The DiVincenzo criteria

Five criteria that any candidate quantum computer implementation must satisfy.

Two additional criteria for quantum communication
Implementation of quantum computers
D. DiVincenzo

1. Well-defined qubits

2. Initialization to a pure state

3. Universal set of quantum gates

4. Qubit-specific measurement

5. Long coherence times
Well-defined qubits

- two-level quantum systems
 - $^1\text{H}, ^{13}\text{C}, ^{19}\text{F}, \ldots$
 - electron spin

- two-dimensional subspaces of larger systems

+ : auxiliary levels
- : leakage
n 2-level systems vs. one 2^n-level system

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>111</th>
<th>111</th>
<th>110</th>
<th>101</th>
<th>100</th>
<th>011</th>
<th>010</th>
<th>110</th>
<th>100</th>
<th>011</th>
<th>010</th>
<th>100</th>
<th>001</th>
<th>010</th>
<th>100</th>
<th>001</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\otimes</td>
<td>\otimes</td>
<td>111</td>
<td>or 111</td>
<td>000</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>\otimes</td>
<td>\otimes</td>
<td>101</td>
<td>110</td>
<td>\otimes</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>\otimes</td>
<td>\otimes</td>
<td>010</td>
<td>100</td>
<td>\otimes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\otimes</td>
<td>\otimes</td>
<td>000</td>
<td></td>
</tr>
</tbody>
</table>

energy or precision $\sim n$
scalable

energy or precision $\sim 2^n$
NOT scalable
Ensemble quantum computer

Many identical copies of a quantum computer

Works fine -- only read-out must be modified

Image: Krenner et al, cond-mat/0505731
Many copies of each qubit, but not a quantum computer
Encoded qubits

|0⟩_L = |01⟩ - |10⟩
|1⟩_L = |10⟩ + |01⟩

Decoherence free subspace

|0⟩_L = (|01⟩+|10⟩) |0⟩
|1⟩_L = \sqrt{2/3} |001⟩ + \sqrt{1/3}(|01⟩+|10⟩)|0⟩

Trade qubits for Hamiltonian terms (e.g. exchange only QC)

Beware: leakage
Initialization to a pure state

To $|000\rangle$
Equilibration at low temperature ($h\nu >> kT$)

Other physical mechanisms:

- Ferromagnet
- Laser cooling
- Optical pumping
- . . .

To $|\psi\rangle$
Perform a hard, non-destructive measurement

Other physical processes

If you want qubits in $|000\rangle$, simply rotate the qubits from $|\psi\rangle$ to $|000\rangle$
Initialization timescale

e.g. equilibration can be slow (> $5\ T_1$)

Why initialization anyways?

Computation = garbage in \Rightarrow garbage out

Ancilla qubits ("help" qubits)

Error correction = removing entropy from the qubits

Either initialize fast or build qubit "conveyor belt"

one-time

need continuous fresh supply
Are mixed states acceptable?

Equilibrium at moderate or high temperature (hν ≫ kT)

Mixed state

↑↑ ↑↓ ↓↑ ↓↓

Effective pure state

↑↑ ↑↓ ↓↑ ↓↓

Signal same as for pure state but amplitude ~ 1/2^n

Gershenfeld & Chuang, Science 97, Cory, Havel & Fahmi, PNAS 97
Effective pure state preparation

(1) Add up 2^N-1 experiments (Knill, Chuang, Laflamme, PRA 1998)

\[
\begin{align*}
\uparrow\uparrow & \quad \downarrow\downarrow \\
+ & \\
\uparrow\uparrow & \quad \downarrow\downarrow & \quad \downarrow\downarrow & \quad \downarrow\downarrow \\
+ & \\
\uparrow\uparrow & \quad \downarrow\downarrow & \quad \downarrow\downarrow & \quad \downarrow\downarrow & \quad \downarrow\downarrow \\
\uparrow\uparrow & \quad \downarrow\downarrow \\
\end{align*}
\]

Later $\approx (2^N - 1) / N$ experiments (Vandersypen et al., PRL 2000)

(2) Work in subspace (Gershenfeld & Chuang, Science 1997)

(3) Average over space (Cory et al., Phys. D 1998)
“Scalable” QC with hot qubits

Goal: obtain k cold qubits from n hot qubits

Idea: reduce the entropy of k qubits, and increase the entropy of the remaining qubits (total entropy remains constant)

$$ n H(p) = k H(0) + (n-k) H(1/2) $$

$$ k = n (1 - H(p)) \approx n \varepsilon^2 $$

(Pr[0] = $p = \frac{1+\varepsilon}{2}$)

Overhead:

- # qubits $n \sim k$
- # operations $\sim k \log k$
- "Efficient bootstrapping" (as k and $n \rightarrow \infty$)

Building block Schulman-Vazirani cooling

Step 1: \(\text{CNOT}_{12} \)

<table>
<thead>
<tr>
<th>Prob.</th>
<th>bc</th>
<th>Prob.</th>
<th>bc</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^2)</td>
<td>00</td>
<td>(p^2)</td>
<td>00</td>
</tr>
<tr>
<td>(p(1-p))</td>
<td>01</td>
<td>(p(1-p))</td>
<td>01</td>
</tr>
<tr>
<td>((1-p)p)</td>
<td>10</td>
<td>((1-p)p)</td>
<td>11</td>
</tr>
<tr>
<td>((1-p)^2)</td>
<td>11</td>
<td>((1-p)^2)</td>
<td>10</td>
</tr>
</tbody>
</table>

If qubit \(c \) is 1, qubit \(b \) is at \(\infty \) T. If qubit \(c \) is 0, bias qubit \(b \) is \(2\varepsilon \).

