // either a constant load

\v [7777777 (creep test) or a

— =/ )]/ constant Sstrain-rate
{//////// test. In the constant

YIFTErEPy load test, the strain

TS EEFN, accumulation is

Fixed base line

monitored versus
time and an instan-
taneous strain results

Figure 5-4: a) & b) Definition sketch of angular shear strain, y=tan .

duced to measure the distortional rotation, rather
than the change in length of material lines. The
angular shear strain is established by measuring
the angle, ¥, by which the angle between two
initially perpendicular lines, changes (one of these
two reference lines is assumed to remain station-
ary during the deformation) (Fig. 5-4a & b):

y=tan y (5-3)

if the rheology is
truly elastic (Fig. 5-
5a). A test with a
constant strain-rate
means that the monitored stress increases linearly
with strain over time (Fig. 5-5b).

5-3 Poisson ratio

Elastic volume changes may occur in stressed
rocks. The measure defined to quantify the
volumetric distortion of a block with free lateral
boundaries is the Poisson ratio, v:

a) Creep test

Strain (e)
Stress (1)

tx

b) Constant strain rate test

tx

v=-e,/e;, (5-4)

The magnitude of v is
determined by uniaxi-
al shortening of a
specimen in the o;-
direction with free
lateral boundaries
and monitoring all
three principal elon-
gations, e, ,, (Fig. 5-
7). It should be noted
. that » is a non-dimen-

Time ()

Time (i) or strain

sional material con-
stant. No elastic vol-

L ume change will

Figure 5-5: a) & b) Typical graphs used to portray the elastic response of rock

occur if » equals 0.5,

samples deformed under (a) constant load or creep test, and (b) constant strain-

rate test.
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because then all shortening in the e,-direction will
be compensated for by proportional extensions of
e,=-0.5e, and e,=-0.5e,, so that the volume
remains constant, i.e.:

It is worth noting that e, is negative for shorten-
ing, as follows from equation (5-1). The Poisson
ratio for natural rubber is 0.49, implying that the
resistance to compression is much greater than
the resistance to shearing (i.e., x> >G, see

e, +e,+e,=0 (5-5) later). Poisson’s ratio of rocks typically is 0.25

[C1Exercise 5-2: a) Consider a constant load or creep test, and indicate in Figure 5-5a what
happens if the load is removed after time lapse, t. b) Consider a constant strain-rate test, and
indicate in Figure 5-5b what will happen with the stress if the strain rate or deformation rate
suddenly ceases after some time, t=t, (or finite strain, e=e). ¢) A third type of rheological
test, a so-called stress-relaxation test applies a particular instantaneous strain and monitors
the resulting stress versus time. Plot the stress-time graph for a stress relaxation test in an
ideal elastic material.

[JExercise 5-3: Consider the elastic
spring model combined with a plug
model (Fig. 5-6). a) Subject the plug-
elastic unit to a creep test, where the
load used exceeds the plug strength.
Sketch the strain-time graph, recording
the event. b) Subject the plug-elastic
unit to a constant strain-rate test, and &

Elastic unit with peak strength

-

graph the stress-time (or stress-strain)
curve, Figure 5-6: Elastic spring model, combined with

a peak strength plug model. See exercise 5-3.

[JExercise 5-4: Consider the frictional plastic unit of Figure 5-1b. A creep test will reveal two
cases: the load applied is either too small or large enough to cause movement. If the load is
large enough, the shear stress on the fault plane is constant (equal to the frictional strength).
Plot a graph of stress versus time.

[JExercise 5-5: Consider the elasto-plastic unit with plug peak strength, as portrayed in
Figure 5-1d. The peak strength of the plug is taken here as twice the frictional strength of the
plastic unit. Produce the stress-time plot for a constant strain-rate test,
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Table 5-1: Elastic parameters for common rocks.

