ET8-16 Structured Electronic Design

2005

Computer Exercises

(Pspice and Linda)

Transistors

Small-signal model

File: {smc}

The file contains a small-signal model of a bipolar transistor which is connected as a CE-stage.

The small-signal diagram we have now is the simplest model that can be used to evaluate the frequency behaviour of a transistor. In this exercise the validity of this model is verified.

- 1. Determine the f_T of this small-signal model with LINDA by calculating the gain and generating the bodeplots.
- 2. Determine the influence of the load resistance Rl on the f_T .
- 3. Determine the pole of the circuit and again determine the influence of the load resistance. (use both "Pole zero list" and "Pole zero plot")

Add a resistance that models the output impedance of the transistor. Use a resistance of 30k

4. Repeat questions 1,2 and 3. What is your conclusion with respect to the influence of the output impedance of the transistor?

Add a Cmu of 4pF.

- 5. Short-circuit the transistor at its output (or terminate with 1Ω) and determine the pole/zero pattern.
- 6. Vary the load resistance and determine its influence on the pole/zero pattern. (An additional pole is created which is, however, non-dominant. Do not spend too much time for explaining it.)

Bipolar transistors

NPN, small signal parameters with Pspice

Start up the Pspice Design Manager and load schematic file: {bipdc}

1. Set-up a DC simulation to plot the collector current and the base current as a function of the base-emitter voltage.

(In Pspice Schematics Menu: Analysis \rightarrow Setup...)

2. Make a plot of the current-gain (β_f) of the transistor as a function of the collector current.

Find the value for Vbe that results in a collector current of about 1mA and set source V2 to that value.

- 3. Check in the output file the correctness of the collector current. (In Pspice Schematics Menu: Analysis → Examine output)
- 4. Find the relevant small signal parameters, like f_T .

With the "Parametric" option in the simulator, it is possible to do a simulation for various values of a certain parameter. In this case V1 can be varied to obtain a plot in which the influence of the collector voltage on the current gain can be seen.

With the help of the AC analysis, the current-gain as a function of the frequency can be determined. This can be done with the circuit below. (File {bipac})

- 5. Set IDC to the correct value to obtain a collector current of 1mA and setup an AC simulation and determine the f_T of the transistor.
- 6. How can you see the influence of Cmu and how can you determine that it results in a *right*-half-plane zero?

In this case the simulation can be done for various values of I2 with the "Parametric" option. In this way, the f_T as a function of the collector current can be found.

Generate a set of curves that gives an insight in the current dependency of the f_T .

- 7. Do the same simulations for the PNP-transistor Q2N3906. Important to see are the differences between the Q2N3904 and Q2N3906. New parts can be selected in the Pspice Schematics Menu: Draw \rightarrow get new part. According to the data sheets they are complementary, i.e. they can be interchanged.
 - a. Which differences have to do with the fact that one of the devices is a PNP and the other is a NPN?
 - b. Compare the small signal parameters between the Q2N3904 and Q2N3906? Can it be seen from these parameters if the transistor is a PNP or an NPN?

J-FET

Files: {jfetdc} and {jfetac}

- 1. Use the circuit on the left to generate the Vgs-Id curve. The type for the J-FET to be used J2N3819.
- 2. Use the AC analysis in the circuit to the right to make a plot of the currentgain of the J-FET as a function of the frequency.
 - a. What is the DC bias voltage V_{GS} in this simulation?
 - b. Determine the f_T of the J-FET.

Add in the source lead a DC voltage source with a value of 3V, such that the Gate-source voltage becomes -3 V.

3. Repeat the simulations of the former question. What is the influence of the gate-source voltage on the f_T . (You could use the Parametric option to see more.)

Cascodes

In file {casco1} you can find a circuit composed of the CE-stage and a load resistor of 1Ω .

