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III. 3. SPIN HAMILTONIAN IN AN EXTERNAL MAGNETIC FIELD: MEAN-FIELD

APPROXIMATION

Consider an Ising Hamiltonian for a spin Si, Ĥ = −JSi

∑

j Sj − h0
~Si. Here the spins Si can only assume values

±1/2, J > 0 is a ferromagnetic coupling constant, the summation is carried out over all sites j that are nearest
neighbors to i (the coordination number — the number of nearest neighbors — equals N), and h0 > 0 is the external
magnetic field. We measure magnetic field for convenience in energy units (µB = 1).

(a) Below critical temperature and in not too high fields h0 there are three solutions to the mean field equations.
The middle one is unstable; two others are stable. The solution with a lower energy will be chosen. Calculate the
energy of both solutions and determine their relative stability.

(b) Above the critical temperature, there is only one solution. In low external fields, h0 → 0, the average spin is
proportional to the external field, 〈Si〉 = χh0. Caluclate the succeptibility χ.
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FIG. 3: Graphical solution of Eq.(5).

In the mean-field approximation, one replaces all the spins interacting with a given spin by the averaged field,
∑

j Sj → N〈Sj〉. The energy (Hamiltonian) of the system takes the form

Ĥ = −hSi, h = h0 +N〈Sj〉 . (4)

The average spin 〈Si〉 is found self-consistently. Indeed, the probability for spin-up depends exponentially on the
energy of spin-up configuration, P↑ ∝ exp(h/2kBT ). In the same way, P↓ ∝ exp(−h/2kBT ). But the sum of these
two probabilities equals one, and thus

P↑ = exp(h/2kBT )/2 cosh(h/2kBT ) ; P↓ = exp(−h/2kBT )/2 cosh(h/2kBT ) .

The average spin becomes 〈Si〉 = 1/2(P↑ − P↓) = (1/2) tanh(h/2kBT ). This gives us the equation for the field h,

h = h0 +
JN

2
tanh

h

2kBT
. (5)

This equation can not be solved analytically, but we can investigate the main features. First, everything is clear
in zero external field, h0 = 0. Then the right hand side of Eq. (5) is linear in low fields, tanh(h/2kBT ) ≈ h/2kBT .
When the slope of the right-hand side is greater than one (T < Tc ≡ JN/(4kB)), the equation has three solutions.
One is h = 0, corresponding to a non-magnetic system (〈Si〉 = 0). Two other equations correspond to the non-zero
average spins — the system is magnetic. For higher temperatures T > Tc, there is only one solution, corresponding
to zero magnetization — the system is in a paramagnetic (not ferromagnetic) state.

(a) If the external field h0 is weak, one still has three solutions for T < Tc. The middle one (small h0) corresponds
to the maximum of energy; the other two correspond to two energy minima. For h0 = 0 these two would be completely
equivalent: Indeed, there is no preferential direction of magnetization, and if h 6= 0 is a solution, −h is also a solution
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with the same energy: One can flip magnetization at no energy cost. For h0 > 0, the situation is different: there are
two solutions h1 > 0 and h2 < 0, with |h1| > |h2|. Let us compare their energies.

The energy is the averaged Hamiltonian, thus E = −h〈Si〉 = −(h/2) tanh(h/2kBT ). This is an even function of
h, and decreases monotonously for h > 0. Then E(h1) < E(h2): the lower energy corresponds to the state with
magnetization aligned with external field.

(b) Above the critical temperature, there is only one solution close to h ≈ 0. In Eq. (5), let us expand the right-hand
side in h. Then we can solve the equation,

h =
h0

1 − JN/(4kBT )
.

The average spin is 〈Si〉 = (1/2) tanh(h/2kBT ) ≈ h/(4kBT ). It is proportional to the external field h0, 〈Si〉 = χh0.
Writing the succeptibility χ in terms of the ternsition temperature, we find χ = 1/(4kB(T − Tc)), in accordance with
general conclusions for the temperature dependence of the succeptibility that follow from the Landau theory of second
order phase transitions.

IV. 5. UPPER CRITICAL FIELD IN TYPE II SUPERCONDUCTORS

Using Ginzburg-Landau equations for κ > 1/
√

2, find at which magnetic field even an infinitesimal piece of a
superconductor in the bulk of the sample becomes unstable.

Let us choose the z coordinate axis parallel to the magnetic field, and take the following gauge for the vector
potential, Ay = Hx, Ax = Az = 0. We describe the superconducting piece far from the boundary (actually, a
possibility of creation of a superconducting piece close to the boundary would yield a higher critical field). For
simplicity, let us consider a piece with the wave function that only depends on one coordinate, x (it turns out that
investigation of a superconducting piece of an arbitrary shape gives the same result for the critical field). Ginzburg-
Landau equations in dimensionless variables have the following form,

1

κ2

d2Ψ

dx2
+ Ψ(1 −A2) − Ψ3 = 0;

dΨ

dx

∣

∣

∣

∣

boundary

= 0;

d2A

dx2
− Ψ2A = 0 ,

where we assumed that Ψ is real (the phase of Ψ cancels anyway). If the superconducting piece is far from the
boundary, the order parameter decays off the piece, and is very small at the boundary, thus the boundary condition is
satisfied automatically. Since we are looking for the infinitelesimal piece, the order parameter must be small, Ψ � 1,
and thus the term with Ψ3 in the first equation can be disregarded, as well as the term with Ψ2A in the second
equation. We are thus left with the following equations,

1

κ2

d2Ψ

dx2
+ Ψ(1 −A2) = 0;

d2A

dx2
= 0 .

The second equation gives that A is a linear function of x, and, since at the transition the field must fully penetrate
the sample (Meissner effect disappears), one has Ay = Hx. We plug this in the first equation, to obtain

− h̄2

2m

d2Ψ

dx2
+
kx2

2
Ψ = εΨ , (6)

where we have identified ε = 1, 2m/h̄2 = κ2, k = 2H2. However, Eq. (6) is Schrödinger equation for a harmonic
oscillator, and it only has solutions for ε = h̄ω(n + 1/2), where n is an integer, and ω = (k/m)1/2. In terms of
Ginzburg-Landau equations, this means κ2 = 2H(n+ 1/2), or H = κ/(2n+ 1). The highest field at which solutions

exist is Hc2 = κ, or, in ordinary units, Hc2 = κ
√

2Hcm, where Hcm is the critical field in the bulk of superconductor.
At higher fields, superconducting state can not exist.


