Introduction

Solutions to the exam of the course wb2207 taken on October 31, 2006 are given, including
a detailed step-by-step explanation of the procedure and references to similar examples in the
book, lectures and the assignment. Note that in the actual exam, the detailed explanations are
not required and the individual steps in the derivations can often be combined without the loss
of clarity.

1a) Given are the system equations

p.t.o.

at) = u(t) = k(at) = 4(1)) 1)

Blt) = kla(t) —B(1)) (@)

To derive the transfer functions, transform these equations to the Laplace domain
s*a(s) = U(s) — ka(s) + kB(s)

s2B(s) = kals) — kB(s)

and collect the terms with(s) and(s)

(
(

2+ k)a(s) = U(s)+ kB(s) (3)
(s +k)B(s) = ka(s) (4)
To get the transfer function far(s), expresssi(s) from equation (4)
5s) = L) )
insert in (3) and multiply the whole equation by + k):
(s + k)?a(s) = (s> +k)U(s)+ k*a(s)
Simplifying, we get:
(s* + 2ksHa(s) = (s + k)U(s)
and finally:
Go(s) = 28 s +k (6)

U(s)  s?(s?+2k)
From (5) and (6), we immediately obtain the transfer functionsfor

_B(s) k
Gsls) = Ut ~ =T 20)

Realizing thaty,(s) = sa(s) andj,(s) = sf3(s), the transfer functions for the velocities
directly follow:

ay(s) s+ k
U(s)  s(s2+2k)

Bu(s) k
G v = =
5(8) = Ty T st 1 2R
Similar problems: Examples 1 and 2 in Lecture 2, Questions 1la and 1c of the sample

exam. Examples 3.17, 3.19, 3.20 and Problems 3.14, 3.15, 3.22, 3.28, 3.29 in the course
book.




1b)

This is a good check to see whether we have got at least a part of 1 a) right. We have the
initial slope of —40 dB/decade, which means a double pole in zero. This rules out the
Gav(s) andGp,(s) transfer functions. Further we see one resonance peak-af rad/s
(corresponding to a pair of complex poles) and one anti-resonance peak dtrad/s
(corresponding to a pair of complex zeros). &s(s) has no zeros, the only possibility

left is G, (s). From the numerator of7,(s) in (6), we have the breakpoint frequency

w = vk = 5, which givesk = 25. Note that we can actually construct the transfer
function from the bode plot (knowing that the damping is neglected in the system model).

Similar problems: Examples 6.5 through 6.7 and Problems 6.5 through 6.7 in the course
book. In Lecture 9, the rotational pendulum example (and demo) was given. This system
has a bode plot similar to the one in this question.

1lc)

From the definitionz = (o, £, &, ()" we see immediately that, (t) = z5(t) and
To(t) = x4(t). Furthermore, as$;(t) = a(t) andiy(t) = B(t), using equations (1) and
(2) we directly write the four state equations:

#o(t) = @)
t3(t) = —kxy(t) + kao(t) + u(t)

C=(1000) D=0

|
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oo~ o
o~ oo

Similar problems: Examples 1 and 2 in Lecture 2, Lecture 7, the Cascaded tanks ex-
ample of Lecture 12 and Instruction Lecture 2. Question 1d of the sample exam. Exam-
ples 7.1 through 7.7 and Problems 7.1 through 7.4 in the course book.

1d)

This system has a double pole in the origin and therefore it is unstable. This can be seen
from the magnitude bode plot (initial slope-efi0 dB / decade), without actually deriving
the transfer function.

Similar problems: See Section 3.7 in the course book and also question 5c¢ of the first
Matlab session handout.
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2 a) Given is the process model

the controller

Co)=TFe = (1 ! Tl)

and the feedback configuration according to Figure 1.

W(s)
R(s) + Q_E(S) Cls) |t i U(s) G(s) Y (L

Figure 1: Closed-loop control scheme.

The transfer functioi,, (s) from the disturbanc@/(s) to the errorE(s) is given by

_ E(s)  =G(s)
Guls) = 70 T T G6)00)
This is also easily seen by realizing thats) = R(s) — Y(s) = —Y(s), as in our case

R(s) = 0. Substituting forG(s) enC(s), we have
-K
i 78 + 1
Guls) = L KKy(Tis+1)
Tis(ts+1)

which simplifies to

—KT;s
152+ T,(1+ KK,)s + KK,

Gu(s) =

Similar problems: Question 2a of the sample exam. Question 1.2 of the second Matlab
session handout. Sections 3.2, 4.1, 4.2.3, Examples 4.4, 4.5 and Problems 4.12, 4.17
through 4.21 and 4.32 in the course book.

2b) The limitis:
—KT;s 3
ss:l' E :1 Gw W :l . ? __:0
os = I sB(s) = Ly s Gu(s)W(s) =l s+ o o e TR S

Similar problems: Examples 1 and 2 in Lecture 4, Question 4d of the sample exam.
Question 1.2 of the second Matlab session handout. Section 4.2, Examples 4.1 through
4.5 and Problems 4.5, 4.6 in the course book.



