Systeem- en Regeltechniek II

Lecture 6 - Root Locus, Frequency Response
Robert Babuška

Delft Center for Systems and Control
Faculty of Mechanical Engineering Delft University of Technology

The Netherlands
e-mail: r.babuska@dcsc.tudelft.nl www.dcsc.tudelft.nl/~babuska
tel: 015-27 85117

Robert Babuskika
Delf Center for Systems and Control, TU Delft

Matlab / Simulink Computer Session

- Do your homework:
- Read the entire handout (know what to do).
- Work out by hand items a) through e) of Section 5.
- Bring the handout with you to the computer lab.
- Be on time, please, 10 min in advance.

You may bring your own laptop to the lab, if you want.

Lecture Outline

Previous lecture: The root locus method, analysis, design.
Today:

- Remarks on the computer session.
- RL: additional examples.
- Realistic PID controller.
- Frequency response.

Robert Babuska Delt Center for Systems and Control, TU Delft

RL: Effect of Parameter Change

Consider our DC motor in a position control loop:

1. Use root locus to design a P controller for the nominal system with:

$$
K_{t}=0.5, R=1, L=0, b=0.1, J=0.01
$$

2. Use root locus to analyze how the closed-loop poles change when the moment of inertia J of the load changes.

DC Motor: Root Locus for P Control

$$
G(s)=\frac{\theta(s)}{E(s)}=\frac{K_{t}}{s\left[(L s+R)(J s+b)+K_{t}^{2}\right]}
$$

Consider $L=0$:

$$
G(s)=\frac{\theta(s)}{E(s)}=\frac{K_{t}}{s\left[(J R s+b R)+K_{t}^{2}\right]}=\frac{k}{s(s+a)}
$$

with $\quad k=\frac{K_{t}}{J R}, \quad a=\frac{b R+K_{t}^{2}}{J R}$
Design a proportional controller such that the closed loop has a double real pole (use rltool in Matlab).

Robert Babuska
Deltt Center for Systems and Control, TU Delft ${ }_{5}$

DC Motor: Closed-Loop Step Response

DC Motor: Root Locus for P Control

Robert Babuska
Delft Center for Systems and Control, TU Delft
${ }^{6}$

RL for Analysis: Varying Moment of Inertia

$L(s)=G(s) K_{p} \quad$ process and fixed controller in series
K will represent influence of varying moment of inertia J

RL for Analysis: Varying Moment of Inertia

$G(s) K_{p}=\frac{k_{n}}{s\left(s+a_{n}\right)} \quad$ for the given controller gain K_{p} :
$k_{n}=\frac{K_{t} K_{p}}{J_{n} R}, \quad a_{n}=\frac{b R+K_{t}^{2}}{J_{n} R} \quad$ with $\quad J_{n}=0.01$

Dividing J_{n} by factor K means multiplying a_{n} and k_{n} by K.
Characteristic equation:
$s^{2}+K\left(s a_{n}+k_{n}\right)=0 \quad \Rightarrow \quad 1+K \frac{s a_{n}+k_{n}}{s^{2}}=0$

Robert Babuska
Delft Center for Systems and Control, TU Delft

Proper Systems

A system $G(s)=\frac{B(s)}{A(s)}$ for which $\operatorname{deg} A(s) \geq \operatorname{deg} B(s)$
is called proper (has not more zeros than poles).
In reality only proper systems exist!

Consequence:
the 'textbook' form of the PD controller cannot be realized:

$$
C(s)=K_{p}\left(1+T_{d} s\right)
$$

More Realistic PD Controller

Filtered derivative:

$$
C(s)=K_{p}\left(1+\frac{T_{d} s}{\left(T_{d} / N\right) s+1}\right)
$$

where N is typically in the range $10-20$.
This means that an additional pole is introduced far left on the real axis.

Satellite Attitude Control Revisited

Transfer function: $G(s)=\frac{\Theta(s)}{T(s)}=\frac{1}{s^{2}}$
Compare the RL for ideal and realistic PD controller.

Robert Babuska
Delt Center for Systems and Control, TU Deltt
${ }^{14}$

Anti-Windup Tracking Scheme

Root Locus: Homework Assignments

- Read Chapter 5 of the book by Franklin et al.
- Sketch root loci of first, second and third-order systems with real zeros and both real and complex poles by hand.
- For Examples 5.1 through 5.8 in the book verify the results by using Matlab.
- Problems at the end of Chapter 5: work out problems 5.1 and 5.2 by hand and a selection of the remaining problems by using Matlab.

Robert Babuska
Delf Center for Systems and Control, TU Delit
${ }_{17}$ Delt Center for Systems and Control, TU Deltt

Frequency Response: Laplace Transform

$$
\begin{aligned}
u(t) & =M \sin \omega t \\
U(s) & =\mathcal{L}\{u(t)\}=\frac{M \omega}{s^{2}+\omega^{2}}=\frac{M \omega}{(s+j \omega)(s-j \omega)} \\
Y(s) & =G(s) U(s)=G(s) \frac{M \omega}{(s+j \omega)(s-j \omega)} \\
y(t) & =?
\end{aligned}
$$

Partial Fraction Expansion

General Laplace transform of the output:

$$
Y(s)=\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \frac{K_{i j}}{\left(s-p_{i}\right)^{j}}+\frac{K}{s-j \omega}+\frac{K^{*}}{s+j \omega}
$$

Corresponding time signal:

$$
y(t)=\underbrace{\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} K_{i j} t^{j} e^{p_{i} t}}_{\text {transient }}+\underbrace{K e^{j \omega t}+K^{*} e^{-j \omega t}}_{\text {periodic signal }}
$$

Robert Babuska
Delf Center for Systems and Control, TU Deltt

Frequency Response: Summary
$u(t)=M \sin \omega t$
$y(t) \simeq M|G(j \omega)| \sin (\omega t+\angle G(j \omega))$
$|G(j \omega)| \ldots$ magnitude (gain)
$\angle G(j \omega) \ldots$ phase

