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3. Underwater propagation 

3.1 Basic principles of acoustics 

3.1.1 Introduction 
 
Sound is a wave phenomenon. A wave in its turn is a disturbance of the equilibrium 
that spreads, or propagates, with time through space.  
 
Waves appear in many contexts besides sound, and some examples of other contexts 
are: 
  
• Light or electromagnetic waves in general; 
• Waves on the water surface. 
 
If, for example, we disturb the water surface at a certain point by throwing in a stone, 
the resulting disturbance will propagate in all directions along the surface. Here, the 
disturbance consists of the elevation of a point relative to the horizontal, flat, water 
surface. In the case of sound, the disturbance consists of a pressure disturbance. 
 
Note that when considering propagating waves it is not the material of the medium 
through which the wave propagates that is transported. It is, however, the disturbance 
that is transported. 
 
There are two types of elastic waves. (Elastic waves are called so because they deform 
the medium elastically - the medium returns to its original shape and position after the 
wave has passed through. An example of a non-elastic wave is a shock wave. This 
type of wave fundamentally changes the medium through which it propagates.): 
 
• Longitudinal waves or compressional waves: the medium particles oscillate in the 

direction of the propagation 
(examples: sound waves in gasses and liquids) 

• Transverse waves: the medium particles oscillate in a direction perpendicular to the 
direction of the propagation  
(examples: vibrating violin string, waves on the water surface) 

 
Remark: 
Earthquake waves are an example of both types. 
 
For sound and light, the propagation speed of the wave is independent of the 
wavelength. This is, however, not the case for all wave phenomena (e.g. propagating 
waves on the water surface).  
 
As we will see later in this chapter, sound can be understood by means of Newton’s 
laws (classic mechanics). 
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The mathematical expression )(),( ctxftx −=ξ  describes a physical situation that 
propagates (without deforming) along the positive x-axis. 
The expression )(),( ctxftx +=ξ describes propagation along the negative x-axis.  
 
The quantity ),( txξ can be: 

• The pressure in a gas or liquid (sound); 
• An electromagnetic field (light). 
 
If we now consider the figure plotted below, showing ),( txξ as a function of position 

(x) for two moments in time with the two times differing by a time ∆t, it is clear that 
the following has to be valid: 
  

))(()( ttcxxfctxf ∆+−∆+=−  
 
 

 
 
 
This is indeed valid if tcx ∆=∆ . It can be concluded that c is the velocity (phase 
velocity) with which the disturbance f(x) ‘spreads’  (propagates). 
 

3.1.2  Plane harmonic waves 
 
A plane wave can be written as ),( txp , i.e., the pressure does not depend on y and z; 
it only depends on x. 
 
The expression for a plane harmonic wave is: 
 

)cos(),( 0 ϕω +−= tkxptxp  

 
Often an alternative expression is used (using complex numbers): 
 

( )
0( , ) i kx tp x t p e ω ϕ− +=  with i2 = -1 

 
p0 is the amplitude, ω the radial frequency (in rad/s) and k the wavenumber; 

ϕω +− tkx  is denoted by the phase angle. 

π
ω
2

=f   is the frequency (unit: Hz or s-1). 
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Remark:  
The phase angle of the above wave is independent of y and z: at every moment in time 
the phase (angle) of the wave is equal at all points in a plane perpendicular to the x-
axis. This property is the reason why these waves are denoted by plane waves: The 
wave front is a plane. 
 
At a fixed position in space x, this function repeats itself in time intervals T (=period), 
see the figure below. The following is valid: πω 2=T . The frequency f is Tf /1=  
(in Hz). 

 
 
At a fixed moment in time t, the function repeats itself over the distance λ  (see figure 
below). This distance is called the wavelength, with .2πλ =k  
 

 
 
The phase angle at moment t = t1 and position x = x1  is ϕω +− 11 tkx . Time ∆t later 
the value of  x, for which the phase angle is equal to the original phase angle, is 
x1+∆x. The following is valid: 
 

ϕωϕω +−=+∆+−∆+ 1111 )()( tkxttxxk  
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This implies that the original phase (angle) moves at a velocity c: 
 

Tkt

x
c

λω ==
∆
∆=  

 
c is the phase speed (sound speed). 
 