2 ¢) Form the closed-loop characteristic equation G(s)C(s) = 0
KK, Tis+1 0
rs+1 Tis
Simplifying and collecting the terms at the descending powessnd get

1+ KK, KK,
2y TR B

s
T 7T

which can be compared to the desired characteristic equation
§% 4+ 2¢wps + w? =0

Equating the corresponding coefficients, we get

1+ KK KK
20wy, = AN and w? = b
T TT;
which yields
2Cw, T —1 KK 2Cw, T — 1
K,=—="""—— and T, = £ = =
b K Tw?2 Tw?2

Similar problems: Question 3a of the sample exam. The disk drive arm control example
of Lecture 11. Sections 4.3, 7.5.1, Examples 7.15, 7.17 and Problems 7.19 through 7.23
in the course book.

3a) There are essentially two methods to show that the state-space model

i = (05 )0+ (5 )uo )

yt) = (1 1)a(t) (8)

corresponds to the transfer function:

Method 1: use the formula
G(s)=C(sI — A)'B+ D,

substitute ford, B, C' and D from equations (7) and (8)

a=0 0[50 (2 2] ()

and work out the matrix inverse

G(S)Zm(l 1)adj<sg3 3132)(2)
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Computing the adjugate matrix in this two-by-two case means swapping the diagonal
elements and inverting the sign at the off-diagonal elements. Working out the matrix
product yields

Y (s) 35+ 18

Uis)  (s+3)(s+2)

Method 2: write the state-space model as a set of differential equations

To(t) = —2x9(t) + 3ul(t)

Transform these equations to the Laplace domain and collect the terms

(s+3)X1(s) = 3Xs(s)
(s +2)Xa(s) = 3U(s)

ExpressXs(s)/U(s) from the second equation

Xo(s) 3
Uis)  s+2

and substitute to the first one to get

Xils) )
Uis)  (s+3)(s+2)

From the output equation (8), we see thidt) = X;(s) + X2(s), and therefore

Yis) _ 9 L3 3s+18
U(s)  (s+3)(s+2) s+2 (s+3)(s+2)

Similar problems: Question 3b of the sample exam. Lecture 11. Section 7.4.2, Exam-
ple 7.12 and Problem 7.14 in the course book.

3b) As the transfer function is given

Y(s) = 35418
U(s)  s24+55+6

writing the system in control canonical form is straightforward:

A:(_15 _06) B:((l)) C=(318) D=0

Similar problems: Instruction Lecture 2, Lecture 12. Section 7.4 and Problems 7.2, 7.5
in the course book.



3¢) Use the formula

As all the elements are gived(s) = s* + 15s + 50, b(s) = 3(s + 6) andDCyqes = 9, We
can substitute = 0 (realizing thati(s) has two negative roots and that the closed loop is
therefore stable)

50

Kfle_g

-9 =25

Similar problems: Question 3b and 3c of the sample exam. Lecture 11.

4 The DC gain is 100 and we have the following breakpoints= 0.2 rad/s (pole)w =

2rad/s (zero)w = 10rad/s (zero)w = 50rad/s (pole). To sketch the Bode plot, follow
the rules of Section 6.1.1.

Magnitude [dB]
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Figure 2. A sketch of the Bode plot.

Similar problems: Bode plot example Lecture 7, DC motor example Lecture 8, Instruc-

tion lecture 2, Section 6.1.1, Example 6.3 and Problems 6.3 through 6.8 in the course
book.
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5a) This double integrator has the phase-of80° for all w. The phase margin (PM) is
therefore zero, regardless of the cross-over frequency. To achievelBMthe controller
has to add exactly thesig° at the frequency,. The phase oD (jw,) is tan™!(Tyw,),
from which we compute

tan 45° 1
T, = =— =10
d W, 0.1
The magnitudeG(jw.) D (jw.)| is
, _ Jwely+1 J+1
G(jw.)D(jw.)| = K |————| =K = 100v2K
(Gl DG = i [Pt = i | T 100V

At the cross-over frequency the magnitude must be 1, which gives

1
K = = 0.00707

1004/2

Similar problems: This is an exact blueprint of assignment 2.3 of the second Matlab
session handout. The same problem (satellite control) was worked out in Lecture 7. See
also Section 6.7 in the course book.

5b) The characteristic equation is

1
(Td5+1) :0

g2

1+

To get this equation is the required form, multiply Byand collect the terms witho(f,
and withT}

s+1 +Ty; s =0 (9)
a(s) b(s)
Dividing by s? + 1 yields
S
1+ T, = 10
+lag 1 0 (10)
and therefore s
L(s) =

Similar problems: A similar problem (varying load inertia of a DC motor) was worked
out in Lecture 6. See also Examples 5.2, 5.14 and Problems 5.1, 5.17, 5.18 in the course
book.



5c¢) The transfer functiorl(s) has a pair of complex poles inj and—; and one zero in 0.
Sketch the root locus, using the rules of Section 5.2.

Tim(S)

Figure 3: A sketch of the root locus for the characteristic equation (10).

In this case, the exact location of the ‘breakin’ point can easily be compute@d(ter2,
equation (9) has a double real pole-ii), but for a rough sketch this is not necessary.

Similar problems: Section 5.2, Example 5.2 and Problems 5.2, 5.3 in the course book.
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