Factoring
Fundamental thm. of arithmetiss
\forall integer N, \exists umique decomposition into puime numbens

$$
\begin{aligned}
12 & =2 \times 2 \times 3 \\
21 & =3 \times 7 \\
17 & =17
\end{aligned}
$$

"Fectoring" \rightarrow findiy these primes

$$
\begin{gathered}
\text { Meng ways: - Krial division - very inefficient } \\
\text { - number field sieve - slile ineff } \\
\log _{0} \sim e^{L / 3} \\
\text { clasical } \quad \log _{2} N
\end{gathered}
$$

RSA $\left\{\begin{array}{l}\text {. best hnown } V \text { alg. requine exppen work } \\ \text {. easy to multiply } \rightarrow \text { "hard" puoblem }\end{array}\right.$

Results from number theory

$$
f(x)=a^{x} \bmod N
$$

\longrightarrow camposite numben any namber, coprime with N

$$
\exists \Omega: f(x+\Omega)=f(x) \quad(\forall x)
$$

$g^{c d}\left(a^{\Omega / 2} \pm 1, N\right)$ is puine factons of N
Quentum algorithm: find Ω

Quantum parellehism
Say $f(x) \quad 0 \rightarrow 3$
$1 \rightarrow 1$
$2-23$
$2 \rightarrow 1$
$4 \rightarrow 3$

Let U_{f} do $\left.|x\rangle|0\rangle \rightarrow|x\rangle \mid f(x\rangle\right)$

$$
\begin{aligned}
\sum_{x=0}^{7}|x\rangle|0\rangle \stackrel{U_{f}}{\longrightarrow} & \sum_{x=0}^{7}|x\rangle|f(x\rangle\rangle \\
= & |0\rangle|3\rangle+|1\rangle|1\rangle+|2\rangle|3\rangle+|3\rangle 11\rangle \\
& +|4\rangle|3\rangle+|5\rangle|1\rangle+|6\rangle|3\rangle+|7\rangle|1\rangle
\end{aligned}
$$

measure ist registen : ramdomly $0 . .7$
2nd uegistu: 1 or 3

October 28 2005.GWB - 4/6 - Fri Oct 282005 15:50:59

FFT

$$
\begin{array}{r}
x_{0}, \ldots, x_{N-1} \rightarrow y_{\cdots} \cdots y_{N-1} \\
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{2 \pi i\left(\frac{j k}{N}\right)}
\end{array}
$$

Examples:*10000000 $\rightarrow 11111111$ 10001000 $\rightarrow 101010100$ 10101010 $\rightarrow 10001000$ 11111111 $\rightarrow 10000000$	
Pa. PNEKTS	

* 1000 $1000 \rightarrow 10101010$
$01000100 \rightarrow 10-i 0-10 i 0$ REMOVES
$00100010 \longrightarrow 10-1010-10$ OFFSET
$00010001 \longrightarrow 10+i 0-10-10$
$01010181 \rightarrow 1000-1000$

$$
\begin{aligned}
& \text { QFT } \\
& |x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i \frac{x y}{N}}|y\rangle \\
& 1000\rangle \rightarrow 1000\rangle+\langle 001\rangle+1010\rangle+\cdots+|11\rangle\rangle \\
& |000\rangle+|100\rangle \rightarrow|000\rangle+|010\rangle+|100\rangle+|110\rangle \\
& |001\rangle+|101\rangle \rightarrow|000\rangle-i|010\rangle-|100\rangle+i|10\rangle
\end{aligned}
$$

etc.
Bach to example:
Afren $\left.\left.U_{f}:(10\rangle+|2\rangle+|4\rangle+|6\rangle\right)|3\rangle+(11\rangle+|3\rangle+|5\rangle+|7\rangle\right)|1\rangle$
QFT $\rightarrow(|0\rangle+|4\rangle)|3\rangle+(|0\rangle-|4\rangle)|1\rangle$
Meas. ISt register: 0 , on $4 \quad$ $k \frac{N}{\Omega}=k \frac{8}{2}=k 4$

$$
\left.\left.\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
1 & & 1 & 0 \\
0 & 0
\end{array}\right]+\frac{1}{4} \right\rvert\, \begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll|l}
1 & 0 & \frac{256}{2}=k \\
0 & 1 & 0 \\
0 & 0
\end{array}\right]
$$

Algouthn priod liedize
$N<C$ 5, Berenas, quat-ph/9612014
(1) Iriat to $\underbrace{|0\rangle}_{2 L} \underbrace{|0\rangle}_{L}$
(2) Hedamand $\frac{1}{2^{L}} \sum_{x=0}^{2 L}-|x\rangle|\cdot\rangle$

$$
=\frac{1}{\sqrt{n} \sum_{n}^{2}} \sum_{j=0}^{i^{L} / 2}|j \Omega+l\rangle|f(l)\rangle
$$

(4) QFT $\left.\rightarrow \frac{1}{\sqrt{n}} \sum_{j=0}^{n} \exp \left(2 \pi i \frac{l_{j}}{n}\right)\left|j \frac{2^{2 L}}{n}\right\rangle \right\rvert\, f(e l) \rightarrow N \alpha C 5.1$

$$
\begin{aligned}
& |0\rangle \equiv \text { 庄 }= \\
& \text { (0) } \equiv a^{a} \bmod N
\end{aligned}
$$

Move gencral: Lidden subquep