Some typical values: 
In air the frequencies of audible sound are in the range between 20 Hz and 20 kHz. 
The phase speed is about 343 m/s. 
In water the phase speed of sound is about 1500 m/s. The frequencies typically used 
for sonar lie in between ‘0’  Hz and a few hundreds kHz (see the table below). 
 
Frequency-range Sonar 
‘0’   -  1000 Hz Passive (military) 
5 kHz  -  10 kHz hull-mounted (military) 
10 – 200 kHz echo-sounder 
≈ 100 kHz mine detection 
≈ 400 kHz mine classification 
≈ 10 MHz medical imaging 

 

3.1.3 Sound pressure level, the decibel and the effective value 
 
The variations in pressure relative to the equilibrium pressure due to a sound wave are 
extremely small. 
In air, the hearing threshold is 2x10-5 Pa (1 Pa = 1 N/m2) and the pain threshold is 100 
Pascal (Pa).  
This corresponds to 2x10-10 atm and 10-3 atm, respectively. 
 
The sound pressure level is defined as  
 

ref

10 log20
p

p
L =     decibel (dB) 

 
In air pref = 2x10-5 Pa, i.e., the hearing threshold. 
Therefore the hearing threshold corresponds to 0 dB and the pain threshold to 134 dB. 
In (sea) water the reference pressure pref  is taken different from that in air, namely 10-6 

Pa. 
 
For the pressure p in the expression for L the effective value prms (rms = root-mean-
square) needs to be taken. For a plane harmonic wave with amplitude p0, prms  is 
 

2
)(cos

1 2
0

0

22
0

222 p
dttkxpppprms =−=><−>=<

�
ω

τ

τ
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with < > denoting the mean; τ  is the time of integration (should be large relative to 
the period T). 
  

3.1.4 The wave equation for plane waves 
 
Let us consider the propagation of sound in one dimension, for example due to the 
movement of an object (e.g. piston in tube) at a fixed position: the disturbance, viz. 
the change in pressure, propagates. 
 
Which physical quantities are required? 
 
• The particle displacement η 
• The density ρ 
• The pressure P 

• The particle speed 
t

v
∂
∂η=  

• The particle acceleration 
2

2

t
a

∂
η∂=  

 
All above quantities depend on x and t. 
 
Note: In the mean sense the particles remain at the same position; the disturbance 
propagates. 
Further: the behaviour of the medium through which the sound propagates is not 
described in terms of individual molecules, i.e., the particles mentioned above are not 
individual molecules, but are packages of the medium; classic mechanics is sufficient. 
 

 
 
The following notation will be used (0 = equilibrium = undisturbed medium, i.e., no 
sound):  
 
• pPP += 0  

• 10 ρρρ +=  

• )(ρPP =  
 
 

No sound 

With sound 
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A. Movement of the medium gives rise to a change in the density 
 
Consider a certain amount of the medium (air, water) per unit area: 
Undisturbed this is x∆0ρ .  

Due to the passing of a pressure wave this amount of the medium is displaced and the 
amount of medium becomes: 
 

( )),(),( txxtxxxx ηηρ −−∆++∆+  
 
However, mass should remain equal and therefore both the undisturbed and disturbed 
amount of medium have to be equal. 
Employing the Taylor series on ),( txx ∆+η  (using only the first order terms), 
conservation of mass gives: 
 ������ ∆+∆+=∆

x
xxx

∂
∂ηρρρ )( 100  

 
or 
 

xxx ∂
∂ηρ

∂
∂ηρ

∂
∂ηρρ 0101 −≈−−=  

 
where again a second order term is neglected 
This last expression shows: if the displacement varies with x, the density will change. 
 
 
B. Change in density gives rise to a change in pressure 
 
Employing Taylor: 
 

0

100
'

10100 )()()( ���
�		
�+=+=+=+

ρ
ρρρρρρ

d

dP
PfffpP  

 
The sound pressure is therefore given by 
 

2
1 cp ρ=  with  

0

2 ��
�����=

ρd

dP
c  a medium constant. 

