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Lecture Outline

Previous lecture: representation of dynamic models, transfer func-

tions and state-space models.

Today:

• Assignment for the first computer session.

• Stability analysis.

• Transient response.
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Information on Computer Sessions

• Compulsory for all students who have not successfully completed

it in previous year(s).

• First session in week 4 (calendar week 39)

–Wednesday 1+2 or 3+4 or Thursday 1+2 or 3+4

depending on in which group you are - check Blackboard from

Monday next week.

• Location: ’Computer room 020’ at Civil Engineering.

• Homework preparation required!
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Homework for Computer Session

• Read thoroughly the entire handout “Matlab and Simulink for

Modeling and Control”.

•Work out items a) through e) of Section 5 (by hand).

• If you have never used Matlab before, familiarize yourself with

this tool (type ‘demo’ to start).

• Bring the handout “Matlab and Simulink for Modeling and Con-

trol” with you to the computer lab.

• Bring your own laptop with Matlab, if you have one.
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Purpose of Analysis

Analyze the available model in order to:

• Understand the behavior of the process under study.

• Define meaningful specification for the controlled system.

• Give basis for control design choices (controller structure, pa-

rameters).

We are mainly interested in:

• Stability of the open-loop process.

• Transient response (impulse, step, ramp).

• Steady-state response (constant or sinusoidal input).
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Stability – General Notions

• Nonlinear systems – stability of a trajectory (solutions of differ-

ential equations).

•Mostly we consider stability of equilibria, i.e., solutions of 0 =

f (x0, u0).

• One system may have many equilibria, some stable, some un-

stable.

• Linear systems – stability of an equilibrium implies stability of

the whole system.
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Stability of LTI Systems

G(s) =
Y (s)

U(s)
=

b0s
m + b1s

m−1 + · · · + bm
sn + a1sn−1 + · · · + an

=
K

∏m
j=1(s− zj)

∏n
i=1(s− pi)

Response to initial conditions: y(t) =
n∑

i=1

Kie
pit

pi are real or complex poles of the system

The exponential terms decay iff Re{pi} < 0

= the system is stable
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Real Poles

y(t) = Kept

y t( )

t

y t( )

t

p = 0p 0< y t( )

t

p > 0

A single pole p = 0 . . . system marginally stable

Multiple poles at p = 0 . . . system unstable
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Complex Poles

y(t) = K ′eσt sin(ωt + ϕ)

y t( )

t

s > 0
y t( )

t

s = 0
y t( )

t

s < 0
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Transient and Steady-State Response

• Responses to an arbitrary input signal cannot be computed an-

alytically (we have to resort to simulation).

• However, some specific input signals are useful:

– step response

– impulse response

– response to a ramp input (ramp response)

– response to a sinusoidal input (frequency response)

• Importance both for analysis and for identification of model

parameters from measured data.
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First-Order Systems: Step Response

Y (s) = G(s)U(s) =
1

τs + 1
·
1

s

Expand in partial fractions:

Y (s) =
1

s
−

τ

τs + 1

=
1

s
−

1

s + 1/τ

Corresponding time signal:

y(t) = 1− e−t/τ
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First-Order Systems: Step Response

y

t

63%

1

3τ . . . 95%, 4τ . . . 98%, 5τ . . . 99% of steady state value
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Estimate Parameters From Step Response

• Assume we have a stable first-order process with unknown gain

and time constant:

G(s) =
K

τs + 1

• Apply a step input to the process (choose a suitable amplitude,

not necessarily the unit step).

• Plot the corresponding output and read the parameters from

the graph.
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Demo: Rotational Pendulum

m1

m2

l2

l1

m2 g

m1 g

motor

M (θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) =






kmu

0






M(θ) =






P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2






C(θ, θ̇) =






b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

P3θ̇1 sin θ2 b2






G(θ) =






−g1 sin θ1 − g2 sin(θ1 + θ2)

−g2 sin(θ1 + θ2)
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Linearized Model

G(s) =
θ2(s)

U(s)
=

661.2903(s2 + 49.05)

s(s + 33.06)(s2 + 0.6783s + 98.11)

• one pole in origin (pure integration)

• one fast real pole (motor mechanical time constant)

• a pair of poorly damped complex poles

• a pair of complex zeros
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First-Order Systems: Ramp Response

Y (s) =
1

τs + 1
·
1

s2

Expand in partial fractions:

Y (s) =
1

s2
−

τ

s
+

τ2

τs + 1

Corresponding time signal:

y(t) = t− τ + τe−t/τ
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First-Order Systems: Impulse Response

Y (s) = G(s)U(s) =
1

τs + 1
· 1

Expand in partial fractions:

Y (s) =
1

τs + 1
=

1/τ

s + 1/τ

Corresponding time signal:

y(t) =
1

τ
e−t/τ
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Relationship Between the Responses

• Ramp response: G(s) · 1
s2

• Step response: G(s) · 1s (derivative of ramp response)

• Impulse response: G(s) · 1 (derivative of step response)

So far we considered τ > 0 (asymptotically stable first-order sys-

tem). Work out the impulse, step and ramp response for τ < 0

(unstable system) and for an integrator (G(s) = 1/s).
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Second-Order System

H(s) =
ω2n

s2 + 2ζωns + ω2n
= k

(s + σ)2 + ω2d

ωn : undamped natural frequency

ζ : relative damping

σ : attenuation (damping)

ωd : damped natural frequency
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Second-Order System

H s
s s

n

n n

b g =
+ +

ω
ζω ω

2

2 22

σ

ωd

Re

Imθ

ωn

σ ζω

ω ω ζ

θ ζ

=

= −

= −

n

d n 1 2

1sin
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Second-Order System: Time Response

y(t) = 1− e−σt
(

cos ωdt +
σ

ωd
sin ωdt

)

 0 t t+T

   

   

0

y         
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Influence of Damping
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Step Response Characteristics
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Relation to Natural Frequency and Damping
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Performance Specifications for Closed-Loop
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Performance Specifications: Example
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Additional Pole in the System

H(s) =
ω2nωnγ

(

s2 + 2ζωns + ω2n

)(

s + γωn

)

The 3rd order system can be accurately approximated by a second

order system if

γ ≥ 10

In such a case, the two complex poles are dominant.
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Zero in a Second-Order System

H(s) =
ω2n(bs + 1)

s2 + 2ζωns + ω2n

H(s) =
ω2n

s2 + 2ζωns + ω2n︸ ︷︷ ︸

H0

+ b ·
ω2ns

s2 + 2ζωns + ω2n︸ ︷︷ ︸

Hd

Time response of Hd is the derivative of response of H0.
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Step Response With an Extra Zero
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Consequences of Extra Zeros

H(s) =
ω2n

s2 + 2ζωns + ω2n︸ ︷︷ ︸

H0

+ b ·
ω2ns

s2 + 2ζωns + ω2n︸ ︷︷ ︸

Hd

For large b → overshoot Mp increases

If b < 0 (zero in RHP) initial response is negative

(such systems are called nonminimum-phase systems or inverse-

response systems)
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Nonminimum-Phase Response
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