
Introduction

Solutions to the exam of the course wb2207 taken on October 31, 2006 are given, including
a detailed step-by-step explanation of the procedure and references to similar examples in the
book, lectures and the assignment. Note that in the actual exam, the detailed explanations are
not required and the individual steps in the derivations can often be combined without the loss
of clarity.

1 a) Given are the system equations

α̈(t) = u(t)− k(α(t)− β(t)) (1)

β̈(t) = k(α(t)− β(t)) (2)

To derive the transfer functions, transform these equations to the Laplace domain

s2α(s) = U(s)− kα(s) + kβ(s)

s2β(s) = kα(s)− kβ(s)

and collect the terms withα(s) andβ(s)

(s2 + k)α(s) = U(s) + kβ(s) (3)

(s2 + k)β(s) = kα(s) (4)

To get the transfer function forα(s), expressβ(s) from equation (4)

β(s) =
kα(s)

s2 + k
(5)

insert in (3) and multiply the whole equation by(s2 + k):

(s2 + k)2α(s) = (s2 + k)U(s) + k2α(s)

Simplifying, we get:

(s4 + 2ks2)α(s) = (s2 + k)U(s)

and finally:

Gα(s) =
α(s)

U(s)
=

s2 + k

s2(s2 + 2k)
(6)

From (5) and (6), we immediately obtain the transfer function forβ:

Gβ(s) =
β(s)

U(s)
=

k

s2(s2 + 2k)

Realizing thatαv(s) = sα(s) andβv(s) = sβ(s), the transfer functions for the velocities
directly follow:

Gαv(s) =
αv(s)

U(s)
=

s2 + k

s(s2 + 2k)

Gβv(s) =
βv(s)

U(s)
=

k

s(s2 + 2k)

Similar problems: Examples 1 and 2 in Lecture 2, Questions 1a and 1c of the sample
exam. Examples 3.17, 3.19, 3.20 and Problems 3.14, 3.15, 3.22, 3.28, 3.29 in the course
book.
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1 b) This is a good check to see whether we have got at least a part of 1 a) right. We have the
initial slope of−40 dB / decade, which means a double pole in zero. This rules out the
Gαv(s) andGβv(s) transfer functions. Further we see one resonance peak atω ≈ 7 rad/s
(corresponding to a pair of complex poles) and one anti-resonance peak atω ≈ 5 rad/s
(corresponding to a pair of complex zeros). AsGβ(s) has no zeros, the only possibility
left is Gα(s). From the numerator ofGα(s) in (6), we have the breakpoint frequency
ω =

√
k = 5, which givesk = 25. Note that we can actually construct the transfer

function from the bode plot (knowing that the damping is neglected in the system model).

Similar problems: Examples 6.5 through 6.7 and Problems 6.5 through 6.7 in the course
book. In Lecture 9, the rotational pendulum example (and demo) was given. This system
has a bode plot similar to the one in this question.

1 c) From the definitionx = (α, β, α̇, β̇)T we see immediately thaṫx1(t) = x3(t) and
ẋ2(t) = x4(t). Furthermore, aṡx3(t) = α̈(t) andẋ4(t) = β̈(t), using equations (1) and
(2) we directly write the four state equations:

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = −kx1(t) + kx2(t) + u(t)

ẋ4(t) = kx1(t)− kx2(t)

and express them in the matrix form:

A =


0 0 1 0
0 0 0 1
−k k 0 0
k −k 0 0

 B =


0
0
1
0

 C =
(

1 0 0 0
)

D = 0

Similar problems: Examples 1 and 2 in Lecture 2, Lecture 7, the Cascaded tanks ex-
ample of Lecture 12 and Instruction Lecture 2. Question 1d of the sample exam. Exam-
ples 7.1 through 7.7 and Problems 7.1 through 7.4 in the course book.

1 d) This system has a double pole in the origin and therefore it is unstable. This can be seen
from the magnitude bode plot (initial slope of−40 dB / decade), without actually deriving
the transfer function.

