Quamtran circuits $N \alpha C 4.2,4.3$
u
\longrightarrow time
\square
\longrightarrow time

3 quit $\{=0$

contralled-s if quoit $1=|1\rangle$, then apply \cup to $q-2$
\Longrightarrow doubly controlled NOT \rightarrow pips 3 iff. 7 and 2 are 11\rangle

$\longrightarrow N \times C$ corrolary 4.2.
(1) $\quad{ }_{e}^{\text {e }}=$

$$
\begin{aligned}
& |00\rangle \rightarrow|00\rangle \\
& |01\rangle \rightarrow|01\rangle \\
& |10\rangle \rightarrow e^{i \phi}|10\rangle \\
& |11\rangle \rightarrow c^{i \phi}|11\rangle
\end{aligned}
$$

(2) if qubut s is $|0\rangle \rightarrow \cdot A B C=I$ applind to $9-2$

$$
\|>\rightarrow e^{i \phi} f \times B \times C=U
$$

what if 9.1 stants from $\langle 0\rangle+|1\rangle$?

$$
(|0\rangle+|i\rangle)|0\rangle \rightarrow\left(|0\rangle+e^{i \phi}|1\rangle\right)|0\rangle=|00\rangle+e^{i \phi}(10)
$$

October 07 2005.GWB - 3/7 - Fri Oct 072005 15:59:43

$$
\begin{aligned}
\text { If } & =1
\end{aligned}
$$

October 07 2005.GWB - 4/7 - Fri Oct 072005 16:06:16

Remmans on umivarality

- it doessult say anything efficiency
- Some getos are cesier to inplemut given H 's a ailable

October 07 2005.GWB - 5/7 - Fri Oct 072005 16:10:44

Teleportation $N<C$ 1.3.6-1.3.7

Tramsmit $|4\rangle$ using classical commwricationooly
why diflicaldr
canlt measine
con't copies

Bell states

$$
\begin{aligned}
& |00\rangle \xrightarrow{H}(|0\rangle+|1\rangle)|0\rangle \xrightarrow{\text { andT }}|00\rangle+|11\rangle=\beta_{00} \\
& |01\rangle \rightarrow(\rangle|1\rangle,|01\rangle+|10\rangle=\beta_{01} \\
& |10\rangle \rightarrow(|0\rangle-|1\rangle)|0\rangle \rightarrow|00\rangle-|11\rangle=\beta_{10} \\
& =(10)-(10)=\beta_{11} \\
& \uparrow \\
& \text { computational } \\
& \text { besiss } \\
& \text { Bell besis }
\end{aligned}
$$

October 07 2005.GWB - 7/7 - Fri Oct 072005 16:18:28
Alice

$\begin{array}{lllll}B_{0} b & \psi_{0} & \psi_{1} & \psi_{2} & \psi_{3}\end{array}$

$$
\left|\psi_{0}\right\rangle=(\alpha|0\rangle+\beta|1\rangle)(|00\rangle+|11\rangle)
$$

$$
\begin{gathered}
\left.\left|007+e^{i \phi}\right| 11\right\rangle \\
100\rangle+|11\rangle
\end{gathered}
$$

$$
\left|\psi_{1}\right\rangle=
$$

$$
+\beta|1\rangle(110\rangle+|01\rangle)
$$

$$
\begin{aligned}
\left|\psi_{1}\right\rangle= & \left(\left|\psi_{2}\right\rangle=\right. \\
= & |00\rangle+|1\rangle)(|00\rangle+|1|)+\beta(|0\rangle-(1\rangle)(|10\rangle+|0|)) \\
& +|10\rangle(\alpha|0\rangle-\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle) \\
& |1\rangle(\alpha|1\rangle-\beta|0\rangle)
\end{aligned}
$$

NOTE: . at faster then light; No copy