(Table 5-1), implying that e,=e,;=-0.25e,, only
half the extension expected if volume were to

Young Shear Poisson
modulus  modulus ratio
Rock (GPa) (GPa)
Ice 9.2 0.03
Halite 30 0.15
Shale 10-30 14 -
Sandstone 10-60 4-30 0.20-0.30

Limestone 60-80 20-30 0.25-0.30
Dolomite 50-90 30-50 -
Marble 30-90 20-35 0.10-0.40

Gneiss 4-70 10-35 0.04-0.15
Amphibole - 50-100 0.40
Basalt 60-80 30 0.25
Granite 40-70 20-30 0.10-0.25
Diabase 80-110 30-45 0.25
Gabbro 60-100 20-35 0.15-0.20
Diorite 60-80 30-35 -
Dunite 140-160 60-70 -

remain constant. However, although this suggests
large compressibility, any elastic volume changes
remain minuscule, simply because the total
amount of elastic strain in rocks always remains
very, very small indeed.

The Poisson ratio is commonly determined
under atmospheric pressure (because of the free
lateral boundaries), but due to linear elasticity any
state of stress could be superimposed. Thus, the
Poisson effect may be significant to the deforma-
tion of mantle rocks under extremely high pres-
sures. Also, v increases if the temperature comes
near the solidus. The Poisson ratio, further, is of
principal interest to engineering applications.
However, the Poisson effect is insignificant for
the deformation of crustal rocks. Occasionally,
the Poisson number, m, defined as the reciprocal
of the Poisson ratio, i.e., m=1/p, is used in the
literature.

7
o

T3(=T2)

T2 (= Ta)

‘Gﬁ

Figure 5-7: Orientation of principal elongations
in response to uniaxial stress test for establishing
the Poisson ratio.

Table 5-2: Stress-strain data for every fifth increment
of loading in uniaxial compression test of Berea
sandstone at constant strain-rate. See graph of
Figure 5-8. Courtesy Zaki Al-Harari.

Load Axial Lateral Volumetric
(MPa) strain strain strain

-0.67 -6.00x10°% -5.02x10°¢ -1.60x107
-2.27 -1.56x10*  2.61x10° -1.04x10*
-4,10 -3.13x10*  6.53x10° -1.82x10*
-6.50 -4.48x10*  1.09x10* -2.29x10°*
-8.83 -6.10x10*  1.72x10* -2.66x10™
-11.39 -7.44x10*  2.46x10* -2.52x10*
-14.90 -8.78x10"  3.27x10* -2.23x10*
-18.01 -1.04x10°  4.34x10* -1.69x10*
-20.80 -1.19x10°  5.68x10* -5.39x10°
-24.16 -1.34x10°  7.24x10*  1.14x10*
-27.23 -1.49x10°  9.01x10*  3.13x10*
-30.65 -1.63x10°  1.13x10%  6.27x10*
-33.12 -1.80x10°  1.42x10%  1.04x10?
-36.04 -1.95x10°  1.83x10°  1.70x10?
-38.09 -2.13x10°  2.43x10°  2.73x10?
-39.09 -2.29x10%  3.45x10°  4.62x10?
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Because of the ex-
tremely small elastic
strains of 107 in rocks
subjected to large stresses
and pressures on the
order of 100 MPa, exper-
iments in rock mechanics
require high precision for
determining the elastic
moduli. The uniaxial
compression test of exer-
cise 5-7 allows estimation
of the Poisson ratio and
other elastic moduli (see,
also, exercise 5-10).
However, greater accura-
cy in measurement of the
elastic moduli is most
practically achieved
measuring wave veloci-
ties, using either ultra-
sonic waves or by mea-
suring resonance frequen-
cies of vibrating samples.

[JExercise
5-6: Show
that the
Poisson
ratio for
homoge-
neous
strains must
be 0.5if a
rock is to be
incompress-
ible.

