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Lecture Qutline

Previous lecture: representation of dynamic models as differential
equations.

Today:

e Transfer functions.

e State-space models.
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Example 3: Liquid Storage Tank
A
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Example 3 (cont’d): Liquid Storage Tank

Ah(t) = Qi) — Qolt)
Qolt) = 7/2gh(t) = K+/h(t), h>0

CAR(t) + KR = Qi(t) |

e Nonlinear differential equation
e Must be linearized for analysis or control design

e Can be used to simulate the process
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Laplace Transform — Definition

Transform a signal from time domain to complex domain (s-domain):

ft) = F(s)
F(s) = ft)e stdt
0
a number of useful properties
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Using Laplace Transform

Differentiation: f(")(¢) N S"F(s)
Linear differential equation:
any(n)(t) + an—ly(n_l)(t> +ot aoy(t) =
bt () + by V() 4 -+ boult)
Linear algebraic equation:
<ansn + an—lsnil + 4 a()) Y(S) =
(bmsm + bm—lsmi1 +oeee bo) U(s)
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Transfer Function

(ans” Fap_1s" T 44 (1/0) Y(s) =

(bmsm byt bo) U(s)

Y(s)  bms™+ byn—18™ 4+ 4 by

G(s) =
() U(s) ans"™ + ap_15" "1+ +a,
B(s .
G(s) = (s) ... transfer function
As)
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Example 1 (revisited): Transfer Function

md(t) = F(t) — bd(t)

— G(s) |—
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Example 2 (revisited): Transfer Function

Ldfz—(tt) + Ri(t) =V(t)— 1200 electrical part

dt
)
Jddet(gt) + b%(f) = Kii(t) mechanical part
(Ls+ R)I(s) = V(s)— K;s6(s)

(Js%+bs)0(s) = KI(s)

9(5) _ Kt
V(s) s[(Ls+ R)(Js+b)+ K?]

Gls) =
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Example 3 (revisited)

Ah(t) + K/h(t) = Q;(t)

Can we use Laplace transform?
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State-Space Models

Introduce state variable z(t) (vector) to parameterize the ‘memory’
of the system.

e The state contains all information needed to determine future
behavior without reference to the derivatives of input and out-
put variables.

e The state is often determined from physical considerations
(related to energy storage in the system).

e The dimension n of the state vector is the order of the system.
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Linear State-Space Model

~
~
I

Ax(t) + Bu(t)
Cua(t) + Du(t)

<

—~
o~

~—
Il

. state matrix
. input matrix
. output matrix

OQw e

. direct transmission matrix

Interpretation:
Derivative of each state is given by a linear combination of states
plus a linear combination of inputs. Similarly for the output ...
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State-Space Model: Block Diagram

u(t) *(1) x(t) ()
B > C .
A
D
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Example 1 (revisited): State-Space Model

Diff. equation for motion under friction:  md(t) = F(t) — bd(t)

Introduce velocity: v(t) = d(t)

Rewrite the above 2nd-order equation as a set of two 1st order DE:

b 1
)(t) = ——v(t) + —F(t
o(t) mv( ) - (t)
d(t) = v(t)
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Example 1 (revisited): State-Space Model

v(t
state: x(t) = ) , input: u(t) = F(t), output: y(t) = d(t)
dft)
b 1
€1 _ ~m 0 T n m u
9 10 9
]
= (0 1)
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Example 2 (revisited): State-Space Model

Ldf}tt) +Ri(t) = V() - Kt%(tt) electrical part
2
Jddetg_f) + bd?]gf) = Kyi(t) mechanical part

Introduce velocity: w(t) = 6(t)

Rewrite the above equations as a set of three 1st order DE:

R, K 1

i(t) = —=i(t) — —w(t) + =V(t
i(t) = —i(t) - ZLwlt) + V()
Ky b
w(t) = —i(t) — —w(t
(t) = =Fift) - Zw(t)
0(t) = w(t)




Example 2 (revisited): State-Space Model

T
state: z(t) = (i(t) w(t) 9(1?)) , input: wu(t) = V(t), output:
y(t) = 0(t)

Compare to the Input Output Model

9(8) Kt

G =y s|(Ls + R)(Js + b) + K2|

o(s) (LJ83 +(RJ + Lb)s + (Rb + Kf)s) = KV (s)

Corresponds to the following differential equation:

LTG(t) + (RJ + Lo)d(t) + (Rb + K7)6(t) = KV (1)

Note: current ¢ not in the model!
Input-output models do not use internal variables,
instead use higher derivatives of input and outputs.
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; _k _K 1
ol 3 I3 0 €T T
_ K b
xT9 - e -7 0 xr9 + 0 u
2 0 1 0/ \ a3 0
T
y = ( 0 0 1 ) 9
T3
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The big picture
Type of model
First principles
. . . Simulation, prediction,
=y Nonlinear differential eq. better understanding
A
V) l Lo
Q Linearization
S Du
ala . . . . Basis for control-
& _— Linearized differential eq. oriented models
=
~ / \
)
= Transfer function State-space model Analysis, control design
~
S
8 \ / Design
tﬁ\ Influence a process,
'E Controller modify behavior

Implementation
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Purpose of Analysis

Analyze the available model in order to:

e Understand the behavior of the process under study.
e Define meaningful specification for the controlled system.

e Give basis for control design choices (controller structure, pa-
rameters).

We are mainly interested in:

e Stability of the open-loop process.
e Transient response (impulse, step, ramp).

e Steady-state response (constant or sinusoidal input).
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