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Turing Machines (1936)
Alan M. Turing (1912-1954)

1 0 0 1 1 0 1 1 0 1 0 1 0 ……

Qk

< State0, Symbol, Statenext, 
New Symbol, Action > 

Actions:     (1) move left
(2) move right

(finite state machine)

(tape of unlimited length)

Enigma, theory of computability, UTM

Try designing a Turing machine for adding two numbers

Is there a universal model for computation?



Universal Turing machine

A universal Turing machine can mimic the operation 
of any Turing machine!

• Feed the UTM a tape with   (1) description of the Turing machine T
(2) the input string to T

• The UTM will then produce the same output string 
as T would produce, given the input

• Description of T can be given in the form of a binary string reflecting

< State0, Symbol, Statenext, New symbol, Action > 

Is your PC a universal Turing machine?



Computability

A universal Turing machine can compute
all functions computable on any machine

Are all functions computable?

(Church-Turing thesis)

1. There are uncountably many real numbers but only 
countably many Turing machines

2. Halting problem (related to Godel’s theorem)

NO:



Complexity theory

A universal Turing machine can efficiently
simulate any algorithmic process

(strong Church-Turing thesis)

No essential difference between an abacus and a supercomputer!
(they are polynomially equivalent)

“Efficient”: the effort grows at most polynomially in the problem size
“Inefficient”:  … superpolynomially (e.g. expontially) …

Tractable versus intractable!

Note: effort = time x size x precision (or energy)



Information theory (1948)

Claude Shannon (1916-2001)

What about not equally likely messages?
By how much can we compress a bit string?

001010010100100011001…

000111111000000000111…

100001100000010000010…

The more random a state, the higher the entropy, the more information it can contain!

H = p(0) log2 p(0) + p(1) log2 p(1)   (for i.i.d rand var)

p(0) = p(1) = 1/2  -> H = 1 (bit)

H(p) gives the maximum compression ratio possible

Information contained in n equally likely messages?

I = log2 n bits



Information theory (1948)

How much information can we transmit over a noisy channel?

C gives the maximum (asymptotically) error-free data rate possible

Define channel capacity  C = I(X,Y) = H(Y) - H(Y|X) 

Example:
1-p

1-p

p

p

0 0

11

C = 1 - H(p) 

Need redundancy for reliable data transmission



Thermodynamics and computation

How much energy does it cost to compute ?
Is it possible to compute reversibly ?

Note: Computers generates heat! 
(N)AND gate is irreversible!

In  out
00   0
01   0
10   0
11   1

In  out
00   00
01   00
10   10
11   11

In    out
000 000
001 001
010 010
011 101
100   100
101   011
110   110
111   111

Fredkin gate



Computation costs no energy -
erasing information does

Rolf Landauer
1927 - 1999

Bit erasure dissipates (kT ln2) to the environment

Landauer’s principle:

Bit erasure increases entropy by (k ln2)

OR

In reversible computation, no bits are erased 
and no energy is dissipated



Information vs physics

computation physical process

computer physical system

input initial state

rules (algorithm) laws of motion

output final state

Deep questions about complexity theory, information theory, thermodynamics, 
are revisited when physical systems obey the laws of quantum mechanics



Computation with quantum systems

Paul Benioff:   

prescription for classical computation 
with quantum systems (unitary evolution)
(lecture 2)

Richard Feynman:   

couldn’t we efficiently simulate quantum 
systems using a “quantum computer” ?
(lecture 8)

David Deutsch:   

a universal Turing machine cannot efficiently
simulate a quantum computer

(e.g. Deutsch’ problem , lecture 3)



Quantum Parallelism

0000 f (0)(0)(0)(0)

1111 f (1)(1)(1)(1)

f

f

| 0 | 0 | 0 | 0 〉〉〉〉 ++++ | 1 | 1 | 1 | 1 〉〉〉〉 | | | | f (0) (0) (0) (0) 〉〉〉〉 ++++ | | | | f (1) (1) (1) (1) 〉〉〉〉Uf

Computational power
classically ∝∝∝∝ n

quantum ∝∝∝∝ 2n

D. Deutsch, 1985 

| 00 | 00 | 00 | 00 〉〉〉〉 + | 01 | 01 | 01 | 01 〉〉〉〉 +

| 10 | 10 | 10 | 10 〉〉〉〉 + | 11 | 11 | 11 | 11 〉〉〉〉 Uf
| | | | f (00) (00) (00) (00) 〉〉〉〉 + | | | | f (01) (01) (01) (01) 〉〉〉〉 + | | | | f (10) (10) (10) (10) 〉〉〉〉 + | | | | f (11) (11) (11) (11) 〉〉〉〉

00000000 f f (00)(00)(00)(00) 01010101 f f (01)(01)(01)(01)

10101010 f f (10)(10)(10)(10) 11111111 f f (11)(11)(11)(11)



Quantum algorithms
Measurement of |||| f (0) 〉〉〉〉 + |||| f (1) 〉〉〉〉 gives either f (0) or f (1).

Nevertheless: quantum algorithms make 
computational speed-ups possible ! 

The exponential power appears inaccessible ...

Peter Shor (1994)
factoring (lecture 7)

Lov Grover (1996)
searching (lecture 8)

(lecture 5)



Quantum error correction

Decoherence destroys quantum parallelism.

The exponential power appears limited in time ...

Nevertheless: quantum error correction makes 
arbitrarily long quantum computations possible ! 

� Quantum error correction (P. Shor 1996, A. Steane 1996)
� Accuracy threshold (D. Aharonov 1997, A. Kitaev 1997, ...)

(lecture 6,9)

(lecture 4,5)



Quantum information and 
communication

Charles Bennett
Superdense coding (1992) 

No-cloning theorem (1982)

Holevo bound (1973)

How much information can 
a quantum state contain?

Can we copy unknown quantum states?

Can quantum mechanics enhance 
the channel capacity?

Quantum cryptograpy (1984)

Quantum teleportation (1993)

Can quantum mechanics enhance security? 

Can we transmit states without transmitting particles? 

(lecture 11)

(lecture 10)

(lecture 3)



Practicalities
• Format:

– lectures (15%)
– presentations/discussion of experiments (25%)
– homework (25%) – ok to discuss with others, not to copy
– final exam (35%)
– required reading: weekly discussion paper
– optional reading: Nielsen & Chuang
– ask commitment! it’s not a seminar series

• Website: http://qt.tn.tudelft.nl/~lieven/qip
– schedule
– problem sets and solutions
– lecture notes and powerpoints

• Credit
– 5 ECTS points, CRS, NS 3621

• Email list participants



Q cryptographyQuantum communication7-dec11

TeleportationQuantum cryptography30-nov10

Meas. Based QCQuantum error correction23-nov9

Optical latticesGrover’s algorithm + Q simulation9-nov8

Q Measurement Shor’s algorithm2-nov7

NMRTomography and fidelities26-oct6

Ion trap - CZ gateDecoherence and q measurement 12-oct5

Cavity QEDDensity matrix, non-unitary processes5-oct4

DiVincenzo requirementsQ circuit examples (teleportation)28-sep3

Bell's inequalitiesHamiltonian, Universal quantum gates21-sep2

-History, Q states and operations14-sep1

Discussion paperLectureDate