 
 
C. Inequalities in the pressure result in a movement of the medium 
 
Consider the following situation: 
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P(x t, )

                                                     P x x t( , )+ ∆

             x                                  x x+ ∆
 

 
Employing Newton’s third law (and using Taylor again): 
 

x

txP
xtxxPtxP

t

tx
x

∂
∂

∂
η∂ρ ),(

),(),(
),(

2

2

0 ∆−=∆+−=∆  

 
 
Elimination of P by employing subsequently C, B and A: 
 
 

xx
c

x
c

x

p

t ∂
∂η

∂
∂ρ

∂
∂ρ

∂
∂

∂
η∂ρ 0

212
2

2

0 =−=−=  

 
or (wave equation for η): 
 

2

2
2

2

2

x
c

t ∂
η∂

∂
η∂ =  

 
 
Elimination of η (second derivative with respect to t of B; employing A and then C): 
 
 
Wave equation for the sound pressure: 
 

2

2
2

2

2

x

p
c

t

p

∂
∂

∂
∂ =  

 
Each plane wave f(x – vt)  (not necessarily harmonic) is a solution to this equation if 

c=ν . 
The wave equation is linear, i.e., if f1 and f2 are solutions to the wave equation, then 
also f1+f2 is a solution (principle of superposition). 
 

3.1.5 The harmonic solution to the wave equation 
 
Consider a harmonic plane wave (for the quantity η): 
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)(
0),( tkxietx ωηη −=  

 
According to (A) + (B) of the previous paragraph the following is valid: 
 

x
cp

∂
∂ηρ0

2−=  

 

or (use 
k

c
ω= ):  

 
ηωρ cip 0−=  

 
Also: 
 

ηω
∂
∂η

i
t

v −==   and   vi
t

v
a ω

∂
∂ −==  

 
Important result:  

For the harmonic plane wave it appears that the following is valid: c
v

p
0ρ=  for all x 

and t, i.e., a constant (p and v are in phase; this is not the case for p and η). 
 
 
Example: 
Consider a harmonic plane wave in air with a frequency of 1000 Hz and a sound 
pressure level of 100 dB. 
 
ρ0 = 1.21 kg/m3 
c = 343 m/s 
 

prms = 105 x pref = 2 Pa. Then 6

0

10 m 0.34 mrms
rms

p

c
η λ

ρ ω
−= ≈ << =  

 
csmv rmsrms <<×== − /105 3ωη . However, do not forget that ηrms is very small. 

 

3.1.6 The sound speed 
 
Sound is an adiabatic process, for which, according to the thermodynamics of gasses, 
the following holds: 
 

constant=γVP  
or 
 

γρconstant=P  
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with γ a gas constant (1.4 for air) and V the volume. 
 

P
d

dP
c

ρ
γργ

ρ
γ ==���

�����= −1

)0(

2 constant  

 
According to the gas law for ideal gasses (for 1 mol of gas): 
 

RTPV =  
 
with R the gas constant (8.31 Joule/Kelvin) and T the absolute temperature. 
The mass of 1 mol of gas is ρV = M = mN. m is the mass of 1 molecule and N is the 
Avogadro number (6x1023 molecules in 1 mol). 
The sound speed then becomes: 
 

M

RT
c

γ=  

 
For air (80 % nitrogen and 20 % oxygen, M = 28.8x10-3 kg) at 0°C (273 K) the sound 
speed becomes 332 m/s. 
 
The influence of temperature on the sound speed in air is given by  
 

)(0037.01)0( CTCcc oo +=  

 
Using the Taylor approximation (only 1st order term) this becomes 
 

)(6.0332 CTc o+=  
 
The sound speed in gasses and liquids can also be written as 
 

0ρ
K

c =     with  
κ
1=K   the compressibility (bulk) modulus (c = 343 m/s at 20°C). 

 
For pure water K = 2x109 N/m2  and ρ0 = 1000 kg/m3 , so c = 1414 m/s. 
 
An empirical formula for the sound speed in seawater is 
 

zSTTTTc 017.0)35)(01.034.1(00029.0055.06.42.1449 32 +−−++−+=  
 
with 
T  the temperature in °C 
z  the depth in m 
S  the salinity (salt content) in ppt 
c  the sound speed in m/s 
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The propagation speed of longitudinal waves in solid media (also transversal waves 
are possible) is given by 
 

0ρ
E

c =   with E Young’s elasticity modulus. 

