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Lecture Outline

Previous lecture: representation of dynamic models, transfer func-
tions and state-space models.

Today:
e Assignment for the first computer session.
e Stability analysis.

e Transient response.
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Information on Computer Sessions

e Compulsory for all students who have not successfully completed
it in previous year(s).

o First session in week 4 (calendar week 39)
—Wednesday 142 or 3+4 or Thursday 142 or 3+4

depending on in which group you are - check Blackboard from
Monday next week.

e Location: "Computer room 020" at Civil Engineering.

e Homework preparation required!
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Homework for Computer Session

e Read thoroughly the entire handout “Matlab and Simulink for
Modeling and Control”.

e Work out items a) through e) of Section 5 (by hand).

e If you have never used Matlab before, familiarize yourself with
this tool (type ‘demo’ to start).

e Bring the handout “Matlab and Simulink for Modeling and Con-
trol” with you to the computer lab.

e Bring your own laptop with Matlab, if you have one.
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Purpose of Analysis

Analyze the available model in order to:

e Understand the behavior of the process under study.
e Define meaningful specification for the controlled system.

e Give basis for control design choices (controller structure, pa-
rameters).

We are mainly interested in:

e Stability of the open-loop process.
e Transient response (impulse, step, ramp).

e Steady-state response (constant or sinusoidal input).
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Stability — General Notions
e Nonlinear systems — stability of a trajectory (solutions of differ-
ential equations).

e Mostly we consider stability of equilibria, i.e., solutions of 0 =

f (o, ugp).

e One system may have many equilibria, some stable, some un-
stable.

e Linear systems — stability of an equilibrium implies stability of
the whole system.

Stability of LTI Systems

Vis) by 4 b st KT — )
Us)  st+aps" 4 da,  [I(s—p)

G(s) =

n
Response to initial conditions: y(t) = ZKZ-epit
=1

p; are real or complex poles of the system

The exponential terms decay iff Re{p;} <0

= the system is stable
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Real Poles
y(t) = Ke'
(0 p<0 yo| p=20 yo| p>0
t t t

A single pole p =0 ...system marginally stable
Multiple poles at p =0 ... system unstable
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Complex Poles

y(t) = K'e sin(wt + )

»(0) G
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Transient and Steady-State Response

e Responses to an arbitrary input signal cannot be computed an-
alytically (we have to resort to simulation).

e However, some specific input signals are useful:
— step response
—impulse response
—response to a ramp input (ramp response)
—response to a sinusoidal input (frequency response)

e Importance both for analysis and for identification of model
parameters from measured data.
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First-Order Systems: Step Response

1 1
Y(s) = = =
(5) = GV () = —— -~
Expand in partial fractions:
1
Y(s) == — —
S Ts+1
1 1
s s+1/7

Corresponding time signal:
y(t) = 1—e /7
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First-Order Systems: Step Response

y
1

63%

T t

31...95%, 471...98%, 57...99% of steady state value
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Estimate Parameters From Step Response

e Assume we have a stable first-order process with unknown gain
and time constant:

e Apply a step input to the process (choose a suitable amplitude,
not necessarily the unit step).

e Plot the corresponding output and read the parameters from
the graph.
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Demo: Rotational Pendulum

. . kmu
M(6)i + C(8,0)8 + G(9) =
0
P+ Py + 2P3cos 6 Py + Pscosfy
M(0)
Py + Pycosty Py
. by — P_gég sin 0y 7P3<0‘1 + 92) sin 6
c(0,0) = )
P30, sin 0y by
a0 —g1sinby — gosin(0y + 6s)
—g2sin(6; + 0y)
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Linearized Model

Gls) = ba(s) _ 661.2903(s2 4 49.05)
U(s)  s(s+33.06)(s? +0.6783s + 98.11)

e one pole in origin (pure integration)
e one fast real pole (motor mechanical time constant)
e a pair of poorly damped complex poles

e a pair of complex zeros
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First-Order Systems: Ramp Response

1 1
Yis) = .
(s) Ts+1 g2
Expand in partial fractions:
1 T 2
Y = — — — +
(5) 52 s Ts+1
Corresponding time signal:
yt) =t —7+ re t/T
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First-Order Systems: Impulse Response

1
V() = Gls)U(s) = ——
Expand in partial fractions:
1 1/

Y(s) = =

Ts+1 s+ 1/

Corresponding time signal:

, L /T
y(t) = —e
-
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Relationship Between the Responses

e Ramp response:  G(s) - %

e Step response:  G(s) -

=

(derivative of ramp response)

e Impulse response: G(s)-1 (derivative of step response)

So far we considered 7 > 0 (asymptotically stable first-order sys-
tem). Work out the impulse, step and ramp response for 7 < 0
(unstable system) and for an integrator (G(s) = 1/s).
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Second-Order System

(s) i k

e 20wns + w% B (s + 0)2 + W?l

wn : undamped natural frequency
¢ : relative damping
o : attenuation (damping)

wyg . damped natural frequency

Robert Babuska Delft Center for Systems and Control, TU Delft

Second-Order System

\ 2
g Tim H(S) — Wy

s? +2Lw, S + W

»Re 0= an
o, Wy = W,y1- T

B =sin"'
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Second-Order System: Time Response

o
y(t)y=1- c_gt(cos wgt + —sin wdt>
Wd

y(®)
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Influence of Damping
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Step Response Characteristics
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Relation to Natural Frequency and Damping

Robert Babuska

Delft Center for Systems and Control, TU Delft




Performance Specifications for Closed-Loop
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Performance Specifications: Example

t. <06s. w, =28 rad/s. W, = 18
M <10% 1>06
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Additional Pole in the System

2
Whny

Hs = (52 + 2wps + w,2,> (S + 'ywn>

The 3" order system can be accurately approximated by a second
order system if

v =10

In such a case, the two complex poles are dominant.
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Zero in a Second-Order System

H(s) = w2 (bs +1)
2+ 2Cwns + wfl

2 2
(s) = wi, whns

s) = +5b-
52 + 20wns + w2 52 + 20wns + w2
Hy Hy

Time response of H, is the derivative of response of Hj.
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Step Response With an Extra Zero
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Consequences of Extra Zeros

2 2

w wss

H(s) = n +b- n
() 52+2(wns+w% 52+2§wn3+w%

Hy Hy

For large b — overshoot M), increases

If b < 0 (zero in RHP) initial response is negative

(such systems are called nonminimum-phase systems or inverse-
response systems)
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Nonminimum-Phase Response
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