Structured Electronic Design

The two-port and its chain matrix

$$
A=\left.\frac{v_{\text {in }}}{v_{\text {out }}}\right|_{\left.\right|_{\text {out }}=0} B=\left.\frac{v_{\text {in }}}{i_{\text {out }}}\right|_{v_{\text {out }}=0} C=\left.\frac{i_{\text {in }}}{v_{\text {out }}}\right|_{i_{\text {out }}=0} D=\left.\frac{i_{\text {in }}}{i_{\text {out }}}\right|_{V_{\text {out }}=0}
$$

Nullor

Input current and input voltage of the nullor are made zero via the output signals of the nullor

$$
\binom{v_{\text {in }}}{i_{\text {in }}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\binom{v_{\text {out }}}{i_{\text {out }}}
$$

Inside the Nullor

Nullator? Norrator?

practical nullor implementations

Transistor implementations ?

CB-stage

Choose

"Expert" versus "logic"

Direct transferA ${ }_{t 0}$

ET8016 2008

Direct transferA ${ }_{t 0}$

Exercises

Today:

- You work
- We walk around and help you when you are desperate
- Work on the exercises in the book, chapter 1
- Handouts exercises 1
- Take your time, there are still more exercise sessions to come
- When you have a result, check/discuss it with others, then you will find out if your answer is correct.
- The discussion will help the to understand the "WHY" part of the design.
- There will some solutions available at the end of this course
(but probably you do not need them anymore at that time $-\dot{)}$)