Similar problems: See Section 3.7 in the course book and also question 5c of the first
Matlab session handout.
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2 a) Given is the process model

G(s) =
Y (s)

U(s)
=

K

τs+ 1

the controller

C(s) =
U(s)

E(s)
= Kp

(
1 +

1

Tis

)
and the feedback configuration according to Figure 1.

R s( )

-

+
C s( ) G s( )

Y s( )U s( )E s( )

W s( )

+

+

Figure 1: Closed-loop control scheme.

The transfer functionGw(s) from the disturbanceW (s) to the errorE(s) is given by

Gw(s) =
E(s)

W (s)
=

−G(s)

1 +G(s)C(s)

This is also easily seen by realizing thatE(s) = R(s) − Y (s) = −Y (s), as in our case
R(s) = 0. Substituting forG(s) enC(s), we have

Gw(s) =

−K
τs + 1

1 +
KKp(Tis+ 1)

Tis(τs+ 1)

which simplifies to

Gw(s) =
−KTis

τTis2 + Ti(1 +KKp)s+KKp

Similar problems: Question 2a of the sample exam. Question 1.2 of the second Matlab
session handout. Sections 3.2, 4.1, 4.2.3, Examples 4.4, 4.5 and Problems 4.12, 4.17
through 4.21 and 4.32 in the course book.

2 b) The limit is:

ess = lim
s→0

sE(s) = lim
s→0

sGw(s)W (s) = lim
s→0

s · −KTis
τTis2 + Ti(1 +KKp)s+KKp

· 3
s

= 0

Similar problems: Examples 1 and 2 in Lecture 4, Question 4d of the sample exam.
Question 1.2 of the second Matlab session handout. Section 4.2, Examples 4.1 through
4.5 and Problems 4.5, 4.6 in the course book.
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2 c) Form the closed-loop characteristic equation1 +G(s)C(s) = 0

1 +
KKp

τs + 1

Tis+ 1

Tis
= 0

Simplifying and collecting the terms at the descending powers ofs we get

s2 +
1 +KKp

τ
s+

KKp

τTi
= 0

which can be compared to the desired characteristic equation

s2 + 2ζωns+ ω2
n = 0

Equating the corresponding coefficients, we get

2ζωn =
1 +KKp

τ
and ω2

n =
KKp

τTi

which yields

Kp =
2ζωnτ − 1

K
and Ti =

KKp

τω2
n

=
2ζωnτ − 1

τω2
n

Similar problems: Question 3a of the sample exam. The disk drive arm control example
of Lecture 11. Sections 4.3, 7.5.1, Examples 7.15, 7.17 and Problems 7.19 through 7.23
in the course book.

3 a) There are essentially two methods to show that the state-space model

ẋ(t) =

(
−3 3
0 −2

)
x(t) +

(
0
3

)
u(t) (7)

y(t) =
(

1 1
)
x(t) (8)

corresponds to the transfer function:

G(s) =
Y (s)

U(s)
=

3(s+ 6)

(s+ 3)(s+ 2)

Method 1: use the formula

G(s) = C(sI −A)−1B +D,

substitute forA, B, C andD from equations (7) and (8)

G(s) =
(

1 1
) [( s 0

0 s

)
−
(
−3 3
0 −2

)]−1(
0
3

)
and work out the matrix inverse

G(s) =
1

(s+ 3)(s+ 2)

(
1 1

)
adj

(
s+ 3 −3

0 s+ 2

)(
0
3

)
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Computing the adjugate matrix in this two-by-two case means swapping the diagonal
elements and inverting the sign at the off-diagonal elements. Working out the matrix
product yields

Y (s)

U(s)
=

3s+ 18

(s+ 3)(s+ 2)

Method 2: write the state-space model as a set of differential equations

ẋ1(t) = −3x1(t) + 3x2(t)

ẋ2(t) = −2x2(t) + 3u(t)

Transform these equations to the Laplace domain and collect the terms

(s+ 3)X1(s) = 3X2(s)

(s+ 2)X2(s) = 3U(s)

ExpressX2(s)/U(s) from the second equation

X2(s)

U(s)
=

3

s+ 2

and substitute to the first one to get

X1(s)

U(s)
=

9

(s + 3)(s+ 2)

From the output equation (8), we see thatY (s) = X1(s) +X2(s), and therefore

Y (s)

U(s)
=

9

(s+ 3)(s+ 2)
+

3

s+ 2
=

3s+ 18

(s+ 3)(s+ 2)

Similar problems: Question 3b of the sample exam. Lecture 11. Section 7.4.2, Exam-
ple 7.12 and Problem 7.14 in the course book.