Step 2: \(\text{Fredkin}_{c,ab} \) (swap qubits \(a \) and \(b \) iff qubit \(c \) is 0)

If qubit \(b \) is 1, qubit \(a \) has bias \(\varepsilon \).
If qubit \(b \) is 0, qubit \(a \) has bias \(2\varepsilon \).

On average, qubit \(a \) has bias \(3\varepsilon/2 \), so it has been “cooled”.

13
Universal set of quantum gates

Selective single-qubit rotations

\[R_{\vec{n}}(\theta) = \exp(i\alpha) \exp(-i\theta \vec{n} \cdot \sigma/2) \]

Sufficient: rotations about two different axis

Almost any two-qubit gate is universal
E.g. quantum-XOR or Controlled-NOT
Coupling networks

Switchable and direct:

\[J_{12}(t) \]
\[J_{13}(t) \]
\[J_{23}(t) \]

Indirect (e.g. nearest neighbour):

\[J_{12}(t) \]
\[J_{23}(t) \]

Fixed:

\[J_{12} \]
\[J_{13} \]
\[J_{23} \]

Fixed and indirect:

\[J_{12} \]
\[J_{23} \]

Bus:

\[J_1(t) \]
\[J_2(t) \]
\[J_3(t) \]
Indirect coupling: Shuffle qubits around

SWAP_{12} = CNOT_{12} CNOT_{21} CNOT_{12}

“only” a linear overhead ...
Removing effect of fixed couplings: refocusing

- There exist efficient extensions for arbitrary coupling networks
 Leung et al, PRA 00, Jones&Knill, JMR 99
- Refocusing can also be used to remove unwanted single-qubit terms
Even individual addressing is not strictly needed

\[\psi_1 X A_1 B_1 C_1 A_2 B_2 C_2 A_3 B_3 C_3 \ldots A_n B_n C_n \]

\[\psi_1 0 1 \psi_2 0 0 \psi_3 0 0 \ldots \psi_n 0 0 \]

\[X_A \text{ flips all } A\text{'s} \]
\[\text{CNOT}_{CA} \text{ selectively flips } A_2 \]
\[\text{Fredkin}_{C_AB} \text{ swaps } A_1 \text{ and } B_1 \]
\[\text{etc.} \]

Distinct qubit at the end is needed for setting up a unique “1”

S. Lloyd, Science 261, 1569, 1993
Other requirements

Gates must be precise (systematic errors)

Calibration
Cross-talk
Left-over terms in Hamiltonian
Non-commuting terms in Hamiltonian
Hardware limitations (pulse timing, phase noise etc)

Gates must be fast

> 10000 faster than coherence time
Parallelization
Qubit measurement

Ideally: reliable hard measurement of all qubits

Acceptable in principle:

- ensemble averaged measurement of each qubit (next)
- unreliable measurement (next)
- hard measurement of a single qubit
 (swap consecutive qubits into read-out site, while maintaining coherence)
Dealing with a limited measurement fidelity

1) Repeat calculation

OK for “decision problems” (1-bit answer)
Not convenient

2) “Quantum FAN-OUT”

\[a|0\rangle + b|1\rangle \]

\[a|000\rangle + b|111\rangle \] majority vote

Measurement of one qubit must not disturb state of others, apart from collapse.
Ensemble averaged measurements

Say at the end of Shor’s algorithm, we have state

\[|0110\rangle + |0011\rangle \]

Measurement on a single system gives

0100 or 0011

From either outcome, can find prima factor (e.g. “5”) classically

Measurement on ensemble would give

0 \(\frac{1}{2}\) 1 \(\frac{1}{2}\)

Instead, perform classical postprocessing on quantum computer

now get always “5”, and averaging no longer hurts
Decoherence

The “coherence time” summarizes many aspects of state degradation

- Decoherence (T_2) → maximum time for computation
- Relaxation (T_1) → maximum time for measurement
- Leakage → detect, and replace by random qubit

Uncorrelated errors
Correlated errors → Over time, or between qubits

Random errors → detect and correct
Systematic errors → unwind
T_1 and T_2 (and terminology)

T_1
Longitudinal relaxation
Spin-lattice relaxation
Relaxation
Energy relaxation
...

T_2
Transverse relaxation
Spin-spin relaxation
Decoherence
Phase randomization
Dephasing
...

By definition: $T_2 < 2T_1$
In practice, often $T_2 << T_1$
Two additional criteria

6. Interconvert stationary and flying qubits
 - Repeater stations
 - Distributed quantum computing

7. Transmit flying qubits between distant locations
 - Quantum communication
 - Error correction (communication between different parts of the computer)
Key challenge

combine access to qubits (initialization, control, readout) with high degree of isolation (coherence) in a scalable system

Message about DiVincenzo requirements

(almost) everything goes

Can trade off one requirement for another