Structured Electronic Design

Building the nullor: Frequency behavior
Topology

Best nullor implementation

Voltage and current swing

Power consumption

Noise level : First stage (type, bias parameters)

Clipping level : Last stage (type, bias parameters)

Minimal loopgain necessary to suppress weak distortion
Bandwidth

All nullor stages large gain
First stage \Rightarrow noise
Last stage \Rightarrow clipping
Loopgain reduces weak distortion
What do we want?

An amplifier with the desired bandwidth

An amplifier with a “nice” frequency behavior

A simple bandwidth estimation method
An amplifier with the desired bandwidth

\[C = B_{\text{inf}}^2 \log \frac{S + N}{N} \]
Usually a biasing problem

Bandwidth optimization

B_{inf}
“Nice” frequency behavior

All-pole Butterworth characteristic

\[|H(f)|, \quad |H(0)| \]

\[B_{inf}, \quad f, \quad f_n \]

\[Re, \quad Im \]
Butterworth poles

$$H(s) = \frac{H(0)}{s^2 - s(p_a + p_b) + p_a p_b}$$

$$CP = s^2 - s(p_a + p_b) + f_n^2$$

Characteristic Polynomial

$$f_n^2 = p_a p_b$$
Bandwidth estimation

What will be the bandwidth in this case?
How many stages are needed?
Can the poles be in Butterworth position?
Which poles?
Frequency dependent loop gain

\[A_t = A_{t\infty} \frac{-L(s)}{1 - L(s)} \]

\[\text{CP} = 1 - L(s) \]
Amplifier with a "nice" frequency behavior

\[A_t(s) = A_{t\infty} \frac{-L(s)}{1 - L(s)} \]
\[A_t(s) = A_{t \infty} \frac{-L(s)}{1 - L(s)} \]

\[L(s) = \frac{L(0)}{\left(1 - \frac{s}{p_1}\right)\left(1 - \frac{s}{p_2}\right)} - L(0) \]

\[A_t(s) = A_{t \infty} \frac{-L(0)}{\left(1 - \frac{s}{p_1}\right)\left(1 - \frac{s}{p_2}\right) - L(0)} \]

\[A_t(s) = A_{t \infty} \frac{-L(0)}{s^2 - s\left(\frac{1}{p_1} + \frac{1}{p_2}\right) + 1 - L(0)} \]

\[CP(s) = s^2 - s(p_1 + p_2) + \left[1 - L(0)\right]p_1p_2 \]

\[CP(s) = s^2 - s(p_a + p_b) + f_n^2 \]
LP -product: Bandwidth prediction

\[CP(s) = s^2 - s(p_a + p_b) + f_n^2 \]

\[CP(s) = s^2 - s(p_1 + p_2) + \left[1 - L(0) \right] p_1 p_2 \]

- If Butterworth position
- Then \([1-L(0)] p_1 p_2\) predicts the bandwidth

\[f_n = \sqrt[n]{\left[1 - L(0) \right] \prod_1^n p_n} = \sqrt[n]{LP} \]
Synthesis rule

Maximum attainable bandwidth: \(B_{\text{max}} = \sqrt[n]{LP} \)

- \(B_{\text{max}} < B_{\text{spec}} \): Specification never reached

- \(B_{\text{max}} > B_{\text{spec}} \): Chance on success,

if the poles can be brought into Butterworth position

Enough LP-product is necessary but not sufficient
Determining the LP -product

$\left[1 - L(0) \right] p_1 p_2$

Influence of feed back network?
Influence of source impedance?
Influence of load impedance?
Influence of the active part?
Modeling

A correct model gives a correct prediction

Never confuse models with “the truth”
A frequency dependent transistor model
Good enough?
The influence of the load impedance
Looks good...
The difference is in the zero
What if short circuit not good enough?
"Miller effect"

\[v_{C_{\mu}} = v_{be} (1 + g_m R_{next}) \]

\[i_{C_{\mu,\text{eff}}} = i_{C_{\mu,\text{normal}}} (1 + g_m R_{next}) \]

\[C_{\mu_{\text{eff}}} = C_{\mu} (1 + g_m R_{next}) \]

\[v_{out} = -v_{be} g_m R_{next} \]
Check with an ideal short circuit

\[V_{be} \quad r_{\pi} = C_{\pi} \quad g_m v_{be} \quad r_o \]

\[i_{in} \quad i_{out} \quad C_{\mu} \quad R_{next} \]

IF an ideal current follower solves the problem,

Insert a CB-stage (cascode).
Ideal current follower does not help

The zero is the cause

- Increase V_{bc}
- Replace transistor
- Elaborate compensation
Conclusions

• Use simple model, with assumption
 1. Current driven
 2. Output short circuited

Make this true (later)!

• 2 potential problems
 1. RHP zero
 2. Influence of C_μ and r_o on the pole positions

Distinguish via ideal current follower
Contribution to the LP-product

$$CP(s) = s^2 - s(p_1 + p_2) + \left[1 - L(0)\right] p_1 p_2$$

\[L: \quad g_m r_{\pi} = \beta_F = \frac{1}{D} \quad \text{and} \quad P: \quad \frac{1}{2\pi r_{\pi} C_{\pi}} \]

$$LP \approx \frac{g_m}{2\pi C_{\pi}} = f_T$$
Contribution to LP-product: $f_{T1}f_{T2}$
\[f_n = \sqrt{\left[1 - L(0)\right]} p_1 p_2 \]

\[LP = \frac{C_{\pi_1}}{C_s + C_{\pi_1}} f_{T_1} f_{T_2} \frac{R_L}{R_s + R_L} \]
First step: Realize sufficient LP-product

Realize: $B_{\text{max}} = n\sqrt{LP} > B_{\text{specified}}$

1. By adding stages
2. By changing the bias of an existing stage
Additional stages

\[I_{bias} = I_{opt,fT} \]

- A CE/CS stage contributes \(f_T \) to the \(LP \) product
- Maximum \(f_T \) for minimum current

\[LP \approx \frac{g_m}{2\pi C_\pi} = f_T \]
Maximum f_T for minimum current,
AND....

