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Lecture Outline

Previous lecture: representation of dynamic models as differential

equations.

Today:

• Transfer functions.

• State-space models.
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Example 3: Liquid Storage Tank
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Example 3 (cont’d): Liquid Storage Tank

Aḣ(t) = Qi(t)−Qo(t)

Qo(t) = r
√
2gh(t) = K

√
h(t), h ≥ 0

Aḣ(t) +K
√
h(t) = Qi(t)

• Nonlinear differential equation
•Must be linearized for analysis or control design

• Can be used to simulate the process
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Laplace Transform – Definition

Transform a signal from time domain to complex domain (s-domain):

f (t)
L−→ F (s)

F (s) =

∫ ∞

0
f (t)e−stdt

a number of useful properties
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Using Laplace Transform

Differentiation: f (n)(t)
L−→ snF (s)

Linear differential equation:

any
(n)(t) + an−1y

(n−1)(t) + · · · + aoy(t) =

bmu(m)(t) + bm−1u
(m−1)(t) + · · · + bou(t)

Linear algebraic equation:(
ans

n + an−1s
n−1 + · · · + ao

)
Y (s) =

(
bmsm + bm−1s

m−1 + · · · + bo

)
U(s)
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Transfer Function

(
ans

n + an−1s
n−1 + · · · + ao

)
Y (s) =

(
bmsm + bm−1s

m−1 + · · · + bo

)
U(s)

G(s) =
Y (s)

U(s)
=

bmsm + bm−1s
m−1 + · · · + bo

ansn + an−1sn−1 + · · · + ao

G(s) =
B(s)

A(s)
. . . transfer function
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Example 1 (revisited): Transfer Function

md̈(t) = F (t)− bḋ(t)

ms2D(s) = F (s)− bsD(s)

G(s) =
D(s)

F (s)
=

1

ms2 + bs
=

1

s(ms + b)

G s( )
DF
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Example 2 (revisited): Transfer Function

L
di(t)
dt + Ri(t) = V (t)−Kt

dθ(t)
dt electrical part

J
d2θ(t)
dt2

+ b
dθ(t)
dt = Kti(t) mechanical part

(Ls + R)I(s) = V (s)−Ktsθ(s)

(Js2 + bs)θ(s) = KtI(s)

G(s) =
θ(s)

V (s)
=

Kt

s[(Ls + R)(Js + b) +K2
t ]
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Example 3 (revisited)

Aḣ(t) +K
√
h(t) = Qi(t)

Can we use Laplace transform?
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State-Space Models

Introduce state variable x(t) (vector) to parameterize the ‘memory’

of the system.

• The state contains all information needed to determine future

behavior without reference to the derivatives of input and out-

put variables.

• The state is often determined from physical considerations

(related to energy storage in the system).

• The dimension n of the state vector is the order of the system.
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Linear State-Space Model

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

A . . . state matrix

B . . . input matrix

C . . . output matrix

D . . . direct transmission matrix

Interpretation:

Derivative of each state is given by a linear combination of states

plus a linear combination of inputs. Similarly for the output . . .
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State-Space Model: Block Diagram

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

u t( ) y t( )x t( )
.
x t( )
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Example 1 (revisited): State-Space Model

Diff. equation for motion under friction: md̈(t) = F (t)− bḋ(t)

Introduce velocity: v(t) = ḋ(t)

Rewrite the above 2nd-order equation as a set of two 1st order DE:

v̇(t) = − b

m
v(t) +

1

m
F (t)

ḋ(t) = v(t)
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Example 1 (revisited): State-Space Model

state: x(t) =


 v(t)

d(t)


, input: u(t) = F (t), output: y(t) = d(t)


 ẋ1

ẋ2


 =


− b

m 0

1 0





 x1

x2


 +




1
m

0


u

y =
(
0 1

)

 x1

x2
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Example 2 (revisited): State-Space Model

L
di(t)
dt + Ri(t) = V (t)−Kt

dθ(t)
dt electrical part

J
d2θ(t)
dt2

+ b
dθ(t)
dt = Kti(t) mechanical part

Introduce velocity: ω(t) = θ̇(t)

Rewrite the above equations as a set of three 1st order DE:

i̇(t) = −R

L
i(t)− Kt

L
ω(t) +

1

L
V (t)

ω̇(t) =
Kt

J
i(t)− b

J
ω(t)

θ̇(t) = ω(t)
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Example 2 (revisited): State-Space Model

state: x(t) =
(
i(t) ω(t) θ(t)

)T
, input: u(t) = V (t), output:

y(t) = θ(t)




ẋ1

ẋ2

ẋ2


 =




−R
L −Kt

L 0

Kt
J − b

J 0

0 1 0







x1

x2

x3


 +




1
L

0

0


u

y =
(
0 0 1

)



x1

x2

x3
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Compare to the Input Output Model

G(s) =
θ(s)

V (s)
=

Kt

s[(Ls + R)(Js + b) +K2
t ]

θ(s)
(
LJs3 + (RJ + Lb)s2 + (Rb +K2

t )s
)
= KtV (s)

Corresponds to the following differential equation:

LJ
...
θ (t) + (RJ + Lb)θ̈(t) + (Rb +K2

t )θ̇(t) = KtV (t)

Note: current i not in the model!

Input-output models do not use internal variables,

instead use higher derivatives of input and outputs.
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The big picture

Implementation

Influence a process,
modify behavior

Design

Controller

Analysis, control designState-space modelTransfer function

Data Basis for -
oriented models

control
Linearized differential eq.

Linearization

Simulation, prediction,
better understandingNonlinear differential eq.

Type of model

First principles
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Purpose of Analysis

Analyze the available model in order to:

• Understand the behavior of the process under study.

• Define meaningful specification for the controlled system.

• Give basis for control design choices (controller structure, pa-

rameters).

We are mainly interested in:

• Stability of the open-loop process.

• Transient response (impulse, step, ramp).

• Steady-state response (constant or sinusoidal input).
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