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Note that each atom in the sublattice b has three nearest neighbors, each of them belongs to the sublattice c. The
Schrödinger equation for such an atom looks like
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In the same way,
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These two linear homogeneous equations for two variables ub and uc only have non-trivial solution when the following
condition is satisfied,
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that gives the energy spectrum in graphene in the tight-binding approximation.

(c) Each vector of the reciprocal lattice, ~K, obeys the conditions ~K~a1 = 2πn1 and ~K~a2 = 2πn2, with integers n1

and n2. This provides the parametrization

~K =
2π
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√
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The shortest vectors correspond to the values (0,±1), (±1, 0), (1, 1), and (−1,−1). We choose two of them as the

reciprocal lattice unit vectors, ~K1 = (2π/3a)(2, 0) and ~K2 = (2π/2a)(−1,
√

3). The reciprocal lattice unit cell is a
rhombus formed by these two vectors (Fig. 1): It contains all non-equivalent points in the reciprocal space. Equivalent
are the points separated by a period of the reciprocal lattice.

It is usually more convenient, however, to choose the set of non-equivalent points differently — to construct a
Brillouin zone. For this purpose, we take the origin of the resiprocal lattice and draw all six shortest lattice periods.
Their ends define a hexagon that contains three unit cells. Then we take the middle of each vectors and put lines
perpendicular to the vectors. These lines form another hexagon, which is a Brillouin zone (BZ). The volume of BZ
equals to the volume of a unit cell, and one can check that BZ contains all non-equivalent points of the reciprocal
space.

(d) The corners of BZ have the following coordinates:
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It is straigthforward to check that the energy at all these points turns to zero. Note that despite the fact that we
found six points each of them is shared by three BZ’s, or three unit cells. Thus, we only have two non-equivalent

K-points. Let us choose ~K0 = (2π/3a)(1,±1/
√

3). Note that none of them is a reciprocal lattice period.

(e) Now we expand the energy in the vicinity of the nodes. We write ~K = ~K0 + ~q and assume that q is small,
qxa, qya� 1. Expanding
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we find that constant and linear terms cancel, and the energy has a linear dispersion

E =
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II. 2. PEIERLS TRANSITION

Consider a one-dimensional chain (period a) of atoms. Each atom gives one electron to the conduction band,
thus normally we expect that this chain is metallic. However, due to electron-phonon interaction, the atoms of the
chain can rearrange themselves. Consider the following rearrangement (Fig. 2): Every second atom is displaced by u
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from its equilibrium position. Obviously, this costs elastic energy due to atomic interactions; for low displacements,
this energy is quadratic in u, Vel = αu2/2. On the other hand, there is also energy gain due to electron-electron
interactions. In the second order perturbation theory (almost free electrons), calculate this energy gain and conclude
whether the rearrangement occurs.

a

u

FIG. 2: Top: Unperturbed atomic chain. Bottom: The atomic rearrangement leading to a chain with a doubled lattice period.

In the unperturbed problem, the electrons are almost free, with the spectrum E0 = h̄2k2/(2m). The energy only
deviates from this expression close to the points k = π/a, where the gap in the spectrum opens. In the ground state,
all states below the Fermi energy are full. The Fermi energy lies at the middle of the band, since only one electron
per atom is supplied. In one dimension, the ”Fermi surface” consists of just two points, k = ±π/(2a).

If the atoms are rearranged, the period of the lattice doubles. Thus, at k = π/(2a) the gap in the spectrum must
open. In the free electron approximation, close to this point, one has
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where V is the matrix element of the periodic atomic potential (after the rearrangement) calculated at k = π/(2a).
The signs ± corresponds to the states above and below the gap, respectively. But only the states below the gap are
full. Due to the opening of the gap the total energy of electron lowers. This energy gain is given by
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where L is the length of the chain, and E− denotes the renormalized energy (3) with the minus sign. To calculate the
integral, we linearize E(k) in the vicinity of π/(2a), E(k) = EF + vF q, q = k − π/(2a),
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We can calculate the integral by splitting it into two: for |h̄vF q| <∼ |V | (giving |V |/h̄vF ) and for |h̄vF q| >∼ |V |. The
second integral diverges logarithmically and has to be cut off at low momenta q. Summing up, we obtain
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,

where B is the energy cut-off. Note that in the weak coupling limit (V → 0), the logarithmic kinetic energy is
always greater than the quadratic elastic energy, and thus the rearrangement of atome is always profitable. But the
rearrangement means that there are no electron states at the Fermi surface — the material becomes an insulator.
One-dimensional metals do not exist.


