

Lecture Outline

Previous lecture: representation of dynamic models as differential equations.

- Transfer functions.
- State-space models.

Delft Center for Systems and Control, TU Delft

2

Example 3 (cont'd): Liquid Storage Tank $A\dot{h}(t) = Q_i(t) - Q_o(t)$ $Q_o(t) = r\sqrt{2gh(t)} = K\sqrt{h(t)}, \quad h \ge 0$ $\dot{A}\dot{h}(t) + K\sqrt{h(t)} = Q_i(t)$ • Nonlinear differential equation• Must be linearized for analysis or control design• Can be used to simulate the process

Laplace Transform – Definition

Transform a signal from time domain to complex domain (*s*-domain):

 $f(t) \xrightarrow{\mathcal{L}} F(s)$

$$F(s) = \int_0^\infty f(t) e^{-st} dt$$

a number of useful properties

Robert Babuška

Delft Center for Systems and Control, TU Delft

5

7

Using Laplace Transform

Differentiation: $f^{(n)}(t) \xrightarrow{\mathcal{L}} s^n F(s)$

Linear differential equation:

 $a_n y^{(n)}(t) + a_{n-1} y^{(n-1)}(t) + \dots + a_o y(t) =$

$$b_m u^{(m)}(t) + b_{m-1} u^{(m-1)}(t) + \dots + b_o u(t)$$

Linear algebraic equation:

Robert Babuška

$$\left(a_n s^n + a_{n-1} s^{n-1} + \dots + a_o\right) Y(s) =$$

$$\left(b_m s^m + b_{m-1} s^{m-1} + \dots + b_o\right) U(s)$$
Delft Center for Systems and Control, TU Delft

6

Example 1 (revisited): Transfer Function

$$m\ddot{d}(t) = F(t) - b\dot{d}(t)$$

$$ms^{2}D(s) = F(s) - bsD(s)$$

$$G(s) = \frac{D(s)}{F(s)} = \frac{1}{ms^{2} + bs} = \frac{1}{s(ms + b)}$$

$$\overrightarrow{F} - \underbrace{G(s)} - \underbrace{D}_{f(s)} - \underbrace{$$

State-Space Models

Introduce state variable x(t) (vector) to parameterize the 'memory' of the system.

- The state contains all information needed to determine future behavior without reference to the derivatives of input and output variables.
- The state is often determined from physical considerations (related to energy storage in the system).
- The dimension n of the state vector is the order of the system.

Linear State-Space Model

 $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t)

- $A \ldots$ state matrix
- $B \ldots$ input matrix
- $C \ldots$ output matrix
- D . . . direct transmission matrix

Interpretation:

Robert Babuška

Derivative of each state is given by a linear combination of states plus a linear combination of inputs. Similarly for the output ...

11

Example 1 (revisited): State-Space Model

state:
$$x(t) = \begin{pmatrix} v(t) \\ d(t) \end{pmatrix}$$
, input: $u(t) = F(t)$, output: $y(t) = d(t)$
$$\begin{pmatrix} \dot{x_1} \\ \dot{x_2} \end{pmatrix} = \begin{pmatrix} -\frac{b}{m} & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} \frac{1}{m} \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Example 1 (revisited): State-Space Model

Diff. equation for motion under friction: $m\ddot{d}(t) = F(t) - b\dot{d}(t)$

Introduce velocity: $v(t) = \dot{d}(t)$

Rewrite the above 2nd-order equation as a set of two 1st order DE:

$$\dot{v}(t) = -\frac{b}{m}v(t) + \frac{1}{m}F(t)$$
$$\dot{d}(t) = v(t)$$

Robert Babuška

Delft Center for Systems and Control, TU Delft

Example 2 (revisited): State-Space Model $L\frac{di(t)}{dt} + Ri(t) = V(t) - K_t \frac{d\theta(t)}{dt}$ electrical part $J\frac{d^2\theta(t)}{dt^2} + b\frac{d\theta(t)}{dt} = K_t i(t)$ mechanical part

Introduce velocity: $\omega(t) = \dot{\theta}(t)$

Rewrite the above equations as a set of three 1st order DE:

$$\begin{split} \dot{i}(t) &= -\frac{R}{L}i(t) - \frac{K_t}{L}\omega(t) + \frac{1}{L}V(t) \\ \dot{\omega}(t) &= \frac{K_t}{J}i(t) - \frac{b}{J}\omega(t) \\ \dot{\theta}(t) &= \omega(t) \end{split}$$

Robert Babuška

14

The big picture

Compare to the Input Output Model

$$G(s) = \frac{\theta(s)}{V(s)} = \frac{K_t}{s[(Ls+R)(Js+b) + K_t^2]}$$

$$\theta(s)\left(LJs^3 + (RJ + Lb)s^2 + (Rb + K_t^2)s\right) = K_t V(s)$$

Corresponds to the following differential equation:

$$LJ\ddot{\theta}(t) + (RJ + Lb)\ddot{\theta}(t) + (Rb + K_t^2)\dot{\theta}(t) = K_tV(t)$$

Note: current *i* not in the model! Input-output models do not use internal variables, instead use higher derivatives of input and outputs.

Robert Babuška

Delft Center for Systems and Control, TU Delft

Purpose of Analysis

Analyze the available model in order to:

- Understand the behavior of the process under study.
- Define meaningful specification for the controlled system.
- Give basis for control design choices (controller structure, parameters).

We are mainly interested in:

- Stability of the open-loop process.
- Transient response (impulse, step, ramp).
- Steady-state response (constant or sinusoidal input).