CJExercise 5-7: Figure 5-8 illustrates a constant strain-rate test by
uniaxial loading of a sample of Berea sandstone at a rate of 0.689
MPa per second (or 100 psi/sec). Table 5-2 is a sample list of the
recorded data. Volume change occurs. Positive volumetric strains
indicate volume increase and negative values denote volume
decrease. Compute the Poisson ratio for Berea sandstone for the
early load increments. The Poisson ratio is defined only for small
or infintesimal strains, for which the assumption of linear elasticity
is valid.
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Figure 5-8: Stress-strain graph of the axial and lateral elongations in
uniaxial creep test on Berea sandstone at room conditions. See, also, Figure
6-19.
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5-4 Compressibility and bulk modulus

Another measure for elastic volume change,
but with confined lateral boundaries and therefore
due to a pressure and not a deviatoric stress, is
the compressibility, [3:

B=-6V/(VéP) (5-6a)

with 6V/V(=e,+e,+e;) measuring the fractional
volume change in response to a change in pres-
sure, 6P. No volume change or dilation occurs if
6V/V=0. An alternative measure is the bulk
modulus or incompressibility:

k=1/8 (5-6b)

All matter exhibits a bulk modulus. Gases are
easily compressible and elastic, but these have no
elastic moduli, except for the bulk modulus,
which typically is 0.1031 MPa for ideal gases at
atmospheric pressure. Natural rubber has a bulk
modulus of 19 MPa. The bulk moduli for liquids
are of the order of 1 GPa, with the exception of
mercury with x=25.9 GPa. Diamond, possibly
the least compressible substance in the Universe,
exhibits a bulk modulus of 550 GPa.

The bulk modulus for common crustal rocks
typically has the order of magnitude of 100 GPa.
This means that upon burial to 10 km depth,
where the lithostatic pressure is 250 MPa or 0.25
GPa, the elastic volume decrease is only 6V/V =
6P/K=0.25 GPa/100 GPa=0.0025 times. For
spatially uniform dilation this means each elonga-
tion, €;=0.0025/3=0.0008 or 0.08% (or 0.8
mm® per 1 m’); and, therefore, it remains entirely
negligible in crustal deformations where the depth
scale limits 6P. However, in the lower mantle,
elastic compression amounts up to 30 to 40
percent.

In crustal rocks, any volumetric compression
by pressure increase is largely counteracted by
geothermal expansion upon burial. This becomes
clear, considering the thermal expansivity, c:

a=06V/(VoT) (5-7)

with temperature change 6T. The thermal expan-
sivity of rocks typically is of the order 10° K.
The implied fractional expansion occurring in
crustal rocks buried to 10 km depth, using a
moderate geothermal gradient of 30 K km™, is
6V/V=a(6T)=107[K"]x300 [K]=0.0030r0.3%.

[JExercise 5-8: Calculate the volume
change of air in a bicycle pump if the
air has a bulk modulus of x=0.1 MPa
and the pressure reaches 10 atmo-
sphere or about 1 MPa.

5-5 Young modulus

The elastic modulus, which relates the elastic
elongation, e,, to the normal stress, here o,, in
Poisson’s shortening experiment (Fig. 5-7). is
given by Hooke’s law:

U] =Eel (5"8)
using E for the Young modulus.

Robert Hooke, who published the True Theory
of Elasticity in 1678, considered only linear
elastic materials, where doubling of the tension
(or deviatoric stress 7,) leads to doubling of the
extension (e,). Many materials comply with linear
elasticity. The Young modulus for natural rubber
is 0.86 MPa, compared to 100 Pa for light, open-
pore foam rubbers. Young’s modulus in crustal
rocks is approximately linear and generally varies
between 10 and 100 GPa (Table 5-1).

In any case, deviatoric stresses of tectonic
origin in the crust reach magnitudes of 10 to 100
MPa and the implied elastic elongation is e,=
7,/E=100 MPa/10 GPa=0.01 or 1%, truly
negligibly small.
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[lExercise 5-9: a) Estimate the elastic elongation, occurring if you stretch foam rubber
(E=100 Pa) with a tensional stress, 7,=1 kPa. b) Alternatively, estimate the stress, 7,, that
would arise if you extended the same foam by 100%, so that e,=1.

using the data referred to in exercise 5-7.

[JExercise 5-10: Determine the Young modulus for Berea sandstone, at each load increment,

[C1Exercise 5-11: Suppose a cylinder of diabase, 10 ¢cm in diameter and 25 cm long, is placed
under an axial compression of -10 MPa. How much will it shorten axially and how much will
it expand transversely, given a Young modulus of 10" Pa and a Poisson ratio of 0.25?

