Regeltechniek

Lecture 7 - Frequency Response, Bode Plots
Robert Babuška

Delft Center for Systems and Control
Faculty of Mechanical Engineering Delft University of Technology

The Netherlands
e-mail: r.babuska@dcsc.tudelft.nl www.dcsc.tudelft.nl/~babuska tel: 015-27 85117

Robert Babuska
elft Center for Systems and Control. TU Delfif

Frequency Response

Periodic input:

$$
u(t)=M \sin \omega t
$$

Steady-state output:

$$
y(t)=|G(j \omega)| \cdot M \sin (\omega t+\angle G(j \omega))
$$

$|G(j \omega)| \ldots$ magnitude (gain)
$\angle G(j \omega) \ldots$ phase

Robert Babusisk
elft Center for Systems and Control, TU Delfif

Lecture Outline

Previous lecture: Root locus, frequency response derivation.
Today:

- Handout for the remaining computer sessions.
- Bode plots.
- Non-minimum-phase systems.
- System type in Bode plots.

Magnitude and Phase

Magnitude:

$$
|G(j \omega)|=\sqrt{\{\operatorname{Re}[G(j \omega)]\}^{2}+\{\operatorname{Im}[G(j \omega)]\}^{2}}
$$

Phase:

$$
\angle G(j \omega)=\tan ^{-1}\left(\frac{\operatorname{Im}[G(j \omega)]}{\operatorname{Re}[G(j \omega)]}\right)
$$

Both the magnitude and phase are generally functions of ω !
Fully describe $G(s)$, can also can be measured experimentally.

Magnitude and Phase: Example

$$
G(s)=\frac{2}{s+1}
$$

$u=\sin \omega T \quad \omega=1 \mathrm{rad} / \mathrm{s}$

$$
u=\sin \omega T \quad \omega=2 \mathrm{rad} / \mathrm{s}
$$

Robert Babuska
Delt Center for Systems and Control, TU Delft

Bode Plot

Plotting on a linear scale is not so useful - plots are hard to interpret and cannot be easily drawn by hand.

If logarithmic scales are introduced, drawing becomes easier.

Such a logarithmic plot is called the Bode plot:

- frequency is plotted on a logarithmic scale $\left(\log _{10}\right)$
- amplitude is plotted using logarithmic units (decibels)
- phase is plotted on a linear scale (degrees)

Magnitude and Phase Plot

Robert Babuska Delft Center for Systems and Control, TU Deltt

Logarithmic Scale: Decibels

The 10-base logarithm of a power gain is called a Bell (B):

$$
x B=\log _{10} \frac{P_{\text {out }}}{P_{\text {in }}}
$$

This unit appeared too large (x was usually small) the decibel (dB) was introduced:

$$
x d B=10 \log _{10} \frac{P_{\mathrm{out}}}{P_{\mathrm{in}}}
$$

Logarithmic Scale: Decibels

Furthermore, power is proportional to the square of voltage:

$$
x d B=10 \log _{10} \frac{\alpha V_{\text {out }}^{2}}{\beta V_{\text {in }}^{2}}=20 \log _{10} \frac{\alpha V_{\text {out }}}{\beta V_{\text {in }}}
$$

Therefore for a gain K the corresponding value in dB is:

$$
x=20 \log _{10}(K)
$$

That is: x is the value of K expressed in $d B$.

Robert Babusika
Delt Center for Systems and Control, TU Delft

Bode Form of Transfer Function

$$
G(s)=K \cdot s^{k} \cdot \frac{\prod_{i}\left(\tau_{i} s+1\right) \cdot \prod_{i}\left[\left(\frac{s}{\omega_{n, i}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n, i}}\right)+1\right]}{\prod_{j}\left(\tau_{j} s+1\right) \cdot \prod_{j}\left[\left(\frac{s}{\omega_{n, j}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n, j}}\right)+1\right]}
$$

Example:

$$
\begin{aligned}
G(s) & =\frac{2000(s+0.5)}{s(s+10)(s+50)}=\frac{2(s / 0.5+1)}{s(s / 10+1)(s / 50+1)} \\
G(j \omega) & =\frac{2(j \omega / 0.5+1)}{j \omega(j \omega / 10+1)(j \omega / 50+1)}
\end{aligned}
$$

Bode Plots: Basic Transfer Functions

Any transfer function $G(s)$ can be represented as a product of (some of) the following terms:

- K
- $(s)^{ \pm 1}$
- $(\tau s+1)^{ \pm 1}$
- $\left[\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1\right]^{ \pm 1}$

We can draw the magnitudes and phases of these basic terms and add them up graphically.

 elft Center for Systems and Control, TU Delft ${ }^{17}$

Bode Plots: $G(j \omega)=\left[\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1\right]^{-1}$

MP vs. NMP System: Bode Plots

Robert Babuska Delf Center for Systems and Control, TU Dellt

Type 1 System: Example