 
For steel E = 2x1011 N/m2 and ρ0 = 7800 kg/m3 , so c = 5100 m/s. 
 

3.1.7 Acoustic intensity and acoustic impedance 
 
The intensity I is the mean rate of flow of energy through a unit area normal to the 
direction of the propagation: 
 

I
F

A t
pv= =< >

∂η
∂

 

 
with A the surface and F the force (<> denotes the mean). 
For a harmonic plane wave this becomes (p and v in phase): 
 

c

p

c

p
I rms

0

2

0

2

ρρ
=><=  

 
The reference-intensity in air (hearing threshold) is Iref = 10-12 Watt/m2. 
 
The characteristic acoustic impedance is defined as 
 

v

p
Z =    

 
For a harmonic plane wave this is real and equals ρ0c. 
 
In general, the characteristic acoustic impedance is complex (see later: due to 
absorption, for spherical waves, for standing waves). 
 
Example: 
Consider a plane harmonic wave with a frequency of 1000 Hz in both air and water, 
with identical intensities. The sound pressure level of the wave in air is 100 dB. 
The following holds: 
 

water0

2

air0

2 ���
�����=���

�����
c

p

c

p rmsrms

ρρ
  thus   Papp airrmswaterrms 12060 ,, == . 

 
This corresponds to 162 dB in water. 
 
In water ηrms = 10-8 m and vrms=10-6 m/s (very small!). 
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(Compare with the example in paragraph 3.1.5). 
 

3.1.8 Spherical waves and cylindrical waves  
 
In acoustics, spherical waves are at least as important as, but probably even more 
important than, plane waves. They are described, just as plane waves, in terms of one 
spatial variable. 
The surface of a pulsating spherical object that expels and contracts radially around a 
mean value results in a disturbance that spreads in all directions through a spherical 
wave. Its wave fronts are spheres. 
Examples: loudspeaker (at low enough frequencies) and a stone in the water (causes 
actually circular waves). 
 
The expression for the wave equation in three dimensions (for p(x,y,z,t)) is: 
 

2

2

22

2

2

2

2

2 1

t

p

cz

p

y

p

x

p

∂
∂

∂
∂

∂
∂

∂
∂ =++  

 
(Compare with the 1-dimensional expression, as derived in paragraph 3.1.4). 
 
The 3-dimensional wave equation in spherical coordinates, (r,θ,ϕ ), is at first sight 
rather complex (r is the radial distance towards the source): 
 

2

2

22

2

2222

2 1

sin

1
)(sin

sin

1
)(

1

t

p

c

p

r

p

r
rp

rr ∂
∂

∂ϕ
∂

θ∂θ
∂θ

∂θ
∂

θ∂
∂ =++  

 
However, p is independent of θ and ϕ (uniform disturbance). Consequently, the 
second and third terms in the left hand side of the expression are zero: 
 

2

2

22

2 1
)(

1

t

p

c
rp

rr ∂
∂

∂
∂ =     or: 

2

2

22

2 )(1
)(

t

rp

c
rp

r ∂
∂

∂
∂ =  

 
The general solution of this latter equation (see the equation for the plane wave) is 
 

)()(),( ctrgctrftrpr ++−= , with f and g arbitrary functions. 
 
The second function g represents wave propagation towards the mid point. This is not 
possible and the solution therefore becomes: 
 

)(),( ctrf
r

A
trp −= , with A being a constant. 

 
The harmonic solution is: 
 

)(),( tkrie
r

A
trp ω−=  
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For the spherical harmonic wave we are interested in the relation between pressure 
and particle speed. In the derivation for the plane wave equation: 
 

x

p

t ∂
∂

∂
η∂ρ −=
2

2

0  

 

For the spherical wave this becomes:    
r

p

t

v

∂
∂

∂
∂ρ −=0  

 

Now the following is valid vi
t

v ω
∂
∂ −=    so   

r

p

i
v

∂
∂

ωρ 0

1=  

 

Resulting in: ��
���� += k

r

itrp
trv

0

),(
),(

ωρ
 

 
The spherical wave impedance therefore becomes: 
 

��
����

+
−

+
==

2222

22

0 11),(

),(

rk

kr
i

rk

rk
c

trv

trp
Z ρ  

 
This expression shows that for the spherical wave the particle velocity is, in general, 
not in phase with the pressure: the impedance is complex and not even constant. (This 
is in contrast to the plane wave impedance!) 
 

