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Lecture Outline

Previous lecture: PID controller design, lead and lag compen-

sators.

Today:

• Nyquist plot.

• Nyquist stability criterion.

Robert Babuška Delft Center for Systems and Control, TU Delft 2

Frequency Domain Methods
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Frequency Domain Methods

The key of frequency domain design:

provide sufficient phase at the crossover frequency

(= get the closed-loop far enough from the point of becoming un-

stable)

⇒ Bode plots are well suited as a design and analysis tool.

. . . , so, do we need yet another kind plot?

In fact, we do, let’s have a look why . . .
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Motivating Example
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Deficiency of Bode Plots

For systems with poles in right half-plane, the Bode plot alone

does not provide any good indication of stability / instability.

→ In the above example, the phase will never cross −180◦, and
yet, for K < 0.1, the closed loop becomes unstable (check the

root locus!).

Is there a method for frequency domain design, considering stabil-

ity for all kinds of systems?

Yes, the Nyquist plot and stability criterion.
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Complex Numbers as Vectors
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Euler Representation

Im s
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s - p

s− p = |s− p| ejφ
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Transfer Function

G(s) =
s− z1

(s− p1)(s− p2)
=

|s− z1|
|s− p1| · |s− p2|

ej(ψ1−φ1−φ2)

Ims

Re

p1

x

p2

z1

x

Robert Babuška Delft Center for Systems and Control, TU Delft 9

Nyquist (Polar) Plot

Let s = jω for ω ∈ [0,∞) and plot Im[G(jω)] against Re[G(jω)].
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Relation Bode Plot – Nyquist Plot
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Argument Principle (I)
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=⇒ no origin encirclement
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Argument Principle (II)
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=⇒ one encirclement of the origin
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Argument Principle in General

For a clockwise contour in the s-plane, denote:

P number of poles encircled in the s-plane

Z number of zeros encircled in the s-plane

N number of clockwise encirclements of the origin by G(s)

N = Z - P

Recall:

∠G(s) =
∑

i

∠(s− zi)−
∑

j

∠(s− pj) =
∑

i

ψi −
∑

j

φj

Robert Babuška Delft Center for Systems and Control, TU Delft 14

Argument Principle for Stability Analysis

Given the Nyquist plot of KG(s), we want to determine whether

the closed loop:

Gcl(s) =
Y (s)

R(s)
=

KG(s)

1 +KG(s)

is stable.

• Closed-loop stability ⇐⇒ Gcl(s) has no poles in RHP.

• Poles are given by 1 +KG(s), so let us study 1 +KG(s).
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Argument Principle for Stability Analysis

Gcl(s) =
Y (s)

R(s)
=

KG(s)

1 +KG(s)

Poles of Gcl(s) are the solutions of 1 +KG(s) = 0, i.e.:

poles of Gcl(s) are the zeros of (1 +KG(s))

in addition, as:

1 +KG(s) = 0 → 1 +K
b(s)

a(s)
= 0 → a(s) +Kb(s)

a(s)
= 0

poles of G(s) are the poles of (1 +KG(s))
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Argument Principle for Stability Analysis

So, we want to find out, if 1 +KG(s) has no RHP zeros.

Im s-plane

Re

encircle the entire RHP

= draw the Nyquist diagram for frequencies ω ∈ (−∞,∞)
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Argument Principle for Stability Analysis
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Draw the Nyquist diagram of the loop TF L(s) = KG(s),

count clockwise encirclements of −1 : N = Z − P
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Argument Principle for Stability Analysis

N = Z - P

Z = number of RHP zeros of (1 +KG(s))

P = number of RHP poles of (1 +KG(s))

Given that:

1 +KG(s) = 0 → a(s) +Kb(s)

a(s)
= 0

we have:

Z = number of RHP poles of Gcl(s) . . . CL poles

P = number of RHP poles of G(s) . . . OL poles
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Nyquist Stability Criterion

Z = N + P

In words:

number of RHP closed-loop poles =

clockwise encirclements + number of RHP open-loop poles
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Stability Margins in Nyquist Plot
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Why Don’t We Ride These Bikes?
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Simple Bicycle Models

Front steering:

G(s) =
φ(s)

δ(s)
= K

s + v
a

s2 − g
h

Rear steering:

G(s) =
φ(s)

δ(s)
= K

−s + v
a

s2 − g
h

a – distance of COM to fixed wheel center

h – height of COM above ground
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Front Steering: Nyquist Plot
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Rear Steering: Nyquist Plot
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Nyquist: Homework Assignments

• Read Section 6.3 (Nyquist stability criterion).

•Work out examples in this section and verify the results by using

Matlab.

•Work out problems 6.18 – 6.22 and verify your results by using

Matlab.
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