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Lecture Outline

Previous lecture: Stability and transient response.

Today:

• Steady-state response.

• Feedforward vs. feedback control.

• Control design goals.

• System type.

• PID control.
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Steady-State Response

Final value theorem

lim
t→∞

y(t) = lim
s→0

sY (s) iff all poles of sY (s) in the LHP

If u is a unit step, U(s) = 1
s,

lim
t→∞

y(t) = lim
s→0

s ·G(s) ·
1

s
= lim

s→0
G(s)

Consequence: DC (stationary) gain of G(s)

DC = lim
s→0

G(s)

Important: G(s) must be stable (check stability first)!
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Feedforward Control

d

u
Controller Process

yr

controller = inverse of process model

+ guaranteed stable for stable processes

− cannot stabilize unstable processes

− sensitive to disturbances

− sensitive to model uncertainty
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Feedback Control
d

u
Controller Process

y
r

controller 6= inverse of process model

+ can stabilize unstable processes

+ less sensitive to disturbance

+ less sensitive to model uncertainty

− can potentially destabilize a stable process
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Feedback vs. Feedforward: Cruise Control
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Feedback vs. Feedforward: Cruise Control

Controller Car

desired
speed gas

slope  wind

speed

-

Controller Car

desired
speed gas

slope  wind

speed
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Closed-Loop Transfer Function

R s( )

-

+
C s( ) G s( )

Y s( )U s( )E s( )

Y = GC (R− Y )

(1 +GC)Y = GCR

Gcl =
Y

R
=

GC

1 +GC

Robert Babuška Delft Center for Systems and Control, TU Delft 8



Controller Design: Goals and Choices

• Different control goals, for instance:

– stabilize an unstable process

– track a specific type of reference signal

– reduce influence of disturbances

– improve performance (e.g., speed of response)

• Structure of the controller (number of poles and zeros)

• Parameters (location of poles and zeros, gain)
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Reference Tracking: System Type

R s( )

-

+
C s( ) G s( )

Y s( )U s( )E s( )

How well will the closed-loop system track a given reference sig-

nal?

Consider reference input: R(s) = 1
sk

k = 1 . . . step, k = 2 . . . ramp, etc.
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Common Reference Signals

R(s) = 1
s r(t) = 1(t) step (position)

R(s) = 1
s2

r(t) = t ramp (velocity)

R(s) = 1
s3

r(t) = t2

2 parabola (acceleration)
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Steady-State Error

R s( )

-

+
C s( ) G s( )

Y s( )U s( )E s( )

E(s) =
1

1 + L(s)
R(s) with L(s) = G(s)C(s) (loop transfer)

Steady-state error (final value theorem):

ess = lim
s→0

sE(s) = lim
s→0

s

1 + L(s)
R(s) = lim

s→0

s

1 + L(s)
·
1

sk

Robert Babuška Delft Center for Systems and Control, TU Delft 12



Steady-State Error: Example 1

Consider the following loop transfer: L(s) =
K

s + 1

Steady-state error:

ess = lim
s→0

s

1 + L(s)
·
1

sk
= lim

s→0

s(s + 1)

s + 1 +K
·
1

sk

Step (R(s) = 1
s):

ess = lim
s→0

s(s + 1)

s + 1 +K
·
1

s
=

1

1 +K
= finite constant

Ramp (R(s) = 1
s2
):
ess = lim

s→0

s(s + 1)

s + 1 +K
·
1

s2
= ∞
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Steady-State Error: Example 2

Consider the following loop transfer: L(s) =
K

s(s + 1)

Steady state error:

ess = lim
s→0

s

1 + L(s)
·
1

sk
= lim

s→0

s2(s + 1)

s(s + 1) +K
·
1

sk

Step (R(s) = 1
s):

ess = lim
s→0

s2(s + 1)

s(s + 1) +K
·
1

s
= 0

Ramp (R(s) = 1
s2
):

ess = lim
s→0

s2(s + 1)

s(s + 1) +K
·
1

s2
=

1

K
= finite constant
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Steady-State Error in General

Loop transfer: L(s) =
L0(s)

sm

ess = lim
s→0

s

1 +
L0(s)
sm

·
1

sk
= lim

s→0

sms

sm + L0(s)
·
1

sk

Zero steady-state error:

ess = 0 iff m ≥ k

System type m = number of pure integrators in loop transfer
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System Type → Controller Structure

If zero steady-state error required (for a given reference type)

and

the loop transfer is not of sufficiently high type

then

add integrator(s) in the controller.

(see also PID control)
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Proportional Control

r

d

u
P Process

ye
-

Controller:

• static gain Kp: u(t) = Kpe(t) = Kp (r(t)− y(t))
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Closed-Loop Transfer With P Controller

Process (example): G(s) =
K

s(s + a)

Proportional controller: C(s) = Kp

Closed-loop poles – solutions of: 1 +
KKp

s(s + a)
= 0

s2 + as +KKp = 0

Kp has some influence on the closed-loop poles

(does modify the stiffness, but not the damping)
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Proportional-Derivative (PD) Control

r

d

u
PD Process

ye

-

Controller:

• dynamic: u(t) = Kpe(t) +Kd
de(t)
dt

•Kp and Kd are the proportional, and derivative gains, respec-

tively
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Closed-Loop Transfer with PD Controller

Process (example): G(s) =
K

s(s + a)

Proportional controller: C(s) = Kp +Kds

Closed-loop poles – solutions of: 1 +
K(Kp +Kds)

s(s + a)
= 0

s2 + (a +KKd)s +KKp = 0

we can choose Kp and Kd to completely determine the closed-loop

poles (for this second-order process)
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PID Control

r

d

u
PID Process

ye
-

Controller:

• dynamic: u(t) = Kpe(t) +Ki

∫ t
0 e(τ )dτ +Kd

de(t)
dt

•Kp, Ki and Kd are the proportional, integral and derivative

gains, respectively
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When Should We Use Integral Action?

If zero steady-state error required (for a given reference type)

and the loop transfer is not of sufficiently high type

Example: L(s) = G(s)Kp =
KKp

τs + 1

Reference = step: R(s) =
1

s

Required: zero steady-state error ess = 0

Conclusion: as system type is 0 (no integrator), use PI!
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Integral Action in Differential Equation

Process (example): y + bẏ = u

Proportional controller: u = Kp(r − y)

Closed-loop differential equation: y + bẏ = Kpr −Kpy

In steady state (ẏ = 0): y =
Kp

1 +Kp
r ⇒ y ≈ r (for large Kp)

non-zero steady-state error! (system is of type 0)
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With a PI Controller

Process (example): y + bẏ = u

PI controller: u = Kp(r − y) +Ki

∫
(r − y)

for r =const: u̇ = −Kpẏ +Ki(r − y)

Closed-loop differential equation: ẏ + bÿ = −Kpẏ +Kir −Kiy

In steady state (ÿ = ẏ = 0): 0 = Kir −Kiy ⇒ y = r

no steady-state error!
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Influence of the PID Parameters

•Kp . . . stiffness (speed of response), but also oscillations

•Kd . . . damping (less oscillations), but sensitive to noise

•Ki . . . remove steady-state error, but more overshoot

(re-tune Kp , Ki)

Tuning:

• Experimental tuning (often used in practice, sometimes computer-

assisted)

•Model-based analysis and design (rest of our course)
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Implementation: Computer Control

y(t)u(t)

Computer

ProcessAlgorithm

Clock

{ ( )}u t{ ( )}y t k k
A-D D-A

Controller implemented on a digital computer,

runs in discrete time and on discrete-valued data.
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