5-6 Shear modulus

The shear modulus or rigidity, G, relates any
elastic angular shear strain, 7y, to the applied
shear stress, 7.

7s=Gy (5-9)

The shear modulus for natural rubber is 0.29
MPa, and for rocks it typically is of the order of
10 GPa (Table 5-1). Crustal shear stresses are up
to 100 MPa, so that the maximum elastic shear
strain in the crust is y=7,/G=0.01, implying a
possible angular distortion of only half a degree,
again negligibly small. However, accumulation of
stress, by localized, elastic shear before frictional
slip, features centrally in the so-called stick-slip
model for episodic seismicity, and, therefore, it
is important in geoscience (Figs. 5-9 & 5-10).
Initially, the elastic shear increases with time, due
to a uniform velocity occurring at a distance from
the fault. Fault slip occurs when the shear stress
of equation (5-9), resulting from the accumulated
shear strain, matches the frictional strength of the
fault surface. The elastic shear strain is then
released coeval with a drop in the stress, but both
may build up again provided the differential
velocity of plate segments is maintained.

a) After a major earthquake the fault sticks

i

b) Just prior to the next major earthquake

LT

c) After this major earthquake the fault
locks and the cycle repeats

{1

.l

s

Figure 5-9: a) to c) Three basic stages in the
evolution of seismic fault motion, according to
the stick-slip model. The relative motion of plate
segments is indicated by the half-arrows.
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Plastic
friction unit

Spring unit

Fault plane

F AN N 3

Figure 5-10: a) & b) Mechani-
cal analog for the stick-slip
mode of fault motion.

(a) Spring, pulled with con-
stant velocity, v, exerts a pull
force, F, on the plastic unit.

o
S

Shear stress T

// S S

Slip occurs when F results in
stress exceeding the critical
shear stress, 7.. (b) The stress-
slip graph for stick-slip fault
motion. Critical shear stress
for times, t, and t,, differ be-
cause of differences in sticking
strength, due to variations in
sealing bonds by mineraliza-
tion across the fault surface.

Fault displacement

Poisson ratio (Fig. 5-11). The ratio of
the Young modulus to the shear
e modulus varies only between 2 and 3,

implying that, in any elastic material,
the Young modulus is only between

(Figs. 5-9 & 5-10)?

[JExercise 5-12: The angular shear strain on the San
Andreas Fault system, associated with the 1906 San
Francisco earthquake, was 2.5x10*. The local shear
modulus of the rocks involved is 30 GPa. How much
was the system’s stress reduction by the earthquake if
all the shear strain is due to elastic relaxation only

twice to thrice the value of the shear
modulus. The ratios, containing the
bulk modulus, also plotted in Figure
5-11, appear to vary greatly with the
Poisson ratio. Materials with smaller
Poisson ratios tend to have larger
bulk moduli as compared to those of
materials with larger Poisson ratios.
Actually, many materials with » close

5-7 Relationship of elastic moduli

The elastic moduli and constants (v,x,E,G) for
isotropic rocks are interdependent, and, if any
two are known, the others follow:

G=E/Q2+2) (5-10)
x=E/(3-6v) (5-11)
v=(3k-2G)/(6x+2G) (5-12)

quations (5-10) and (5-11) allow the plotting of
the ratios, E/G, E/k, and G/k, as a function of the

to 0.5 have bulk moduli, x, smaller
than those for materials with »< <0.5, that is,
they are more compressible than materials with
smaller Poisson ratios. The behavior of liquids is
particularly interesting. Their shear modulus G is
zero, and « is small, so that v is close to 0.5 [cf.
eq. (5-12)]. But it is incorrect to conclude that
liquids are incompressible. Rather, their resis-
tance to compression is much greater than their
resistance to shearing, i.e., k> >G. Generally,
materials of Poisson ratios close to 0.5, possess
Young and shear moduli up to two orders of
magnitude smaller than the bulk modulus.
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In addition to the elastic moduli
outlined above, we introduce the
Lamé constant, \:

3.0
2.0

A=@E)/[(1+v)(1-2p)] (5-13) 1.0
Combining equations (5-13) and (5- = 060
11) shows that the Lamé constant B
approaches to the value of « for £
Poisson ratios close to 0.5. The elas- %
tic moduli of mantle rocks are esti- = 020
mated by a range of geophysical s
techniques. Figure 5-12 illustrates a 2 o010
classical graph by Sir Edward Bullen &
with estimates of the moduli for the 0.06
Earth mantle. 0.04

x ] 0.02

[JExercise 5-13: Examine

Figure 5-11 and explain b

why materials of Poisson
ratio 0.5 have infinitely
small ratios G/k.

5-8 Elasticity and lithostatic

\ —__________,_,__
.| EG
ek
~
\x \
~
Y
"“-\\ N\
G/k
\\\ \\
N
Range for
~igid solids \
Y
LN
LN
Y=l
\\
Range for
rubbery solids™a|
| 1
| |
0.1 0.2 0.3 0.4 0.5
Poisson ratio v
'E'n

pressure

Figure 5-11: Relationship between ratios of the various elastic
Although the elastic distortion of "oduli and the Poisson ratio.

crustal rocks remains small (Fig. 5-

13), elastic deformations become of tectonic
significance if occurring over extremely large
length scales. Examples are the elastic bending or
flexing of the upper layers of crustal plates, due
to sedimentary loading, glacial loading, tidal
forces, or slab subduction. However, this elastic
deformation is recoverable and causes negligible
distortion on the outcrop scale if the elastic stress
remains below the yield stress. Two important
aspects of elasticity are: (1) failure occurs when
the yield stress exceeds the elastic tolerance, and
(2) deviatoric stresses, arising from the elastic
energy, may explain jointing of surface rocks if
deloaded. -

The mean pressure in incompressible rocks due
to the lithostatic load is simply given by P=

| Oean| = | (1/3)(0,+0,+03) | =pgz. (For this sign
convention 7;=0;+P if ¢ is negative.) However,
the pressure will be affected if the Poisson ratio
indicates that rocks are compressible, which can
be physically interpreted as follows: The loading
of jointed rock and associated elastic vertical
compression and prevention of lateral elongation
cause horizontal stresses upon burial. A relation-
ship between the resulting total stress and the
Poisson ratio, is:

0,5,=[v/(1-p)]o, (5-14)
with o,=-pgz (Fig. 5-14). The pressure at any
depth is given by:

P=|(1/3)(0,+0,+03) | =[(1+»)/(3-3v)]pgz(5-15)

CHAPTER 5: Elasticity



76 WEIIERMARS - Principles of Rock Mechanics

1400 Figure 5-12: Esti-
mates of the elastic
/ moduli (E, G, and «)
1200 %0 and elastic constants
(v and \) for the
0.29 mantle of the Earth.

X & The Poisson ratio is
\b/ scaled at the right-

800 A 0.28 °

600 EA b5 4

hand ordinate; other
//k
400 / / 0.26

elastic parameters are
scaled at the left
ordinate.
S
f
200 1/ 4 o] Expression (5-15) indicates
’/j that any pressure P for
r=0.25 will be only 5/9
times the lithostatic stress.
This essentially implies the
existence of a deviatoric
¥l rstress, comprising vertical
compression and horizontal
tension:

—
o
o
o
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/
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Depth (km)

7,=0,+P=-[(2-4»)/(3-3v)]pgz (5-16a)
T23=0,53+P=[(1-2»)/(3-3v)]pgz (5-16b)

1.5 -
/ It must be concluded that lithostatically loaded
rocks experience tiny volumetric distortions,

2 : T e . g
§‘ SQ leading to elastic deviatoric stresses. Their magni-
é.? ® tude for z=35 km, p=3,000 kg m*, and »=0.25
1.0 4 2 gives 7,=-66 MPa and 7,,=33 MPa. These
© ¥ /8 stresses then reverse upon deloading by erosion
o 3 L@ : T
o G /o and may contribute to jointing of shallow crustal
@ rocks.
o
77
0.5 -

