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Delft Center for Systems and Control

Faculty of Mechanical Engineering

Delft University of Technology

The Netherlands

e-mail: r.babuska@dcsc.tudelft.nl

www.dcsc.tudelft.nl/ b̃abuska

tel: 015-27 85117
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Lecture Outline

Previous lecture: The root locus method, analysis, design.

Today:

• Remarks on the computer session.

• RL: additional examples.

• Realistic PID controller.

• Frequency response.
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Matlab / Simulink Computer Session

• Do your homework:

– Read the entire handout (know what to do).

–Work out by hand items a) through e) of Section 5.

• Bring the handout with you to the computer lab.

• Be on time, please, 10 min in advance.

You may bring your own laptop to the lab, if you want.
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RL: Effect of Parameter Change

Consider our DC motor in a position control loop:

1. Use root locus to design a P controller for the nominal system

with:

Kt = 0.5, R = 1, L = 0, b = 0.1, J = 0.01

2. Use root locus to analyze how the closed-loop poles change

when the moment of inertia J of the load changes.
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DC Motor: Root Locus for P Control

G(s) =
θ(s)

E(s)
=

Kt

s[(Ls + R)(Js + b) +K2
t ]

Consider L = 0:

G(s) =
θ(s)

E(s)
=

Kt

s[(JRs + bR) +K2
t ]

=
k

s(s + a)

with k =
Kt

JR
, a =

bR +K2
t

JR

Design a proportional controller such that the closed loop has a

double real pole (use rltool in Matlab).
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DC Motor: Root Locus for P Control

Kp = 6.125

p1,2 = −17.5
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DC Motor: Closed-Loop Step Response

Step Response
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RL for Analysis: Varying Moment of Inertia

R s( )

-
Kp G s( )

Y s( )

DC motor with
varying J

L(s) = G(s)Kp process and fixed controller in series

K will represent influence of varying moment of inertia J
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RL for Analysis: Varying Moment of Inertia

G(s)Kp =
kn

s(s + an)
for the given controller gain Kp:

kn =
KtKp

JnR
, an =

bR +K2
t

JnR
with Jn = 0.01

Dividing Jn by factor K means multiplying an and kn by K.

Characteristic equation:

s2 +K(san + kn) = 0 ⇒ 1 +K
san + kn

s2
= 0
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DC Motor: Root Locus for Varying J

K = 0.1

⇓

J = 10 · Jn
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Large Inertia: Closed-Loop Step Response

Step Response
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Proper Systems

A system G(s) =
B(s)

A(s)
for which degA(s) ≥ degB(s)

is called proper (has not more zeros than poles).

In reality only proper systems exist!

Consequence:

the ‘textbook’ form of the PD controller cannot be realized:

C(s) = Kp(1 + Tds)
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More Realistic PD Controller

Filtered derivative:

C(s) = Kp

(
1 +

Tds

(Td/N )s + 1

)

where N is typically in the range 10 – 20.

This means that an additional pole is introduced far left on the

real axis.
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Satellite Attitude Control Revisited

Transfer function: G(s) =
Θ(s)

T (s)
=

1

s2

Compare the RL for ideal and realistic PD controller.
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PID Controller Used in Practice

U(s) = Kp

(
E(s) +

1

sTi
E(s)− Tds

(Td/N )s + 1
Y (s)

)

– Derivative action applied to −Y (s) instead of E(s).

– Anti-windup scheme used for the integral action

(prevent integration when the actuator becomes saturated).
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Anti-Windup Tracking Scheme

u

es

v

Saturation Actuator

e

-y

+ -

K T sp d

1
Tt

Kp

Ti

Kp

1
s-
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Root Locus: Homework Assignments

• Read Chapter 5 of the book by Franklin et al.

• Sketch root loci of first, second and third-order systems with

real zeros and both real and complex poles by hand.

• For Examples 5.1 through 5.8 in the book verify the results by

using Matlab.

• Problems at the end of Chapter 5: work out problems 5.1 and

5.2 by hand and a selection of the remaining problems by using

Matlab.
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Representations of Transfer Functions
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Frequency response:

• Bode plot

• Nyquist plot
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Frequency Response: Setting

Consider a linear time invariant system:

U(s) Y (s)
G(s)

?

Input: u(t) = M sinωt

What is the steady-state output?
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Frequency Response: Laplace Transform

u(t) = M sinωt

U(s) = L{u(t)} =
Mω

s2 + ω2
=

Mω

(s + jω)(s− jω)

Y (s) = G(s)U(s) = G(s)
Mω

(s + jω)(s− jω)

y(t) = ?
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Partial Fraction Expansion

General Laplace transform of the output:

Y (s) =

n∑
i=1

mi∑
j=1

Kij

(s− pi)j
+

K

s− jω
+

K∗
s + jω

Corresponding time signal:

y(t) =

n∑
i=1

mi∑
j=1

Kijt
jepit

︸ ︷︷ ︸
transient

+Kejωt +K∗e−jωt︸ ︷︷ ︸
periodic signal
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Compute Coefficients K and K*

In steady state:

Y (s) =
K

s− jω
+

K∗
s + jω

K = Y (s)(s− jω)|s=jω

= G(s)
Mω

(s + jω)(s− jω)
(s− jω)

∣∣∣∣
s=jω

= G(s)
Mω

s + jω

∣∣∣∣
s=jω

= G(jω)
M

2j
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Compute Coefficients K and K*

K =
M

2j
G(jω) =

M

2j
|G(jω)| ej∠G(jω)

and

K∗ = −M

2j
G(−jω) = −M

2j
|G(jω)| e−j∠G(jω)

Kejωt +K∗e−jωt =

M |G(jω)| e
j(ωt+∠G(jω)) − e−j(ωt+∠G(jω))

2j

= M |G(jω)| sin(ωt + ∠G(jω))
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Frequency Response: Summary

u(t) = M sinωt

y(t) ' M |G(jω)| sin(ωt + ∠G(jω))

|G(jω)| . . . magnitude (gain)

∠G(jω) . . . phase
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