An important parameter is 
λ
πr

kr
2= . Let’s consider two limiting cases: 

• kr >> 1 (r >> λ): cZ 0ρ= , i.e. no phase difference between p and v: to a good 

approximation the spherical wave is a plane wave; 
• kr << 1 (r << λ): krciZ 0ρ−= , i.e. the phase difference between p and v is 90°. 
 
Now about the intensity of a spherical wave: 
At a large distance from the source this intensity is given by  
 

c

p
I rms

0

2

ρ
=    with  

2

22
02

22 r

Ap
prms ==   thus 

2

1
~I

r
 

 
The mean power P passing through a sphere with radius r with the source in the mid 
point is: 
 

c

A
IrP

0

2
2 2

4
ρ
ππ ==    and this is independent on the distance r towards the source. This 

should indeed be the case according to the conservation of energy. 
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We will end this paragraph by considering cylindrical waves. For this type of waves 
the wave fronts are cylindrical surfaces. 
Again the following is valid for the intensity (with large enough r): 
 

c

p
rI

0

2
0

2
)(

ρ
=  

 
The mean power P passing the cylindrical surface with radius r and height H is: 
 

c

p
rHP o

0

2

2
2

ρ
π=    and according to the conservation of energy law this should be 

constant, i.e., be independent of r. Consequently 0

1
~p

r
 

 
The harmonic cylindrical wave is then given by 
 

)(),( tkrie
r

A
trp ω−=  

 

3.1.9 Sound absorption and propagation loss 
 
Absorption of sound, i.e., sound energy is transformed into heat, can be accounted for, 
e.g. for the plane wave, as follows 
 

xtkxietxp αω −−= )(),(    with α the absorption coefficient (unit: m-1) 
 
It is common practice to express the absorption coefficient in dB per unit distance: 
The loss in intensity in dB due to absorption is 
 

xexe x ααα 686.8)log20(log20 1010 ==− −  
 
Take x = 1 km = 1000 m, then α (in dB/km) = 8686 α (m-1) 
 
For seawater several empirical expression for α as a function of the frequency f exist. 
Despite the dependence of α on temperature, salinity, pH and depth, the following 
expression, denoted by Thorpe’s expression, is often sufficiently accurate for practical 
use: 
 

2
2

2

2

2

0003.0
4100

44

1

11.0
f

f

f

f

f +
+

+
+

=α      with f in kHz and α in dB/km. 

 
In principle, this expression is only valid for the North Atlantic Ocean. Due to the 
smaller mean pH in the North Pacific (7.7 instead of 8.0 for the North Atlantic ocean), 
there the absorption (below 1 kHz) is about two times smaller. Due to the lower 
salinity of, for example, the Baltic Sea (8 ppt instead of 35 ppt for the Atlantic ocean), 
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there the absorption (above 1 kHz) is less than half of that of the open oceans. Also 
this expression is valid only for frequencies below 50 kHz. 
 
Better attenuation formulas are available, having a wider applicability and accounting 
for effects of salinity and pH as mentioned above. An example of such a formula is 
the expression by Francois and Garrison (valid for the frequency range 0.2 - 1000 
kHz). This expression is a function of temperature (T), salinity (S), depth (D) and pH 
(pH) 
 

1 2 3α α α α= + +  

. 
2

1 1 1
1 22

1

( )
=

(  + )

A P f f

f f
α ⋅ ⋅ ⋅

 with 

 

0.78 5
1

8.86
10 pHA

c
−

� �
= ⋅

� ��   ( =1412 + 3.21  + 1.19  + 0.0167  c T S D ) 

