Chapter 9:
Mathematical
Review

TRUCTURAL GEOLOGY and tectonics, mainly descriptive
S sciences in the past, are converging towards quantitative and
mechanical analyses of deformation structures. Much of
deformation modeling involves mathematical expressions. But
the true aim is to grasp the physical reality behind the mathematical
symbols. Despite the necessary theoretical angle, the concepts and
equations introduced in this book are immediately applied to geological
examples. However, study of the subject may be facilitated by reviewing
some of the principal mathematical methods used for describing the
mechanics of rock deformation. A number of refresher exercises are, also,
included for this purpose.

Contents: Section 9-1 provides some encouraging hints to help the reader
overcome any reservations about the use of mathematics in geoscience.
Section 9-2 reviews the essentials of ordinary and partial differentials of
scalar quantities. Section 9-3 outlines the basic features of partial differen-
tials operating on vector quantities. Section 9-4 explains the importance of
differential equations in geological applications. Section 9-5 resumes some
principles of integration. Section 9-6 is devoted to tensors and matrices.
Determinant operations are explained in section 9-7. Section 9-8 gives a
brief review of complex variables and complex functions.

Practical hint:
Good articles with
a mathematical ap-
proach to geology
and rock mechan-
ics feature in
Mathematical
Geology, the Jour-
nal of Geophysical
Research, and the
International Jour-
nal of Rock Me-
chanics and Min-
ing Science. Exam-
ine the latest issues
of these journals,
and present a
seminar on a
selected topic of
timely interest.
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9-1 Psychology of mathematics

Scientists communicate their ideas partly
according to their own personal taste and charac-
ter. According to one satirical view, mathemati-
cians can be described as an illustrious collection
of individuals with a strong drive to express
abstract ideas in terms of symbols and formulae.
This preoccupation with cryptically encoded
concepts seems particularly strong among pure
mathematicians, However, applied mathemati-
cians normally utilize their technical tool kit of
mathematics to describe natural processes. For all
mathematicians, mathematics is a language which
can be understood if one is familiar with the
tedious conventions and meanings of the symbols
used in its communication. The challenge faced

by non-mathematicians is to be able to shift
through the vast array of operating rules and use
those parts which are useful for a particular
application of interest.

Indeed, much of mathematics came into exis-
tence because of the need of natural philosophers
or physicists for concise expressions to describe
phenoma observed in nature. For example, both
Leibnitz and Newton developed, probably inde-
pendently, the differential calculus in order to be
able to describe spatial and temporal changes of
physical quantities in natural systems. In doing
so, they not only introduced a principal tool of
mathematical physics (or applied mathematics),
but they, also, provided an example of the diver-
sity of notations, employed in what is commonly

perceived as an exact science. The New-

dv ,
o5z
Center of
gravity
Gao o ]
| |
i
genius l. ‘ |
|
V£ fl
M [ !
[.fg 50/ V] l. ‘{5/75;",0/
Vo i | SITAZES

|

tonian notation for velocity simply is u,
where u is the displacement and the dot
symbolizes the time derivative. Exactly
the same derivative is, according to Leib-
nitz, annotated by du/dt. Similarly, accel-
eration or the second derivative of dis-
placement, according to Newton, is i,
and it is du®/dt, according to leibnitz’
differentials. The dot notation of Newton
is usually reserved for time derivatives,
and, in general, derivatives are primed:
u’ and u’’ for first and second displace-
ment gradients.

There are many more examples of the
variety of notations used for mathematical
operations. One must be aware of the
arbitrary nature of the symbols available,
and each notation is supported by its own
circle of respective enthusiasts - some
larger than others. This led Chris Trues-
dell, who introduced the kinematic vor-
ticity number now adopted - and, unfortu-
nately, much abused - in geoscience, to
state in his 1954 book on Kinematic Vort-
icity (p. XIV): " For the present work it

©

Figure 9-1: Some of you may find themselves trapped in a
partial differential. It requires some hammering, gentle but

persistent, to get through!

was necessary to use some notation, and
thus to give grounds for criticism to the
adherents of the others. I assure the
reader that notation is largely a matter of
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indifference to me, and I beg him (present author:
& her!), laying symbolic prudery aside, to strip
off from our subject the casual tires of fashion
and to join me in contemplation of the naked
beauty of its essentials. Originally, I had written
the whole in the Gibbs symbolism, but my col-
leagues have convinced me that use of some of
the operations on dyadics would discourage those
Jfew readers who might otherwise overleaf these
pages. On the other hand, believing that at least
Jor simple vectorial formulae the straightforward-
ness of Gibbs's notation is very helpful, I have
adopted a compromise scheme...."