Figure 5-13: Stress-strain graph for con-
stant strain-rate tests on common rock

1.0 2.0 bypes.
Strain (%)
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Figure 5-14: Stress trajecto-
ries and stress magnitude in W Surface of earth E
vertical crustal section, due ; | ; ; ;
to lithostatic load only. 1 i r | |
}_____'L____[____:_____J o4 trajectories
| | | | |
} : : : /:/ 0o = 04 trajectories
OExercise 5-14: Determine Fo——f—=—AF-—-f- —-:
the maximum possible stress I I I I I
that will relax after erosion : { ' f f
of a 10 km thickness of gran- I————+———{}——~’lr--——-} 100 MPa
ite. Assume that the initial i ! | | | oo e e
state of stress is lithostatic [ | | | Scale for radii
and that p=2,700 kg m* and 1 km _L____L___O___,L._ﬁ_J of stress elipses
y=0.25.
E\l
[JExercise 5-15: Consider a lithostatically loaded rock column of »=0.25. The tectonic stress
is a uniaxial horizontal compression, Tigcrone=-100 MPa, parallel to 7;. a) Plot the magnitude
of the three principal total deviatoric stresses, 7,, 7,, and 75, versus depth. b) Next, assume
the rock is part of an area subjected to a regional deviatoric stress of tectonic origin. Figure
5-15 shows a vertical section of the region’s stress trajectories and stress ellipse shapes, in
qualitative fashion, perpendicular to the 7;-trajectories (compare with Fig. 5-14). For the data
considered here, at which depth occurs the level of isotropic points (where 7,=7,)?
DExercise 5-16: An W Surface of earth E
initially stress-free, ' , T 1 '
: | | | | |
horizontal surface | | | | |
is covered and }____J"___J;“__L____j/—rztra}ectories
buried by the depo- | | | 1 | o
sition of 5 km of : { : : / 14 trajectories
: : | | |
sediment with [Erfesont > -4~ &~~~ L4
density 2,500 | | b [ 1
kg m>. If the sur- :/' : U : ——
face is laterally }————T——-()———#———-:/“ IGIEmas
constrained and l;as isotropi";?;'nfg | | | i / 1, trajectories
a Poisson ratio o
S AR SO | | S (N i
0.25, what are the ()
three principal
stresses at the origi- L
nal surface?
Figure 5-15: Stress trajectories and stress magnitude in crustal section

of Figure 5-14 after superposition of a uniform horizontal compression.
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5-9 Anelasticity

It appears that, during laboratory tests on rock
samples, recoverable deformation, which is not
instantanous, occurs. This time-dependent elastici-
ty, or so-called anelasticity, is apparent from the
generalized curve of the elastic strain, accumulat-
ing with time in an axially loaded sample (Fig. 5-
16a). Anelasticity can be best represented by the
mechanical model of a Standard Linear Solid
(SLS), comprising a spring in series with a
Kelvin-Voigt unit, itself comprising a spring and
parallel viscous element, in which the deviatoric

stress is proportional to the strain rate (Fig. 5-
16b). The anelasticity in rocks is, also, termed
recoverable fransient creep, but, notably, it does
not involve any permanent crystalloplastic defor-
mation. The time, after which the anelastic strain
reaches 1/e of its final value, is called the strain
retardation time. The anelastic behavior in rocks
is of great importance for the attenuation of
seismic waves, passing through the upper mantle,
as described by the quality factor, commonly
designated as Q. Anelastic behavior of rocks,
also, needs to be taken into account in mechanical
engineering of tunnels, quarries, and dam con-
structions.

a) Anelastic strain-time graph

LJExercise 5-17:
Plot the strain-time
graph for a stress-
relaxation test, simi-
lar to that shown in
Figure 5-16a, but
now for a Kelvin-
Voigt unit only.
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Figure 5-16: a) Anelastic strain-time graph, and (b) mechanical model

for standard linear solid.
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