P1=1 
12454-

1

S
=2.8 10

35
f ϑ⋅  with 273 Tϑ = +  

 
2

2 2 2
2 22

2

( )
=

(  + )

A P f f

f f
α ⋅ ⋅ ⋅

 with 

 

2=21.44 (1+0.025 )
S

A T
c

 

-4 -9 2
2=1 - 1.37 10  + 6.2 10P D D⋅ ⋅  

1990
8-

2

8.17 10
=

1+0.0018 ( -35)
f

S

ϑ⋅
 

 
2

3 3 3=A P fα ⋅ ⋅  with 

 
if 20T ≥ : -4 -5 -7 2 -8 3

3=4.937 10  - 2.59 10   + 9.11 10   - 1.50 10A T T T⋅ ⋅ ⋅ ⋅    

if 20T < : -4 -5 -7 2 -10 3
3=3.964 10  - 1.146 10   + 1.45 10   - 6.5 10A T T T⋅ ⋅ ⋅ ⋅   

-5 -10 2
3=1 - 3.83 10  + 4.9 10P D D⋅ ⋅  

 
A comparison between the two here fore mentioned expressions is depicted 
graphically in the figure below. 
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Remarks: 
In order to get a good feeling for the absorption of sound in seawater, we calculate for 
a set of frequencies the distance over which (for a plane wave) the sound intensity has 
decreased by a factor of 10 (10 dB loss): 
 
Frequency 
(kHz) 

α (dB/km) (Thorpe) r10dB (km) 

0.1 0.0012 8333 
1 0.07 143 
10 1.2 8.3 
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This shows that the absorption is very small; no other form of radiation can compete 
with sound for long-distance propagation in the sea. 
 
It is illustrative to compare the absorption coefficient of sound in seawater with the 
absorption coefficient in air (at 20 °C and 50 % humidity). For 2 kHz this is 0.02 m-1, 
which is over a factor 1000 larger than in seawater at the same frequency (Thorpe: 
1.4x10-5 m-1). 
 
We now come to the very important concept of propagation loss that is related to the 
loss in intensity with the sound moving away from the source. 
The propagation loss PL is defined as 
 

)(

)1(
log10

)(

)1(
log10

)(

)1(
log10

2
0

2
010

2

2
1010

rp

p

rp

p

rI

I
PL

rms

rms ===  

 
where I(1) and I(r) are the intensities at 1 m and at r m distance from the source. 
The loss in intensity is due to geometrical spreading loss and absorption. 
 
A simple 'propagation-model' is obtained by considering spherical spreading: 
 

0 ~
re

p
r

α−

           then: 

 
)log(20)log(20)log(20 101010 errerPL r αα +==  

 
or: 
 

[ ] [ ] )()/()(log2060)()/()(log20)( 1010 kmrkmdBkmrmrmdBmrdBPL αα ++=+=  
 
Example: calculation of the propagation loss as a function of distance for a hull-
mounted sonar (f = 6 kHz, α = 0.5 dB/km (Thorpe)). 
 
r (km) PL (dB) 
0.1 60-20+0.05 = 40.05 
1 60+ 0+0.5   = 60.5  
10 60+20+5     = 85 
100 60+40+50   = 150 
 
Remarks: 
• More complex propagation is dealt with in a later chapter. However, the above 

simple 'model' is still very useful as a first guess for the loss. In general, the 
calculated loss is somewhat pessimistic, except for very short distances; 

• The propagation loss for cylindrical spreading becomes 
 

[ ] )()/()(log1030)( 10 kmrkmdBkmrdBPL α++=  
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3.1.10 Reflection, refraction and transmission 
 
We will consider the situation of a plane harmonic wave propagating through a 
medium and impinging on the interface of a second medium. Part of the energy of the 
wave will be reflected back into medium 1, part will be transmitted into medium 2. 
We will derive the (relative) intensities of the reflected and transmitted wave, and find 
that these depend on the impedance of the two media and the angle of the incoming 
wave. 
At the same time we will derive the important Snell’s law of refraction. 
An important application of the situation considered in underwater acoustics is the 
interaction of the sound with the sea bottom. 
The figure below shows the situation. 
 