For those geoscientists and engineers, less
inclined to embrace mathematics, it is important
to realize that it provides tools to improve our
understanding of rock deformation structures
(Fig. 9-1). It is, also, fair to add that the time
required to familiarize oneself with these tools is
well spent. But beware of the differences in the
general approach of writings in geoscience and
mathematics. In particular, geological papers
comprise a large proportion of descriptive sci-
ence, which can be easily and rapidly digested.
This is unlike mathematical papers, which usually
are more technical and concise in their descrip-
tion. Therefore, a detailed understanding of the
average mathematical paper requires much more
effort on behalf of the reader than the average

geological paper. The message here is that one
should be prepared to devote a little bit of time to
come to terms with mathematics in geoscience.
This chapter was specifically written to direct
your attention to some of the mathematical meth-
ods most commonly used in studies of rock
mechanics.

[JExercise 9-1: Gabor Korvin, author
of Fractal Models in the Earth Scienc-
es (1992, Elsevier), Kindly suggested
the following exercise at this point.
Reflect on the arbitrary nature of
mathematical symbols by finding out
how to multiply and subtract num-
bers, using Roman notation. Caleulate
the value of: a) MDCCLXI times
CCCIV. b) MDCIV minus LIX.

9-2 Ordinary and partial differentials
of scalars

Differential equations are extremely crucial in
the description of geological phenomena. For
example, consider the lithostatic pressure, P,
which normally increases with depth, according
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Figure 9-2: a) & b) The derivative of pressure functions: (a) linear, and (b) exponential.
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Figure 9-3: Pressure gradients. (a) Graph, illustrating the variation of pressure within the XY-plane.
(b) The direction of maximum change or steepest pressure gradient is given by VP [cf., eq. (9-5)].

to:
P=p.gz 9-1)

with characteristic density, p,, gravity, g, and
depth, z. In other words, the scalar variable, P,
is a function of z or P=f(z) (Fig. 9-2a). The
derivative is the pressure gradient over an infini-
tesimal increment of length, dP/dz=df(z)/dz:

f’(z)=dP/dz=
lim aP/az (for az approaching to 0)  (9-2)

The differential is dP=df’(z) dz. The derivative
is, also, known as the differential quotient or
ratio of two differentials, dP and dz. The process
of finding derivatives is termed differentiation.

Table 9-1: Elementary differentiation rules.

d(cu)/du=c du"/du=nu"'

dcY/du=c“ In ¢ de'/du=e"

d Inu/du=1/u d sin u/du=cos u

d cos u/du=-sinu d(vu)/du=v+u(dv/du)

For the linear depth dependence of pressure,
the pressure gradient is the same in every point,
so that dP/dz=aP/az. Note that "d" is used for
infinitesimal increments or differentials, and a is
a finite differential. This example illustrates that
finding the derivative or infinitesimal gradient of
a scalar quantity, which varies linearly, is simple,
because finite units can be used. No differentia-
tion rules are needed for such simple cases.

Figure 9-2b illustrates pressure, which increas-
es in non-linear fashion with depth, due to "dif-
ferential" compaction of sedimentary rocks:

P=p.gz" 9-3)

with exponent n larger than unity. For this case,
not only the pressure, but, also, the pressure
gradient, increases with depth, so that dP/dz is
not equal to aP/az. The function p,gz" needs to
be differentiated in order to find the derivative
dP/dz at a specific depth. For this purpose a set
of differentiation rules or formulae are available
(Table 9-1). The derivative of the function in
equation (9-3) is as follows:

f'(z)= d(p,gz")/dz=np,gz"" (9-4)
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The change of lithostatic pressure in one
direction can be expressed as an ordinary differ-
ential. However, this is useful only in the absence
of lateral changes in lithostatic pressure. Such
lateral changes in pressure at a particular, con-
stant depth are graphed in Figure 9-3a. The
gradient of pressure in any horizontal direction
can be expressed as the sum of two, partial
derivatives, dP/dx and dP/dy. The pressure gradi-
ent in the X-direction is dP/dx; that in the Y-
direction is dP/dy. The maximum variation of
pressure in three dimensions can be concisely
represented by a vector, pointing in the direction
of maximum change:

VP =(dP/ox,0P/dy,dP/0z) (9-5)

using for the vector operator the Greek symbol
nabla, V, now, also, termed “"del." The vector
operator, if applied to a scalar field, provides the
gradient of a scalar.

