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with the same energy: One can flip magnetization at no energy cost. For h0 > 0, the situation is different: there are
two solutions h1 > 0 and h2 < 0, with |h1| > |h2|. Let us compare their energies.

The energy is the averaged Hamiltonian, thus E = −h〈Si〉 = −(h/2) tanh(h/2kBT ). This is an even function of
h, and decreases monotonously for h > 0. Then E(h1) < E(h2): the lower energy corresponds to the state with
magnetization aligned with external field.

(b) Above the critical temperature, there is only one solution close to h ≈ 0. In Eq. (5), let us expand the right-hand
side in h. Then we can solve the equation,

h =
h0

1 − JN/(4kBT )
.

The average spin is 〈Si〉 = (1/2) tanh(h/2kBT ) ≈ h/(4kBT ). It is proportional to the external field h0, 〈Si〉 = χh0.
Writing the succeptibility χ in terms of the ternsition temperature, we find χ = 1/(4kB(T − Tc)), in accordance with
general conclusions for the temperature dependence of the succeptibility that follow from the Landau theory of second
order phase transitions.

IV. 5. UPPER CRITICAL FIELD IN TYPE II SUPERCONDUCTORS

Using Ginzburg-Landau equations for κ > 1/
√

2, find at which magnetic field even an infinitesimal piece of a
superconductor in the bulk of the sample becomes unstable.

Let us choose the z coordinate axis parallel to the magnetic field, and take the following gauge for the vector
potential, Ay = Hx, Ax = Az = 0. We describe the superconducting piece far from the boundary (actually, a
possibility of creation of a superconducting piece close to the boundary would yield a higher critical field). For
simplicity, let us consider a piece with the wave function that only depends on one coordinate, x (it turns out that
investigation of a superconducting piece of an arbitrary shape gives the same result for the critical field). Ginzburg-
Landau equations in dimensionless variables have the following form,

1

κ2

d2Ψ

dx2
+ Ψ(1 −A2) − Ψ3 = 0;

dΨ

dx

∣

∣

∣

∣

boundary

= 0;

d2A

dx2
− Ψ2A = 0 ,

where we assumed that Ψ is real (the phase of Ψ cancels anyway). If the superconducting piece is far from the
boundary, the order parameter decays off the piece, and is very small at the boundary, thus the boundary condition is
satisfied automatically. Since we are looking for the infinitelesimal piece, the order parameter must be small, Ψ � 1,
and thus the term with Ψ3 in the first equation can be disregarded, as well as the term with Ψ2A in the second
equation. We are thus left with the following equations,

1

κ2

d2Ψ

dx2
+ Ψ(1 −A2) = 0;

d2A

dx2
= 0 .

The second equation gives that A is a linear function of x, and, since at the transition the field must fully penetrate
the sample (Meissner effect disappears), one has Ay = Hx. We plug this in the first equation, to obtain

− h̄2

2m

d2Ψ

dx2
+
kx2

2
Ψ = εΨ , (6)

where we have identified ε = 1, 2m/h̄2 = κ2, k = 2H2. However, Eq. (6) is Schrödinger equation for a harmonic
oscillator, and it only has solutions for ε = h̄ω(n + 1/2), where n is an integer, and ω = (k/m)1/2. In terms of
Ginzburg-Landau equations, this means κ2 = 2H(n+ 1/2), or H = κ/(2n+ 1). The highest field at which solutions

exist is Hc2 = κ, or, in ordinary units, Hc2 = κ
√

2Hcm, where Hcm is the critical field in the bulk of superconductor.
At higher fields, superconducting state can not exist.


