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Turing Machines (1936)

Alan M. Turing (1912-1954) Is there a universal model for computation?

J1pQ1{101/2101010 .
T (tape of unlimited length)

Qk (finite state machine)

< Sate,, Symbol, Sate .,
New Symbol, Action >

Actions. (1) move left
(2) move right

Enigma, theory of computability, UTM

=>  Try designing a Turing machine for adding two numbers



Universal Turing machine

A universal Turing machine can mimic the operation
of any Turing machine!

* Feed the UTM a tape with (1) description of the Turing machine T
(2) the input stringto T

 The UTM will then produce the same output string
as T would produce, given the input

» Description of T can be given in the form of a binary string reflecting
< Sate,, Sympol, Sate, .., New symbol, Action >

ext’

Is your PC a universal Turing machine?



Computability

A universal Turing machine can compute
all functions computable on any machine

(Church-Turing thesis)

Are all functions computable?
NO:

1. There are uncountably many real numbers but only
countably many Turing machines

2. Halting problem (related to Godel’s theorem)



Complexity theory

A universal Turing machine can efficiently
simulate any algorithmic process

(strong Church-Turing thesis)

] =

No essential difference between an abacus and a supercomputer!
(they are polynomially equivalent)

“Efficient”; the effort grows at most polynomially in the problem size
“Inefficient”; ... superpolynomially (e.g. expontially) ...

Note: effort = time x size x precision (or energy)

Tractable versus intractable!



Information theory (1948)

Information contained in n equally likely messages?
| =log2 n bits

What about not equally likely messages?
By how much can we compress a bit string?

001010010100100011001...
0001L11/111000900000141...
100001100000010000010...

H = p(0) log, p(0) + p(1) log, p(1) (fori.i.d rand var) Claude Shannon (1916-2001)
p(0) =p(1) =1/2 ->H =1 (bit)
The more random a state, the higher the entropy, the more information it can contain!

H(p) gives the maximum compression ratio possible



Information theory (1948)

How much information can we transmit over a noisy channel?

Define channel capacity C = 1(X,Y) = H(Y) - H(Y|X)

Example: 0 0 0
>< C=1-H(p)
1 1

1-p
Need redundancy for reliable data transmission

C gives the maximum (asymptotically) error-free data rate possible



Thermodynamics and computation

How much energy does it cost to compute ?
Is it possible to compute reversibly ?

Note: Computers generates heat!

(N)AND gate is irreversible! Fredkin gate
In oyt
000 | 000
In dut In dut 001 | 001
00 |0 00 |00 010 | 010
01 |0 01 |00 011 | 101
10 |0 10 |10 100 10O
11 1 11 11 101 P11
110 10
111 111




Computation costs no energy -
erasing information does

Landauer’s principle:

Bit erasure dissipates (KT In2) to the environment
OR

Bit erasure increases entropy by (k In2)

In reversible computation, no bits are erased

i .. Rolf Landauer
and no energy is dissipated 1927 - 1999



Information vs physics

computation — physical process
computer — physical system
Input -— Initial state

rules (algorithm) <« laws of motion
output — final state

Deep questions about complexity theory, information theory, thermodynamics,
are revisited when physical systems obey the laws of quantum mechanics



Computation with guantum systems

Paul Benioff;

prescription for classical computation
with quantum systems (unitary evolution) R Fr

A AT

(lecture 2) ¥ SLciures on

ii COMPITATION &

Richard Feynman:

couldn’t we efficiently simulate quantum
systems using a “quantum computer” ?
(lecture 8)

David Deutsch:

a universal Turing machine cannot efficiently
simulate a quantum computer

(e.g. Deutsch’ problem , lecture 3)




Quantum Parallelism
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Quantum algorithms

Measurement of |f (0) ) +|f (1) ) gives either f (0) or f (1).

s

The exponential power appears inaccessible ...

(lecture 5)

Nevertheless: quantum algorithms make
computational speed-ups possible!

Peter Shor (1994)
factoring (lecture 7)

Lov Grover (1996)
searching (lecture 8)




Quantum error correction

Decoherence destroys quantum parallelism.

(lecture 4,5)
— =

The exponential power appears limited in time ...

Nevertheless: quantum error correction makes
arbitrarily long quantum computations possible !

= Quantum error correction (P. Shor 1996, A. Steane 1996)
= Accuracy threshold (D. Aharonov 1997, A. Kitaev 1997, ...)

(lecture 6,9)




Quantum information and
communication

How much information can
a gquantum state contain?

Holevo bound (1973)

D
Can we copy unknown gquantum states? 8
No-cloning theorem (1982) >
H
Can quantum mechanics enhance
the channel capacity?
Superdense coding (1992) SR T
_ _ Charles Bennett
Can gquantum mechanics enhance security?
Quantum cryptograpy (1984) (lecture 10)

Can we transmit states without transmitting particles?
Quantum teleportation (1993)  (lecture 3)



Practicalities

e Format:

lectures (15%)

presentations/discussion of experiments (25%)
homework (25%) — ok to discuss with others, not to copy
final exam (35%)

required reading: weekly discussion paper

optional reading: Nielsen & Chuang

ask commitment! it's not a seminar series

o Website: http://qt.tn.tudelft.nl/~lieven/qip

schedule
problem sets and solutions
lecture notes and powerpoints

e Credit

5 ECTS points, CRS, NS 3621

« Emaill list participants
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Date
14-sep
21-sep
28-sep

5-oct

12-oct

26-0ct
2-nov

9-nov

23-novV
30-nov

7-dec

Lecture

History, Q states and operations
Hamiltonian, Universal qguantum gates
Q circuit examples (teleportation)
Density matrix, non-unitary processes

Decoherence and g measurement

Tomography and fidelities
Shor’s algorithm

Grover’s algorithm + Q simulation

Quantum error correction
Quantum cryptography

Quantum communication

Discussion paper

Bell's inequalities
DiVincenzo requirements
Cavity QED

lon trap - CZ gate

NMR
Q Measurement

Optical lattices

Meas. Based QC

Teleportation

Q cryptography