[JExercise 9-2: The simple shear
deformation of Figure 9-4 can be
described by the following stream
function (see section 13-2): Y =(y/2)7*,
with angular shear strain-rate, . The
velocity of particles, moving in the X-
direction of shear, is given by v.=
dy/dz. The gradient of those velocities
is given by dx/dz=d*}/dz’. Determine
expressions for the velocity and its
gradient, by differentiation, using the
rules of Table 9-1.

9-3 Partial differentials of vectors

A vector quantity has both a magnitude and a
direction and is itself commonly a derivative of
another quantity. For example, a velocity vector,
v, can be defined as the change of displacement,
u, over time, t, in the principal directions:

v=(du,/dt,du,/dt,du,/dt) (9-6)

s

Figure 9-4: Uniform simple shear flow in XZ-
plane. See exercise 9-2.

The understanding is that u,, u,, and u, are paral-
lel to the coordinate axes X,, X,, and X,. The
choice of numerical or alphabetical indices for
vector components is entirely arbitrary. For
example, an alternative system uses u,, u,, and u,
as vector components in a frame of reference,
labelled XYZ rather than X,X,X,. It is, also,
permitted, and sometimes clearer, to use numeri-
cal indices in XYZ-space, as adopted here.

The gradient operator, if applied to a vector,
represents the matricial gradient:

av,/ox dv,/dy av,/oz
Vv= 0v,/0x 0v,/dy 0v,/0z 9-7)
0v5/0x 0v,/dy 0v,/0z

This is the velocity-gradient tensor, which is
mathematically identical to the sum of the strain-
rate and vorticity tensors [see section 9-6, equa-
tions (9-16a & b)]. Physically, it is obvious that
distortion must result if there exists an infinitesi-
mal gradient of velocity of particles in an infini-
tesimal volume. The distortion always is homoge-
neous for such small volumes, and the changes in
shape are controlled by the relative magnitude of
the strain-rate and vorticity tensors (see sections
9-6 & 13-6).
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The vector operator del is further applied to
vectors in two different ways, either as the dor
product (V.v) or as a cross-product (V x v). The
dot product, also termed the divergence or simply
div, reduces the vector, on which it is applied, to
a scalar number:

V.v=(0v,/0x)+ (0v,/0y)+ (0v,/0z) (9-8)

The physical importance lies in the fact that for
an incompressible fluid, with neither loss nor
production of matter, the divergence of the
velocity must be zero everywhere. The dot
product is, also, referred to as the scalar product,
because it generates a scalar quantity.

The cross-product of the velocity vector results
in another vector, termed the curl vector:

0v,/0z-0v4/dy
av,/0x-0v,/0z (9-9)
av,/dy-av,/ax

Vxv=

Physically, the curl of a velocity vector results in
the vorticity vector (&,,&,,&,), used in elements

CJExercise 9-3: Consider a pure shear
deformation at constant strain rate and
variable velocity, according to v,=éx,
v,=éyz, and v,=0 (Fig. 9-5). a) Deter-
mine the gradient tensor, divergence,
and curl vector of the velocity for this
particular pure shear. b) Discuss the
physical significance of these results.

of the vorticity tensor [eqs. (9-16a) & (13-25b)].
The cross-product is, also, known as the vector
product because it transforms one vector quantity
into another vector quantity. Confusingly, the
curl is sometimes referred to as the rotation
vector (rof) in European literature. Beware that
physically the angular velocity or rotation-rate
vector, 2, is only half the vorticity vector:
Q=(curl v)[2=(rot v)/2.

The operator del is, also, employed in the
Laplacian operator (a second-order differential):

V?=V.V=(8%/0x>+(8°/3dy*)+ (8*/9z>) (9-10)
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The Laplacian operator is applied in
biharmonic equations, operating on
stream functions (eq. 13-3). If the bihar-
monic function is zero, static equilibrium
is automatically fulfilled, and any acceler-
ations unaccounted for cannot occur.

9-4 Partial differential equations

An equation containing derivatives is
called a differential equation, and it be-
comes a partial differential equation if it
comprises partial derivatives. Differential
equations are extensively used in contin-
uum and fluid mechanics to describe the
physical state of the medium studied. For
example, the stress in an incompressible
fluid in every point is given by the fol-
lowing differential equation:

s

Figure 9-5: Uniform pure shear flow at constant strain rate.

See exercise 9-3.