* Bipolar transistor Source 1 0 Ι 01 0 (gm=3.09m beta=100 cpi=7.74p cmu=3.96p rb=100 ro=625k) 2 1 Rl 3 0 1 2 Ι Detect 3

1. Do the simulations for a load resistance of 1Ω and 1k. What is the influence of the load resistance?

The influence of the load resistance can be reduced by loading the transistor with a current-follower. The CB stage is an implementation of a current follower. Add a CB-stage.


```
* Bipolar transistor
Source
        1
           0
               Т
Q1
        4
           1
               0 (gm=3.09m beta=100 cpi=7.74p cmu=3.96p rb=100 ro=625k)
                 (gm=3.09m beta=100 cpi=7.74p cmu=3.96p rb=100 ro=625k)
Q2
        2
           0
               4
Rl
        3
            0
               1
Detect
        3
           2
               Т
```

2. Determine again the pole/zero pattern and decide which are the most relevant ones. (For instance, which poles were also found in the previous simulation?) Vary the load resistance (1 Ω , 1k and other interesting values). How much is the influence of this resistor on the amplifier behavior and is that a problem when designing a "normal" amplifier?

Negative Feedback

Simple amplifier

In file {trans} you can find a voltage-conductance amplifier which is realized with a simple transistor model (Gamp, Rpi, Cpi)

* Voltage a		amp	lifier with trans-conductance stage
Source	1	0	V
Rsource	1	2	10k
Gamp	5	0	2 4 -30m
Rpi	2	4	4k
Cpi	2	4	20p
R1	4	0	100
R2	4	5	900
Rload	5	0	100k
Cload	5	0	200p
Detect	5	0	V

- 1. For which type of source and load is this configuration optimally suited?
- 2. Simulate the transfer, pole/zero plots etc. of the amplifier with LINDA for various values of the components.
 - a. What is the influence of Rpi and Cload?
 - b. What is the influence of the gain of G?
- 3. Set the gain of G to -1. Do a frequency compensation to get the dominant poles in Butterworth position. Where can a frequency compensation component be inserted?
 - a. At the input?
 - b. At the output?
 - c. In the feedback network?

Try to find and test as many options as possible en check the effect with LINDA.

IV amplifier

File {IVamp} contains an IV amplifier implemented with a number of transistors. The circuit schematic is shown below. Use this file to investigate the properties of this circuit with LINDA.

- 1. Why is the $A_{t\infty}$ frequency dependent?
- 2. Where is the frequency compensation?
- 3. Can this be done in another way?
- 4. What happens when there is variation in the choice of reference transistor?
- 5. Shouldn't the base of Q7 not be connected to node 11 instead of to the ground node? What is the difference?
- 6. What is your opinion on the output stage (Q5)?

*I-V Amplifier									
Source	8	0	I	I					
Rsourc	e 8	0	100	100k					
Csourc	e 8	0	10p						
Detect	9	0	V						
Rload	9	0	100	100k					
Cload	9	0	100	100p					
Rf	8	9	50k	2					
Cf	8	9	2p						
Q1	7	8	11	(gm=3.09m beta=100 cpi=7.74p cmu=3.96p rb=100 ro=625k)					
Q2	10	0	11	(gm=4.56m beta=100 cpi=11.4p cmu=4.00p rb=100 ro=424k)					
Q3	6	5	0	(gm=4.83m beta=537 cpi=2.90p cmu=3.34p rb=500 ro=430k)					
Q4	5	5	0	(gm=4.50m beta=500 cpi=2.70p cmu=6.00p rb=500 ro=430k)					
Q5	0	6	9	(gm=192m beta=109 cpi=479p cmu=2.13p rb=100 ro=11k)					
Q6	5	0	10	(gm=4.52m beta=108 cpi=11.3p cmu=2.21p rb=100 ro=460k)					
Q7	6	0	7	(gm=3.06m beta=100 cpi=7.66p cmu=3.80p rb=100 ro=632k)					

File {IVamp} is also available for Pspice. The circuit topology is comparable with the Linda circuit, the small-signal parameters may differ.

- 7. Check the DC operating point. (You can use the buttons V and I to show the bias voltages in the schematic)
- 8. Plot the frequency response and determine the influence of capacitor Cf.
- 9. Check the noise behavior. This is done by checking the option "noise" in the setup of the AC analysis.
- 10. Which components are most dominant in the noise behavior?
- 11. Check the influence of bias currents on the noise behavior

