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Robert Babuška Delft Center for Systems and Control, TU Delft 1

Lecture Outline

Previous lecture: State-space models, representation, pole place-

ment.

Today:

• Coordinate transformation, control canonical form.

• Pole placement, Ackermann’s formula.

• DC motor demo.
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Is the State-Space Representation Unique?

• For a given system, there is a unique transfer function repre-

senting that system (i.e., unique polynomials b(s), a(s)).

• Does the same hold for the state-space representation

(i.e., for the matrices A, B, C, D)?

Let’s have a look at an example . . .
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Cascaded Tanks System

2

h1

h2

Q

1

upump

Linearized differential

equations:

ḣ1(t) + 0.5h1(t) = 0.5h2(t)

ḣ2(t) + 0.2h2(t) = 2u(t)

Robert Babuška Delft Center for Systems and Control, TU Delft 4



Cascaded Tanks – State-Space Model

ḣ1(t) + 0.5h1(t) = 0.5h2(t)

ḣ2(t) + 0.2h2(t) = 2u(t)

State-space model:

ẋ(t) =


−0.5 0.5

0 −0.2


x(t) +


 0

2


u(t)

y(t) =
(
1 0

)
x(t)
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Cascaded Tanks – Transfer Function

ḣ1(t) + 0.5h1(t) = 0.5h2(t)

ḣ2(t) + 0.2h2(t) = 2u(t)

Transfer function:

G(s) =
H1(s)

U(s)
=

0.5

s + 0.5
· 2

s + 0.2
=

1

s2 + 0.7s + 0.1

Corresponding differential equation:

ḧ1(t) + 0.7ḣ1(t) + 0.1h1(t) = u(t)
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Cascaded Tanks – State-Space Model (II)

ḧ1(t) + 0.7ḣ1(t) + 0.1h1(t) = u(t)

State-space model:

ż(t) =


−0.7 −0.1

1 0


 z(t) +


 1

0


u(t)

y(t) =
(
0 1

)
z(t)
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Comparison of State-Space Models

State-space model I (physical):

ẋ(t) =


−0.5 0.5

0 −0.2


 x(t) +


 0

2


u(t) , y(t) =

(
1 0

)
x(t)

State-space model II (from TF):

ż(t) =


−0.7 −0.1

1 0


 z(t) +


 1

0


 u(t) , y(t) =

(
0 1

)
z(t)
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Uniqueness

• A state-space representation (form) is not unique.

• There are actually infinitely many possible forms.

• How can we transform one into another?

• Are some forms more useful than others?
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Coordinate Transformation

-2 -1 0 1 2
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z 2

x2
P

Px = TPz (P in x-coord. = transf. matrix · P in z-coord.)
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Coordinate Transformation

Introduce new state vector z such that:

x = Tz

where T is a non-singular transformation matrix.

ẋ(t) = ATz(t) + Bu(t)

Transformed model:

ż(t) = T−1AT︸ ︷︷ ︸
Ã

z(t) + T−1B︸ ︷︷ ︸
B̃

u(t)

and

y(t) = CT︸︷︷︸
C̃

z(t) +Du(t)
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Implications of Coordinate Transformation

•Matrices A, B and C change.

• However:
– the characteristic equation det(sI − A) and

– the input-output representation (transfer function)

do not change (which is logical, isn’t it?).

• Several useful forms, one of them:

– control canonical form
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Control Canonical Form

The system has a transfer function:

G(s) =
b1s

n−1 + · · · + bn−1s + bn
sn + a1sn−1 + · · · + an

There exists a transformation matrix T such that

ż(t) =




−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0

0 1 . . . 0 0

... ... . . . ... ...

0 0 . . . 1 0




z(t) +




1

0

0

...

0




u(t)

y(t) = (b1 . . . bn) z(t)
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Control Canonical Form

. . .

-a1

u

b2b1 bn

y

bn-1

. . .

. . .

-an-an-1-a2
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Pole Placement in Control Canonical form

ż(t) =




−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0

0 1 . . . 0 0

... ... . . . ... ...

0 0 . . . 1 0




z(t) +




1

0

0

...

0




u(t)

Coefficients of the characteristic polynomial of Ã− B̃K̃:(
−a1 − k̃1 − a2 − k̃2 . . . − an − k̃n

)
⇒ K̃
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Pole Placement – Ackermann’s Formula

1. Transform the model into the control canonical form.

2. Design the controller in this form (which is very easy).

3. Transform the resulting feedback gain vector back.

Ackermann combined these steps into one formula:

K = (0 . . . 0 1)W−1
c d(A)

where d(A) is the desired characteristic polynomial (in A!), and

Wc = [B AB A2B . . . An−1B]
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DC Motor – Position Control
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Mathematical Model – Motion Equation

Equation of motion: Jÿ + bẏ = Tu + v

v unknown:

Goal: track angle reference, suppress load disturbance
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State-Space Model

Equation of motion: Jÿ + bẏ = kmu + v

State-space model:

ẋ1(t) = x2(t)

ẋ2(t) = − b

J
x2(t) +

km
J

u(t) +
1

J
v(t)

ẋ(t) =


 0 1

0 − b
J


x(t) +


 0

km
J


u(t) +


 0

1
J


 v(t)
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Controller Design Parameters

ωd = 30 rad/s (open-loop: ω = 9.52 rad/s)

ζd = 1 (two identical real poles in −ωd)

⇒ settling time of ≈ 0.2 s

Desired characteristic polynomial:

d(s) = s2 + 2ζzωds + ω2d
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Asymptotically Constant Disturbances

Influence of external forces and friction

Equation of motion: Jÿ + bẏ = kmu + v

v . . . unknown disturbance

In our case, v is mainly due to friction.
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Integrator in the Loop

e

-

-Ki

r xi

Observer

Process

-K

yu

x^


 ẋ(t)

ẋi(t)


 =


 A 0

−C 0





 x(t)

xi(t)


 +


B

0


 u(t) +


 0

1


 r(t)
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State-Space: Homework Assignments

• Read Sections 7.1 through 7.6.1.

•Work out examples in this section.

•Work out problems 7.1 – 7.3 (state-space models).

•Work out problems 7.19 – 7.22 (pole placement).

Verify your results by using Matlab.
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