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Lecture Outline

Previous lecture: Feedback control, system type, PID

control, parameter tuning.

Today:

• Overview of control design methods.

• The root locus (RL) method – basic idea.

• Properties of the RL, sketching for simple systems.

• RL for controller design and closed-loop analysis.

•Matlab and Simulink.

Robert Babuška Delft Center for Systems and Control, TU Delft 2

Controller Design Methods: Overview

• Placing the poles in the complex plane

– Root locus: poles vary as a function of one parameter

– Pole placement for state feedback (state-space models)

• Shaping the frequency response of closed loop

– Bode plot: frequency domain design

•Minimizing a cost function of closed loop

– Linear quadratic control (not in this course)
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The Root Locus Method: Setting

R s( )

-

+
C s( ) G s( )

Y s( )U s( )E s( )

Closed-Loop TF:
Y (s)

R(s)
=

G(s)C(s)

1 +G(s)C(s)

Characteristic equation: 1 +G(s)C(s) = 0 ⇒ 1 + L(s) = 0

Parameterize as: 1 +KL̄(s) = 0 , where K ∈ R
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Parameterization: Example 1

R s( )

-
Kp G s( )

Y s( )

L̄(s) = G(s) process

K = Kp proportional gain
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Parameterization: Example 2

R s( )

-
K T sp d(1 + ) G s( )

Y s( )

L̄(s) = G(s)(1 + Tds) process and normalized PD controller

K = Kp overall gain

etc., PID, lead, lag, . . . (we will come back to these later)
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Root Locus: Underlying Question

Given:

1 +KL̄(s) = 0

How does the location of the closed-loop poles change

as a function of K?

In other words: find the set of roots of (1 +KL̄(s) = 0)

for varying gain 0 ≤ K < ∞

Useful for both analysis and design!
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Root Locus: Solutions

• Analytical: convenient only for first and second-order

loop transfers, e.g., L(s) =
1

s(s + 1)

• Numerical: compute poles numerically for selected

values of K (see the Matlab session)

• Graphical: draw curves along which the closed-loop poles

move in the complex plane as K changes

(sketch by hand or plot using a computer)
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Properties of the Root Locus

(in the sequel we drop the bar from L̄(s), for convenience)

1 +KL(s) = 0 ⇒ L(s) = − 1

K

As K is real positive and L(s) complex, the phase:

∠L(s) = 180◦ + k · 360◦ with k integer

for all s belonging to the root locus

This is called the phase condition.
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Properties of the Root Locus

• The RL has n branches, where n is the number of poles

(the order) of L(s).

• For K = 0, the branches start in the poles of L(s) and

for K → ∞ end in the zeros of L(s):

1 +K
B(s)

A(s)
= 0 ⇒ A(s) +KB(s) = 0 ⇒ B(s)

A(s)
= − 1

K

• If there are fewer zeros than poles (pole excess: n − m), the

n−m branches go asymptotically to ∞, at angles:

φk =
180◦ + 360◦(k − 1)

n−m
, for k = 1, 2, . . . , n−m
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Properties of the Root Locus

• The asymptotes radiate out from point α on the real axis, given

by:

α =

∑n
i=1 pi −

∑m
i=1 zi

n−m

• The RL on the real axis is always left of an odd number of poles

and zeros.
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Properties of the Root Locus

There are four more properties (rules) for accurately sketching the

RL of any system by hand (see page 248 in the book).

In practice, we will plot the RL with Matlab. The rules are then

useful to check that we are getting a meaningful plot (typos and

other errors do creep in!).
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Root Loci of Several Elementary Systems

L(s) =
1

s + a
for a > 0, a = 0, a < 0

L(s) =
s + b

s + a
for b > 0, b = 0, b < 0

L(s) =
ω2n

s2 + 2ζωns + ω2n
for all ζ, ω

L(s) =
1

s3
, L(s) =

1

s(τs + 1)

Know how to sketch RL of first, second and third-order systems

with real zeros by hand!
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RL for Analysis and Design

1. Qualitative analysis: can a given controller type (P, PI, etc.)

stabilize a given system?

2. Controller’s structure: add zero(s) in order to reduce the num-

ber of asymptotes and therefore change their angles. Recall the

angles:

φk = 180◦ + 360◦(k − 1), for k = 1, 2, . . . , n−m.

where n−m is the pole-zero excess.

3. Controller’s parameter: find K such that desired closed loop

specifications are obtained
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Example: Satellite Attitude Control
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Example: Satellite Attitude Control

θ̈(t) = kT (t) where k > 0 is a known constant

θ(t) . . . attitude angle (output to be controlled)

T (t) . . . thrust (manipulated input)

Transfer function (for k = 1): G(s) =
Θ(s)

T (s)
=

1

s2

Compare P controller and PD controller.

Use the rltool command in Matlab.

Robert Babuška Delft Center for Systems and Control, TU Delft 16