$I_{bias} = I_{opt,fT}$

$I_{bias} > I_2(f_{max})$
Changing the bias of an existing stage

\[
B_{\text{inf}} \left(4kT R_s + 4kT r_b + \frac{2q V_T^2}{I_c} + \left| R_s + r_b \right|^2 D2qI_c \right)
\]

\[\text{Collector Current}\]

[Graph showing \(f_r\) vs. Collector Current]

[Graph showing \(P_{n,eq}\) vs. Collector Current]
Making a good prediction

• Must every pole be taken into account?
 – Dominant poles
• What is $L(\theta)$ exactly?
 – “DC” loop gain

Our definition:
A dominant pole is a pole that can be brought into Butterworth position.
Dominant poles

- If Butterworth position

- Then \([1-L(0)] p_1 p_2\) predicts the bandwidth

\[
CP(s) = s^2 - s(p_a + p_b) + f_n^2
\]

OK

Will *never* work

Butterworth is possible

(via frequency compensation)
Dominant poles

\[\sum_{i=1}^{n} p_{i,\text{loop}} \geq \sum_{i=1}^{n} p_{i,\text{system}} \]

Procedure:
- Determine LP-product
- Sum of loop poles
- Sum of system poles
- Compare
- Reduce order?
"DC" loop gain

\[L(0) = 0 \]

Charge amplifier

\[|L| \]

\[z_1 \quad p_1 \quad p_2 \quad p_3 \quad f \]
“DC” loop gain

\[R = \frac{C_\pi r_\pi}{C_f} \]
Conclusions

• LP product predicts maximum attainable bandwidth
• Use dominant poles (and simple models)
• Pole and zero positions are still undefined

• When the LP product is too low, the design will never reach the required bandwidth

• A transistor contributes f_T to the LP product
• General LP product: $LP = \beta_i \beta_o \beta_T f_{T1} f_{T2} f_{T3}$
Frequency compensation

\[v_{be} \uparrow r_{\pi} = C_{\pi} \downarrow g_m v_{be} \]

- First use the **simple** model
 - No \(r_o \), \(C_\mu \), and \(r_o \)

- Refine models after successful compensation

- \(LP \) product gives maximum bandwidth

\[CP = s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \ldots + LP \]
Frequency compensation methods

Resistive broad-banding
 Change loop pole position

Pole-zero cancellation
 Change loop pole position

Pole splitting
 Change loop pole position

Phantom zero
 Change root locus
Phantom zero

\[A_t = A_{t\infty} \frac{-L(S)}{1 - L(S)} \]

\[A_{t\infty}(s) = \frac{1}{\beta \left(\frac{s}{n_{ph}} + 1 \right)} \]

Make a zero \(n_{ph} \) in the feedback network

\[L(s)_{new} = L(s)_{old} \left(\frac{s}{n_{ph}} + 1 \right) \]

\[A_t = A_{t\infty} \frac{-L(S)_{old}}{1 - L(S)_{old} \left(\frac{s}{n_{ph}} + 1 \right)} \]

Zero appears in the loop
Zero does not appear in the transfer
Pole not dominant (should not be)
Phantom zero

- In feedback network
- \textit{Increases} the loop gain for high frequencies
- Extra pole not dominant

\[L(s) \uparrow \delta \]

\[n_{ph} \quad \rho = \delta n \]
Increase loop gain for high frequencies

Extra’s:
- Reduces distortion at high frequencies
- Sometimes possible at input or output

(when source or load impedance have influence 😏)
Demonstration
The other methods

\[A_t = A_{t\infty} \frac{-L(s)}{1 - L(s)} \]

\[A_{t\infty} = \frac{1}{\beta} \]

\[L(s) = A(s) \beta \]

- Pole splitting
- Pole zero cancellation
- Resistive broad-banding

Change frequency behavior of active circuit (with a passive component)
Pole splitting

More *local* loopgain for high frequencies
- Input impedance goes down
 - higher input capacitance (*miller*)
 - input pole goes down
- Output impedance goes down
 - output pole goes up
Pole splitting

Less overall loopgain:
• Lower \(LP \)-product
• More distortion
• Introduces a zero
• Reduced accuracy
Pole-zero cancellation

Loopgain is reduced for high frequencies
- More distortion, etc.
Does not introduce a zero
Resistive broad-band"ing

Overall loopgain is reduced even at low frequencies
• Much more distortion
Does not introduce a zero
After successful frequency compensation
Add c_μ and r_ω one by one

- Insert CB-stage (cascode)
- Increase V_{bc}
- Replace transistor
- Elaborate compensation
Conclusions

• Start with **simple** model

• Create sufficient LP-product with dominant poles

• Do a frequency compensation
 Preferably with a phantom zero

• Insert r_o and C_μ one by one

• Insert ideal current follower if necessary

• Reduce C_μ if necessary (deal with zero)

• Replace ideal current followers by CB-stages

Compensation results remains valid
Next time: batteries and real transistors