Regeltechniek Lecture Outline

Lecture 11 — State-space models and state feedback control Previous lecture: Nyquist plot and stability criterion.
(We are finished with frequency domain methods.)
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The big picture Transfer Function vs. State Space Methods
Type of model
ypeof Transfer function State-space

First principles

Simulation, prediction,

e Nonlinear differential eq. better understanding
graphical tools computational
l Linearization
Data sis for control- rovide insight numerical, less insight
Linearized differential eq. f;a;el;tg l;,r’;zgtellz ! P g ' g

/ \ interactive / iterative “numbers in — numbers out”

Transfer function State-space model Analysis, control design
SISO systems SISO and MIMO systems
\ / Design
Influence a process,
Controller modify behavior

Physical world (process)

Implementation

Robert Babuska Delft Center for Systems and Control, TU Delft 3 Robert Babuska Delft Center for Systems and Control, TU Delft 4




Linear State-Space Model

. state matrix

. input matrix

. output matrix

. direct transmission matrix

OQwa

Interpretation:
Derivative of each state is given by a linear combination of states
plus a linear combination of inputs. Similarly for the output . ..
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State-Space Model: Block Diagram

u(?) ) x(9) y(®)
B > j > C —
A
D
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DC Motor: State-Space Model

Ldil—f)+Ri(t) =V(t) - Kt%@ electrical part

d20(t)
J dt?

+b%<tt) = Kyi(t) mechanical part

Introduce velocity: w(t) = 6(t)

Rewrite the above equations as a set of three 1st order DE:

R Ky 1
t) = ——i(t) — —w(t) + =V(t
i(t) = —i(t) = (b)) + V()
K b
w(t) = —Fi(t) — Zw()
0(t) = wl(t)

DC Motor: State-Space Model

state: z(t) = <z(t) w(t) e(t))T, input: u(t) = V(t), output:
y(t) = 0(t)
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Compare to the Input Output Model

9(5) Kt

C) = ) T ST RUs 10 K]

o(s) (LJs3 + (RJ + Lb)s> + (Rb + Kf)s) = K;V(s)

Corresponds to the following differential equation:

LJO(t)+ (RJ + Lb)(t) + (Rb+ K})0(t) = KV (1)

Input-output models do not use internal variables,
instead use higher derivatives of input and output.
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State-Space Models — Transfer Function

Use Laplace:

Express X (s):
(sI — A)X(s) = BU(s)
X(s) = (sI — A)"'BU(s)

Y(s) = CX(s) + DU(s) = (C(s[ A 'B+ D) U(s)

Transfer function: G(s) = C(sI — A)"'B+ D
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Poles of State-Space Models

Transfer function: G(s) = C(sI — A)"'B+ D

_adj(s] — A)

(s — )7 = det(sI — A)

Poles = roots of the characteristic equation of A:

det(sI — A)=0

Therefore the poles are the eigenvalues of state matrix A.
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State Feedback Control — Main ldea

e Assume a state-space model with all states measured:
#(t) = Az(t) + Bu(t)  y(t) = z(t)
e Controller = linear combination of states:

u(t) = —Kux(t) = —kjx1(t) — koxo(t) -+ — kpxp(t)
e Goal: obtain desired dynamics (e.g., fast, well damped)

e Design parameters: location of closed-loop poles
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State Feedback Control — Remarks

e Note that the controller is a static system:
u(t) = —Kux(t) = —k1z1(t) — kowo(t) -+ — knan(t)

(as opposed to e.g. a lead-lag compensator or PID).

e Any desired location of closed-loop poles can be obtained

(which is not the case with e.g. root-locus)

e Often not all the states are measured (need an observer).
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State Feedback Control Scheme

. Y
— -K » X =Ax + Bu >
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State Feedback Control — Problem

Given the state-space model:
#(t) = Ax(t) + Bu(t)
We want to design the state-feedback gain K (a vector)

u(t) = —Ku(t)

Central question:

How can we compute K, such that the closed-loop
poles are at a desired location?
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One Possible Solution

2(t) = Ax(t) + Bu(t)  u(t) = —Kx(t)

Construct the closed-loop system:
i(t) = Az(t) — BKx(t)
i(t) = (A— BK)x(t)

~—
Acl

Compute the closed-loop characteristic polynomial:

det(s] — Ay) = det(s] — A+ BK) = s"+a1s" "4+ +ay_15+an

Robert Babuska Delft Center for Systems and Control, TU Delft 16




Solution: Finding K

Closed-loop characteristic polynomial:
det(s] — A+ BK) =s"+a1s" '+ 4+ ap_15+an
The coefficients a; are linear functions of the gains k;.

Define desired characteristic polynomial

(i.e., desired dynamics in terms of poles):

d(s) = s" + dlsnil +tdp_1s+dp

Compute K by equating coefficients a; and d;
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Performance Specifications for Closed-Loop
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Desired Dynamics (Closed-Loop Poles)

Control goals are typically stated in terms of:
e desired frequency wy, and damping ¢
for dominant second-order dynamics
e time domain characteristics:
rise time, settling time, overshoot
(A}TQZ Q kW,
Gqls) = )

§° 4+ 2wps + w2 ST akwy

dominant dynamics

faster dynamics
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Tracking a Reference Input (Servo)

Goal: respond to a reference signal in a specified way.

Replace u(t) = —Kuxz(t) by: wu(t)=—Kux(t)+ Kspr(t)

w d
——» K,

IR

X=Ax+Bui—7—»
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Computing the Feedforward Gain

x=Ax+ Bu Cr—

—»Kﬁ—»

Transfer function from r to y:

Hy(s)=C(s] — A+ BK) 'BK = Kff%

with: b(s) the process open-loop TF numerator

d(s) is the desired closed loop TF denominator
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Computing the Feedforward Gain

Hy(s) = C(s] — A+ BK) 'BK = Kff%

Given a desired DC gain of the closed loop:

Hcl <0> = Dcdcs

Compute:
d(0)
K]‘f = W ’ Dcdes
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Example: Disk Drive Arm Control

Specifications: settling time < 10 ms, overshoot < 2%
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Example: Disk Drive Arm Control

1. Form a state-space model A, B, C, D
2. Analyze open-loop dynamics (poles)

3. Define desired closed loop dynamics d(s)
4. Compute state-feedback gain vector K

5. Compute feedforward gain vector K ¢f
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