 
 
 
 
The expression for the 3D harmonic plane wave: 
 

).(),(),,,( trkietrptzyxp ω−==
�

�

�

   with   zkykxkrk zyx ++=
�

�

.  

 
so the inner product of the two vectors. The wavenumber k is the absolute value of the 

wavevector kkk =
��

: . 

 
The incident (i), reflected (r) and transmitted (t) wave can be written as  
 

)sincos( 111 θθ zxik
i ep +=                                   1

1
1 k

c
k

�

== ω
 

 
)sincos( 111 θθ zxik

r eRp −=  
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)sincos( 222 θθ zxik
t eTp +=                               2

2
2 k

c
k

�

== ω
 

 
Here θ1 is the grazing angle of incidence (and angle of reflection) and θ2 is the grazing 
angle of transmission (angle of refraction). The t-dependence of all expressions for the 
plane harmonic waves is omitted. R and T are the amplitude reflection coefficient and 
the amplitude transmission coefficient, respectively. 
 
The following two boundary conditions are valid for z = 0: 
 
(I) continuity of pressure tri ppp =+  

 
(II) continuity of the normal component of the particle velocity (i.e. in the z-direction): 
 

                               
z

p

iz

pp

i
tri

∂
∂

ωρ∂
∂

ωρ 21

1)(1 =
+

 

 
 
Boundary condition (I) gives (use z = 0): 
 

xkkieTR )coscos( 1122)1( θθ −=+  
 
This expression only holds if the right side is independent on x, so if 
 

0coscos 1122 =− θθ kk  
 
This is the famous Snell’s law of refraction that gives the relation between angles of 
incidence and transmission. Snell’s law of refraction is often written as 
 

1

1

2

2 coscos

cc

θθ
=  

 
Also we find: TR =+ )1(  
 
Boundary condition (II) gives (use z = 0 and Snell’s law): 
 

122

211

sin

sin
1

θρ
θρ

c

c
TR =−  

 
We now have derived two equations for R and T. The solution is: 
 

12

12

ZZ

ZZ
R

+
−=          and         

12

22
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Z
T

+
=       where 
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1

11
1 sinθ

ρ c
Z =             and         

2

22
2 sinθ

ρ c
Z =        (‘generalized’  impedances). 

 
The incoming, reflected and transmitted intensities are, respectively: 
 

22

2

11

2

11

2

2
,

2
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2

1

c

T
I

c

R
I

c
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===  

 
Now, for simplicity, let’  s consider θ1=90° (the wave comes in perpendicular). Then 
according to Snell’s law θ2=90°. 
The 'reflectivity' is given by 
 

2
1122

2
11222
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cc

cc
R
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I
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r

ρρ
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==  

 
and 
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22

112
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cc
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c
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ρ
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==  

 
so that tri III +=  (note that according to the law expressing conservation of energy 

this should indeed be the case). 
 
 
The critical angle (total reflection) 
 
When c2 > c1 then an angle θc, exists, the critical angle, for which 1=R  for 

0 cθ θ< <  (total reflection) and R < 1 for cθθ > . 

θc  is given by (use Snell’s law) 
 

���
�����=

2

1arccos
c

c
cθ  

 
If cθθ <<0  then (Snell’s law) 1cos 2 >θ , i.e., θ2 is purely imaginary. Using the 

expressions θθ sinhsin ii =  and θθ coshcos =i  it can be shown that 1=R . Note, 

however, that R is complex, so a shift of phase occurs. For cθθ > , R < 1 and real. 

 
The angle of intromission 
 
Situations exist for which R = 0. The corresponding incident angle is denoted as the 
angle of intromission θ0. 

R = 0  if  
1

11

2

22

sinsin θ
ρ

θ
ρ cc

= and together with Snell’s law of refraction this gives 
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1
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θ0 exists, i.e., is real, in the following two cases: 
 
• 121122 ccencc <> ρρ .   This occurs in muddy ocean bottoms; 

• 121122 ccencc >< ρρ .   This never occurs, i.e., is not a physical situation. 
 
Typical numerical values for ocean bottoms 
 
In table below indicative values for geo-acoustic parameters corresponding to a few 
different bottom types are given. 
 
