III. 3. SPIN HAMILTONIAN IN AN EXTERNAL MAGNETIC FIELD: MEAN-FIELD
APPROXIMATION

Consider an Ising Hamiltonian for a spin S;, H = —JS; Zj S; — hOS_’;. Here the spins S; can only assume values
+1/2, J > 0 is a ferromagnetic coupling constant, the summation is carried out over all sites j that are nearest
neighbors to 4 (the coordination number — the number of nearest neighbors — equals N), and hy > 0 is the external
magnetic field. We measure magnetic field for convenience in energy units (up = 1).

(a) Below critical temperature and in not too high fields hg there are three solutions to the mean field equations.
The middle one is unstable; two others are stable. The solution with a lower energy will be chosen. Calculate the
energy of both solutions and determine their relative stability.

(b) Above the critical temperature, there is only one solution. In low external fields, hg — 0, the average spin is
proportional to the external field, (S;) = xhg. Caluclate the succeptibility x.
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FIG. 3: Graphical solution of Eq.(5).

In the mean-field approximation, one replaces all the spins interacting with a given spin by the averaged field,
>-;8; — N(Sj). The energy (Hamiltonian) of the system takes the form

H = —hSi;, h=ho+N(S;). (4)

The average spin (S;) is found self-consistently. Indeed, the probability for spin-up depends exponentially on the
energy of spin-up configuration, Py « exp(h/2kpT). In the same way, P| « exp(—h/2kgT). But the sum of these
two probabilities equals one, and thus

Py = exp(h/2kpT)/2cosh(h/2kgT) ; P, = exp(—h/2kpT)/2cosh(h/2kpT) .
The average spin becomes (S;) = 1/2(P; — P|) = (1/2) tanh(h/2kpT). This gives us the equation for the field h,

JN h
= —— tanh —— .
h=ho+ > tan T (5)

This equation can not be solved analytically, but we can investigate the main features. First, everything is clear
in zero external field, ho = 0. Then the right hand side of Eq. (5) is linear in low fields, tanh(h/2kpT) =~ h/2kpT.
When the slope of the right-hand side is greater than one (T' < T, = JN/(4kp)), the equation has three solutions.
One is h = 0, corresponding to a non-magnetic system ((S;) = 0). Two other equations correspond to the non-zero
average spins — the system is magnetic. For higher temperatures T" > T, there is only one solution, corresponding
to zero magnetization — the system is in a paramagnetic (not ferromagnetic) state.

(a) If the external field hg is weak, one still has three solutions for T' < T,.. The middle one (small hg) corresponds
to the maximum of energy; the other two correspond to two energy minima. For hg = 0 these two would be completely
equivalent: Indeed, there is no preferential direction of magnetization, and if h # 0 is a solution, —h is also a solution



with the same energy: One can flip magnetization at no energy cost. For hg > 0, the situation is different: there are
two solutions hy > 0 and he < 0, with |hy| > |ha|. Let us compare their energies.

The energy is the averaged Hamiltonian, thus E = —h(S;) = —(h/2)tanh(h/2kpT). This is an even function of
h, and decreases monotonously for A > 0. Then E(h;) < E(hg): the lower energy corresponds to the state with
magnetization aligned with external field.

(b) Above the critical temperature, there is only one solution close to h ~ 0. In Eq. (5), let us expand the right-hand
side in A. Then we can solve the equation,

ho

h=1= JN/(4kpT)

The average spin is (S;) = (1/2) tanh(h/2kgT) ~ h/(4kpT). It is proportional to the external field hg, (S;) = xho.
Writing the succeptibility x in terms of the ternsition temperature, we find x = 1/(4kp(T — T¢)), in accordance with
general conclusions for the temperature dependence of the succeptibility that follow from the Landau theory of second
order phase transitions.



