Quiz \#3. Nash Arbitration
EPA 2142: Policy and Decision Models
8 December 2009

Rose and Colin are playing the following game.

	Colin		
		A	B
Rose	A	$(4,2)$	$(3,9)$
	B	$(5,3)$	$(2,1)$

There are multiple Nash equilibria in this game, as shown below.

	Payoff to Rose	Payoff to Colin
Pure Strategy Equilibria 1	3	9
Pure Strategy Equilibria 2	5	3
Mixed Strategy Equilibria	$7 / 2$	$25 / 9$
Worst Outcome for	3	$25 / 9$
Player		

We observe for instance, that pure strategy equilibria 1 results in the worst payoff for Rose. The mixed strategy equilibria results in the worst payoff $(25 / 9)$ for Colin. These values are recorded as the row "worst outcome for player."

Answer the following questions concerning the game.
a. Plot the payoff polygon of the game. Include the mixed strategy equilibrium. Assume that the security levels of both players are (2 point).
b. A policy analyst observes the game and the outcome of play, and believes there is a role for arbitration. Why does the analyst think so, given each of the three equilibria (1 point)?
C. Mathematically characterize the negotiation set, showing both the equation and the domain in which the negotiation set is still valid. Set the status quo to the values [3, 25/9] (2 point).
d. Compute the Nash arbitration solution for this game. As above assume that the security levels of both players are set to the values [3, 25/9] (2 points).
e. In your opinion is the Nash arbitration scheme fair to both players? Why do you say so (1 point)?
f. Is the worst outcome for the player across all the equilibria the same as the security level of the player (2 point)?