3 b) As the transfer function is given

Y (s)

U(s)
=

3s+ 18

s2 + 5s+ 6

writing the system in control canonical form is straightforward:

A =

(
−5 −6
1 0

)
B =

(
1
0

)
C =

(
3 18

)
D = 0

Similar problems: Instruction Lecture 2, Lecture 12. Section 7.4 and Problems 7.2, 7.5
in the course book.
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3 c) Use the formula

Kff =
d(0)

b(0)
·DCdes

As all the elements are given:d(s) = s2 + 15s+ 50, b(s) = 3(s+ 6) andDCdes = 9, we
can substitutes = 0 (realizing thatd(s) has two negative roots and that the closed loop is
therefore stable)

Kff =
50

18
· 9 = 25

Similar problems: Question 3b and 3c of the sample exam. Lecture 11.

4 The DC gain is 100 and we have the following breakpoints:ω = 0.2 rad/s (pole),ω =
2 rad/s (zero),ω = 10 rad/s (zero),ω = 50 rad/s (pole). To sketch the Bode plot, follow
the rules of Section 6.1.1.

Figure 2: A sketch of the Bode plot.

Similar problems: Bode plot example Lecture 7, DC motor example Lecture 8, Instruc-
tion lecture 2, Section 6.1.1, Example 6.3 and Problems 6.3 through 6.8 in the course
book.
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5a) This double integrator has the phase of−180◦ for all ω. The phase margin (PM) is
therefore zero, regardless of the cross-over frequency. To achieve PM =45◦, the controller
has to add exactly these45◦ at the frequencyωc. The phase ofD(jωc) is tan−1(Tdωc),
from which we compute

Td =
tan 45◦

ωc
=

1

0.1
= 10

The magnitude|G(jωc)D(jωc)| is

|G(jωc)D(jωc)| = K

∣∣∣∣jωcTd + 1

(jωc)2

∣∣∣∣ = K

∣∣∣∣ j + 1

−0.12

∣∣∣∣ = 100
√

2K

At the cross-over frequency the magnitude must be 1, which gives

K =
1

100
√

2
= 0.00707

Similar problems: This is an exact blueprint of assignment 2.3 of the second Matlab
session handout. The same problem (satellite control) was worked out in Lecture 7. See
also Section 6.7 in the course book.

5b) The characteristic equation is

1 +
1

s2
(Tds+ 1) = 0

To get this equation is the required form, multiply bys2 and collect the terms withoutTd
and withTd

s2 + 1︸ ︷︷ ︸
a(s)

+ Td s︸︷︷︸
b(s)

= 0 (9)

Dividing by s2 + 1 yields

1 + Td
s

s2 + 1
= 0 (10)

and therefore
L(s) =

s

s2 + 1

Similar problems: A similar problem (varying load inertia of a DC motor) was worked
out in Lecture 6. See also Examples 5.2, 5.14 and Problems 5.1, 5.17, 5.18 in the course
book.
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5c) The transfer functionL(s) has a pair of complex poles in+j and−j and one zero in 0.
Sketch the root locus, using the rules of Section 5.2.

Figure 3: A sketch of the root locus for the characteristic equation (10).

In this case, the exact location of the ‘breakin’ point can easily be computed (forTd = 2,
equation (9) has a double real pole in−1), but for a rough sketch this is not necessary.

Similar problems: Section 5.2, Example 5.2 and Problems 5.2, 5.3 in the course book.
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