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Robert Babuška Delft Center for Systems and Control, TU Delft 1

Lecture Outline

Previous lecture: Bode plots, non-minimum-phase systems.

Today:

• Bode’s gain-phase relation.

• Neutral stability.

• Gain and phase margin, performance specs.

• Controller design.
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Frequency Domain Methods
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Bode Diagrams
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Bode plot

• Now we now how to sketch and plot Bode diagrams.

• The next step is analysis of system properties and design.
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Bode’s Gain-Phase Relation

For any stable minimum-phase system, phase ∠G(jω) is uniquely

related to magnitude |G(jω)|:

∠G(jω0) =
1

π

∫ ∞

∞
dM

du
W (u)du

where M = ln |G(jω)|, u = lnω/ω0, W (u) = ctanh|u/2|.

For a constant slope, we can approximate the above by:

∠G(jω0) ' n
π

2

where n is the slope ( 1 for 20 dB/dec, 2 for 40 dB/dec, etc).
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Consequence of the Gain-Phase Relation

For open loop stable minimum-phase system, it is sometimes suf-

ficient to look at the magnitude only.

This property can be used to derive a simple design rule for control.

But first, we must be able determine, from the Bode plot, whether

the system is stable!
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Bode Plot: Closed-Loop Stability

R s( )

-

+
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L(s) = G(s)C(s)

Can we infer closed-loop stability from a Bode plot of the loop

transfer function L(s)?
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Proportional Controller: Loop Transfer

L(s) =
Y (s)

E(s)
= K G(s)

For the Bode plot, the following holds:

∠G(jω) = ∠ (KG(jω)) (K is a real number)

|G(jω)| = |K| · |G(jω)| (multiplication by a gain)

|G(jω)| dB = |K| dB + |G(jω)| dB
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Proportional Controller: Loop Transfer
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shift the magnitude response of G(jω) by 20 log(K)

phase does not change
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Example: DC Motor

Transfer function:

G(s) =
θ(s)

V (s)
=

Kt

s[(Ls + R)(Js + b) +K2
t ]

inertia of the rotor J = 0.01 kg ·m2

damping (friction) b = 0.1Nms

back emf Kt = 0.01Nm/A

resistance R = 1Ω

inductance L = 0.5H
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DC Motor: Open-Loop Bode Plot

G(s) =
θ(s)

V (s)
=

2

s(s + 10)(s + 2)
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Influence of Proportional Gain

L(s) = KG(s) =
K · 2

s(s + 10)(s + 2)

Use Matlab: sisotool(’bode’,G)

OK, the magnitude moves up and down with the gain and the

phase does not change . . .

. . . but, is there anything on the Bode plot that would hint on the

stability of the closed loop?
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Let’s See Whether Root Locus Helps . . .
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Basic properties of RL: ∠G(s) = −180◦ and |KG(s)| = 1

Neutral stability: |KmaxG(jω)| = 0 dB and ∠G(jω) = −180◦
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Back to the Bode Plot

System is stable if: |KG(jω)| < 0 dB at ∠G(jω) = −180◦
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Point of Neutral Stability
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Crossover Frequency and Stability Margins
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Crossover Frequency and Stability Margins

• The crossover frequency ωc is the frequency for which the loop

TF has gain 0 dB.

• The gain margin (GM) is the factor (or amount dB) by which

the loop gain can be raised before instability occurs.

• The phase margin (PM) is the amount (in degrees) by which

the phase exceeds 180◦ at ωc.
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Importance of Stability Margins

The margins tell us how far the closed-loop system is from the

point of neutral stability. This indicates the robustness w.r.t. un-

certainty in the plant model:

• Gain margin: by what factor the total process gain can increase.

• Phase margin: by how much the phase can decrease.

and performance:

• Phase margin: related to closed loop damping (overshoot).

• Crossover frequency: related to response speed

(bandwidth).

Robert Babuška Delft Center for Systems and Control, TU Delft 17

Robustness: Example

Suppose our model is:

L̂(s) =
10

s2 + 0.4s + 1

while the true plant is:

L(s) =
10

(s2 + 0.4s + 1)(0.1s + 1)

Relatively small mismatch in terms of step-response behavior, ma-

jor difference in terms of closed-loop stability!
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Bode Plot of Model and True Plant
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System: G2
Phase Margin (deg): −10.1

Delay Margin (sec): 1.89
At frequency (rad/sec): 3.23

Closed Loop Stable? No
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Closed-Loop Bandwidth

Bandwidth = frequency up to which the input is “well reproduced”

at the output of the closed-loop system.

Defined as frequency ωbw at which the magnitude has an

attenuation of 0.707 (3dB) – corresponds to 0.5 power gain.
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Bandwidth and Crossover Frequency

Typically:

ωc ≤ ωbw ≤ 2ωc

The required speed of response (e.g., the settling time or rise time)

can be expressed in terms of ωc. Recall:

tr = 1.8/ωn

(for second-order dominant response).
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Phase Margin and Overshoot

The larger PM, the larger damping (less overshoot):

ζ ≈ PM

100

this holds up to PM = 60◦

See the Franklin et al. for a graphical relationship between the

overshoot and PM (page 357).
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Recall Specs for Second-Order Systems
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More Complex Plants

• System unstable for small K and stable for large K, e.g.,:

L(s) =
K(s + 2)

s2 − 1

• Conditionally stable systems (unstable for small and large K,

stable for some intermediate values), e.g.,:

L(s) =
K(s + 2)

(s + 10)2(s + 1)(s− 1)

In the sequel, we consider systems with no poles in RHP.
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The Basic Idea

• Adjust the proportional gain to get the required crossover fre-

quency and/or steady-state tracking error.

• If needed, use the derivative action to add phase in the neigh-

borhood of ωc in order to increase the phase margin.

• If needed, use the integral action to increase the gain at low fre-

quencies in order to guarantee the required steady-state tracking

error.
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Bode Plots: Homework Assignments

• Read Sections 6.1 through 6.6, except for the Nyquist criterion.

•Work out examples in these sections and verify the results by

using Matlab.

• Reproduce the derivation of the frequency response as given on

the overhead sheets.

•Work out a selection of problems 6.3 through 6.9 and verify

your results by using Matlab.
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