5= (0/2)[(@vi/ax) + (Bv;/ax)]  (9-11)
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Table 9-2: Elementary integration rules.

fcu dx=c fu dx fu“ du=u"*"/(n+1)
fc“ du=c"/Inc fe” du=e*
fu“ du=Inu fcosudu=sinu

fsin u du=-cos u fu dv=uv ~fv du

with viscosity, 7, stress tensor, 7;;, and strain-rate
tensor, (1/2)[(dv;/dx;)+(dv;/dx;)]. A flow is
considered steady state if the velocity, density,
pressure, and other physical quantities at any
spatial point do not vary over time; their deriva-
tive over time is zero (9/dt=0).

[JExercise 9-4: a) Determine the
analytical expression for the stress
tensor for the particular simple shear
of exercise 9-2, using the differential
equation (9-11). b) Determine the
magnitude of the stress tensor in MPa
for a thrust movement with y=10"s"
and =10% Pa s.

9-5 Integration

An integral, also termed anti-derivative, is
technically defined as the primitive function, f(z),
which suits the derivative, f’(z). The process of
determining the integrals, that belong to particular
derivatives, is called integration. Because differ-
ential equations are so important in continuum
mechanics and fluid dynamics, integration is
frequently required. Some elementary integration
rules are given in Table 9-2.

For example, the stream function is defined by
a pair of coupled differential equations: v,=ay/dz
and v,=-0y/dx (see section 13-2). The actual
stream function itself can be found by integration
of the velocity components for a particular flow

field:

a,b=.£ v,‘dz-i-‘[ v,dx+c (9-12)
A simple shear, parallel to the X-axis, has a
velocity profile, given by: v,=(y/2)z and v,=0.
Solving the integrals of expression (9-12) yields:

v=0y/2)Z*+c¢ (9-13)
The so-called boundary condition is that no
material may move across the X-axis, so that ¢
must be zero at z=0. This leads to the elimina-
tion of the constant, which is zero.

CJExercise 9-5: Determine, by
integration, the stream function for
the pure shear flow of exercise 9-3.

9-6 Tensors and matrices

Scalar quantities are represented by a single
symbol representing the scalar. Vector quantities -
such as velocities - require representation by col-
umn matrices, which comprise one column only.
The matrix elements are given conveniently by v;
(with i=1,...,3 for 3D approaches). Tensor
quantities - such as stress, strain, strain-rate,
infinitesimal rotation, spin, vorticity, and defor-
mation - are all represented in 3D, by 3x3 matri-
ces. The first row specifies the three parameters
in the X-direction, the second row has three
parameters valid for the Y-direction, and the third
row is pertinent to the Z-direction. This assumes
a Cartesian coordinate system; similar tensor
arrangements result in other frames of reference.

A general 2D deformation can be represented
by a deformation matrix, F, which transfers each
particle of the undeformed continuum with posi-
tion (X,,2,) to the deformed position (x,,z,):

X F, 0 Fj; Xo
vi|l=[ 0 1 0 Yo (9-14)
Z, Fy 0 Fy Zy
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The unit square of Figure 9-6 has been deformed
using various deformation matrices. Many 2D
deformations, in which the intermediate axis of
the unit volume retains unit length, are commonly
described by a 2x2 matrix:

Xo

Yo (9-15)

Xy F,; Fy,
Yi | F, Fyp

which ignores the unchanging intermediate axis
and fixes the coordinate axes, such that all defor-
mation takes place in the XY-plane.

Obviously, the successful manipulation of tensor
quantities requires a good understanding of matrix
computation. The deformation matrix can be
represented either by its elements, F;, or by

either a bold capital letter, F, or italicized capital,
F, for the matrix as a whole. Similarly, vectorial
matrices can be represented by their elements, v;,
a bold lower case letter, v, an italicized lower
case letter, v, or by superposing a vector symbol
on an ordinary lower case letter, v. There is a
whole range of operating rules for the multiplica-
tion and subtraction of matrices. These rules are
summarized in Table 9-3. The elements of an m
by n matrix, A, can be written as a_,. The ele-
ments in the first row are a,,, setting n at 1 to m.
Elements in the first column are found by a,,,
setting m at 1 to n.

The transpose of a matrix is denoted with a
capital letter T for the exponent, A'. Many
matrices applied in rock mechanics are either

d1

1.
4

Y [1 0
t 2] o
A

A

1./

2 1
1 2] ¢

b

5l  bo S 2 R Ca
Original
square 2 1
14 a do as d3 |0 1
0 1 | I I T ] X
0 1 2 3 4 5 6

s

Figure 9-6: Examples of finite deformation matrices deforming a unit square.
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Table 9-3: Elementary matrix operation rules.