Bottom type  ρ (g/cm3) c (m/s) 
clay 1.2 1470 
very fine sand 1.9 1680 
coarse sand 2.0 1800 
basalt 2.5 4800 
 
Remark: 
For ocean bottom materials a good approximation is that the absorption coefficient 
linearly increases with frequency. In this case it is useful to express the absorption 
coefficient in dB/λ. For most bottom types the absorption coefficient has a value in 
between 0.1 and 1 dB/λ. 
The following holds: )()(686.8)/( 1−= mmdB αλλα  
 
Examples 
 
The figure below shows the absolute value of the amplitude reflection coefficient as a 
function of the incident angle for a number of situations.  
Assuming a lossless (i.e. without absorption) sandy bottom (thick solid line) with 

)/1500,/0.1(/1650,/9.1 1
3

12
3

2 smccmgsmccmg ==== ρρ  
 
It shows the effect of a change in c2, ρ2  and absorption in the bottom (i.e. medium 2). 
 



SEAFLOOR MAPPING – MODELLING – UNDERWATER PROPAGATION – BASIC PRINCIPLES  

 61 

 
 
The figure below shows the occurrence of the 'angle of intromission' 

)/1450,/5.1( 2
3

2 smccmg ==ρ  

 
 

3.1.11  Diffraction and scattering 
 
Here we consider shortly a set of concepts that relate to sound as a wave phenomenon 
in general. 
 
Diffraction or bending of sound happens if the sound waves impact on an obstacle 
with a size that is similar (same order) to the sound wave length. The sound wave 
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passes around the obstacle and there is a bending (change of direction) due to the 
obstacle. 
 
Reflection of sound at an object results when the object is large compared to the 
wavelength of the sound (at least a factor of ten). 
 
Scattering of sound happens if the sound waves impact on an object that has a size, 
which is small relative to the wavelength. In principle, scattering occurs in all 
directions. 
 
Finally: Refraction of sound occurs when there is a sudden change in sound speed in 
the medium through which the sound wave propagates (Snell’s law of refraction). 
Refraction of sound also occurs when the sound speed varies smoothly. 
 

3.1.12  The Doppler effect 
 
Let’s consider a sound source and an observer with speeds vb and vw (both in the 
direction of the line connecting the source and the receiver), respectively. 
vb > 0 and vw > 0 implies that the movement is towards each other (this is a choice). 

The frequency of the stationary source is 
0

0 λ
c

f = . 

 
(A) The effect of a moving observer 
 
Let T be the time between observing two subsequent pressure maxima. The 
expression for T is 
 

wvc
T

+
= 0λ

 

 
since c + vw is the propagation speed of the pressure maxima. 
The observed frequency f now becomes 
 ��

����
+==

c

v
f

T
f w1

1
0  

 
(B) The effect of a moving source 
 
A pressure maximum transmitted by the source will be at a distance cT0 after a time 
T0. At that moment the source transmits another pressure maximum. However, in the 
mean time the source has moved a distance vbT0. 
The (observed) wavelength λ, i.e. the distance between the two pressure maxima, is 
then 
 

00 TvcT b−=λ  
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The observed frequency f now becomes 
 

c

v
ff

b−
=

1

1
0  

 
(C) Both the source and the observer move 
 
If both the source and the observer move, the observed frequency becomes  
 

c

v
c

v

ff
b

w

−

+
=

1

1

0  

 
Remark: 
 
• If the source and the observer do not move along the line connecting the source and 

observer, the velocities of the source and the observer (vectors) have to be 
projected on this connecting line. 

 
• In practice often cvv bw <<, . For this case a good approximation is (using Taylor) 

 ��
���� +

+≈
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+≈
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vv
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v
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The frequency shift is then (passive sonar) 
 

c

vv
ff bw +=∆ 0  

 
• For active sonar the frequency shift is  

 

c

vv
ff ed +=∆ 02    with vd and ve the target velocity and the own ship speed, 

respectively. 
 
Example: hull-mounted sonar f0 = 6 kHz, vd = ve = 5 knots, then ∆f = 40 Hz. This 
can be measured very well and is therefore used for measuring the target speed. 
(1  knot = 0.5144 m/s). 
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