AB=X a,b, A+B=B+4
A+(B+C)=(A+B)+C  AB=/=BA

A(BC)=(AB)C AB+C)=AB+AC

(B+C)A=BA+CA (A+B)"=A"+B"

MB)TzBTAT (AT)T=A

symmetric (AT=A) or skew-symmetric (AT=-A).
For example, the vorticity tensor is skew-sym-
metric (W'=-W):

W= (1/2)[(8v/8x)-(3v,/0%)] =
0 &J2 -0,

(9-16a)

The strain-rate tensor is symmetric (D"=D):
D;=(1/2)[(av;/ax;) + (av;/dx)] =
ey Vf2 yu/2

Vo2 6 Ful2
Vol2 Va2 e

(9-16b)

The sum of the strain-rate and vorticity tensors
gives the velocity-gradient tensor of equation (9-
7). There is no special mathematical property
implied by this decomposition of the velocity-
gradient tensor. Any square matrix (2x2 or 3x3)
of real elements can always be expressed as the
sum of a symmetric and skew-symmetric matrix.
The initial matrix need not be symmetric or
skew-symmetric itself. However, it is remarkable
that the mathematical operation, such as the
decomposition of the velocity-gradient tensor into
its symmetric and anti-symmetric parts, provide
tensors, each of which corresponds to a distinct
physical aspect of the deformation.

UJExercise 9-6: Consider the following
deformation tensors, and sketch the
resulting deformations in Figure 9-4:

kit s

[CJExercise 9-7: a) Determine the strain
rate tensor for the pure shear deforma-
tion of exercise 9-3. b) Prove that the
elements of the vorticity tensor all are
zero for pure shear. ¢) Prove that for
pure shear the strain-rate tensor is
identical to the velocity gradient tensor.

9-7 Determinants

A special operation, applied only to square
matrices, is the determination of a particular
scalar number or the determinant, unique for that
matrix. The determinant of a 2x2 matrix is
simply calculated by subtracting the product of
the numbers in the two diagonal directions:

8 6
matrix: A = |3 5 (9-17a)
determinant: | 4 | =(8x5)-(3x6)=22 (9-17b)

Finding the determinant of a 3x3 matrix is slight-
ly more involved:

b1| blz b|3
matrix: B = b, by by (9-18a)
b3| bsz b33
determinant: | B| =
b2bs by;b2s b0z
bu bazbsa ’blz b31b33 +b13 b31b32 (9'18b)

Application of the determinant to the stress
tensor or parts of it yields two of the three invar-
iants of the tensor. Invariants are scalar numbers,
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[ Exercise 9-8: a) Calculate the deter-
minant of the following stress tensor:

0 0 100
0 00
-100 0 0

b) What is the physical significance of
the scalar number obtained in (a)?

which remain the same for a particular stress
condition, even if the coordinate axes change -
something which would affect the numerical
values of the elements in a stress tensor (see
sections 10-9 & 10-11). The third invariant of the
stress tensor is:

Ty Ty Ty
Ia=|T|= Ty Tn Ty
Ty Tap T

(9-19a)

The second invariant of the stress tensor is:

T21 TI!
T32 T33

T33 T.’Sl
Tl3 Tll

Tll TIZ

I,= (9-19b)
The first invariant of the stress tensor is simply
the sum of the normal stresses and does not make
use of any determinant value:

II=T“+TE+T33 (9'190)
If the determinant of the stress tensor is zero, the
matrix must be singular. An example of a singu-
lar stress tensor is (in units of MPa):

100 0
0 (9-20)
-100

o oo

0
0
All singular stress tensors represent a state of
plane stress. If the first invariant of the stress

tensor is, also, zero, then the tensor is represents
a plane, deviatoric stress.

9-8 Complex variables and complex
functions

A complex number comprises a real part and an
imaginary part. For example, 8+5i is a complex
number with real part 8§ and imaginary part 5i.
The symbol i denotes the square root of (-1), with
the understanding that this is the solution of the
square root of i*=-1. Any complex variable, z,
can be expressed in Cartesian cordinates in the
form: z=x+iy. The complex function, W, can be
defined as a function of the complex variable, z.
For example, W=z can be written as follows:

w=2z"=(x+iy)=x>y*+2ixy=u+iv (9-21a)

The real part of the complex function is:

u(x,y)=x*y? (9-21b)
The imaginary part is:
v(x,y)=2xy (9-21c)

One practical feature of a complex function is
that it provides a single expression, comprising
two other functions. This property is exploited in
the representation of the complementary potential
function and stream function of the same flow in
terms of a single complex function (see section
13-3).

[JExercise 9-9: Find the real and
imaginary parts of the following com-
plex functions: (a) W=f(z)=z,
(b) W=f(z)=-z, and (¢) W=[(z)=7".
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